High Temperature Electrolysis for Hydrogen Production

J. Stephen Herring, Carl M. Stoots, James E. O’Brien
Idaho National Laboratory

and Joseph J. Hartvigsen, Ceramatec, Inc.

Materials Innovations in
an Emerging Hydrogen Economy
Hilton Oceanfront
Cocoa Beach, Florida
February 26, 2008
High Temperature Electrolysis Plant
$90\% \ H_2O + 10\% \ H_2$

$25\% \ H_2O + 75\% \ H_2$

Porous Anode, Strontium-doped Lanthanum Manganite

Gastight Electrolyte, Yttria-Stabilized Zirconia

Porous Cathode, Nickel-Zirconia cermet

$2 \ H_2O + 4 \ e^- \rightarrow 2 \ H_2 + 2 \ O^=$

$2 \ O^= \rightarrow O_2 + 4 \ e^-$

$H_2O + H_2 \rightarrow$

$H_2O \downarrow$

$O_2 \downarrow$

$\leftrightarrow O_2$

Typical thicknesses

<table>
<thead>
<tr>
<th>Electrolyte-supported</th>
<th>Cathode-supported</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.05 mm</td>
<td>1.500 mm</td>
</tr>
<tr>
<td>0.10 mm</td>
<td>0.01 mm</td>
</tr>
<tr>
<td>0.05 mm</td>
<td>0.05 mm</td>
</tr>
<tr>
<td></td>
<td>1 – 2.5 mm</td>
</tr>
</tbody>
</table>
Stack Internal Components

Stainless Steel Interconnect Plate

ScSZ Electrolyte

LSM Electrode

10 cm
25-cell stack used in 1000-hour test
Jan. 4 – Feb. 16, 2006

2 x 60-cell stacks tested at Ceramatec, SLC

Initial rate: 1.2 Nm3 H2/hr
final: 0.65 Nm3 H2/hr
2040 hours, ended 9-22-06
>800 hrs in co-electrolysis
High Temperature Electrolysis: from Button Cells to the Integrated Laboratory Scale Experiment

Button cell (2003) 3.2 cm²
10-cell stack (2004) 640 cm²
120-cell half-module (2006) 7,680 cm²

Research Goals:
• Develop efficient solid-oxide electrolysis cells, building on solid-oxide fuel cell research
• Decrease cost, increase durability
• Determine reasons for long-term cell degradation
• Optimize plant designs
• Co-electrolyze CO₂ and steam to CO and H₂
• Develop designs to apply nuclear heat and H₂ to heavy petroleum and oil sand upgrading
• Integrate nuclear energy sources and fossil/biomass carbon sources for hydrocarbon synthesis

CFD and Flowsheet Analyses

Temperature profile of cell
Process Flowsheet for Reactor-driven commercial plant

Integrated Laboratory Scale (operational 8-22-07) 720 cells, 3 modules (2008) 46,080 cm²
ILS Piping and Instrumentation
Comparison of nominal and extreme design cases.

<table>
<thead>
<tr>
<th></th>
<th>Nominal Case</th>
<th>Extreme Design Case</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASR (ohm cm²)</td>
<td>1.5</td>
<td>1.0</td>
</tr>
<tr>
<td>Current Density (A/cm²)</td>
<td>0.25</td>
<td>0.37</td>
</tr>
<tr>
<td>Per-cell Voltage, (V)</td>
<td>1.283</td>
<td>1.283</td>
</tr>
<tr>
<td>Electrolysis Power (kW)</td>
<td>14.54</td>
<td>21.8</td>
</tr>
<tr>
<td>Hydrogen Production Rate (NL/hr)</td>
<td>4735</td>
<td>7103</td>
</tr>
</tbody>
</table>
Assembled ILS Components
High-Temperature Electrolysis
Integrated Laboratory Scale Experiment July 16, 2007
ILS Module Installation
ILS Module Installation
Start of Testing

Initial operations began Aug 24, 2007
Module testing began Sept 24, 2007
ILS Module Sweep Data

![Graphs showing Stack Operating Voltage (V), Stack Internal Temperatures (°C), ASR, Polarization Curve, Stack #1, Top, Stack #2, Top, Stack #3, Top, Stack #4, Top, Shunt Current (A), Average ASR ~ 2.38 Ωcm², H₂ Production Rate (slpm), Dew Point Temperature (°C), Inlet Dew Point T (°C), Outlet Dew Point T (°C), and Shunt Current (A).]
Overall ILS Data

One additional experimental problem:

Bias voltages arising from intra-stack instrumentation

Not a problem for short stacks

Next iteration – separate DAC for intra-stack instrumentation
Syntrolysis: Co-Electrolysis of CO₂ and Steam to produce CO and H₂ (synthesis gas)

\[2 \text{H}_2\text{O} + \text{CO}_2 \rightarrow 2\text{H}_2 + \text{CO} + 1.5 \text{O}_2 \]

(demonstrated 2006 and 2007 at INL and Ceramatec)

Application: Carbon-neutral Production of Synthetic Diesel and Jet fuels via the Fischer-Tropsch process

\[n\text{CO} + (2n+1)\text{H}_2 \rightarrow C_n\text{H}_{2n+2} + n\text{H}_2\text{O} \]

using CO₂ from biomass sources and nuclear heat/electricity
INL Coelectrolysis Experiment
Conclusions

• Conventional electrolysis is available today
• High temperature electrolysis is under development and will be more efficient
• HTE Experimental results from 25-cell stack, 2x60-cell half-module and 4x60-cell full module, fabricated by Ceramatec,
 – Hydrogen production greater than 800 normal liters/hour was achieved in the half-module test for 2040 hours
 – The Integrated Laboratory Scale experiment operated with one module in Sept-Oct 2007, producing a maximum of 2.0 Nm³/hr and an average of ~0.85 Nm³/hr for 420 hours
• In the near-term hydrogen from nuclear energy will be used to upgrade crude and later to synthesize conventional gasoline and diesel fuel from renewable carbon sources
• In the long-term pure hydrogen from nuclear energy will power vehicles directly through fuel cells