

FLORIDA SOLAR ENERGY CENTER

A Research Institute of the University of Central Florida

Hydrogen Production via Photolytic Oxidation of Aqueous Sodium Sulfite Solutions

Cunping Huang, Clovis A. Linkous, Olawale Adebiyi & Ali T-Raissi

Hydrogen 2008 – Materials Innovations in an Emerging Hydrogen Economy

Cocoa Beach, Florida, USA February 27, 2008

Background

- SO₂ is a criteria air pollutant that can cause respiratory & other problems as an acid gas
- SO₂ emissions occur both naturally (20%) & anthropogenically (80%)
- Natural sources include: geothermal (e.g. volcanic), oceanic, vegetative & land emissions.

Anthropogenic Sources of SO₂ Emissions

- Combustion of high-sulfurcontaining fossil fuels
- Sulfuric acid & ammonium sulfate plants
- Power plants using coal, crude oil
 & crude oil-based fuel oil.

Major Global Anthropogenic Sources of SO₂ Emissions

Emission Source	Emission (%)			
Electric utility	69.7			
Industrial fuel combustion	13.6			
Metal processing	3.8			
Transportation	3.5			
Others	9.4			

Source: Schnelle, K.B., and Brown, C.A., Control of So_x, In Air Pollution Control Technology Handbook, ed. Kreith, F., CRC Press, Boca Raton, FL, 257, 2002

SO₂ is both a Pollutant & a Resource

Generation of SO₂ in 500 MW coal fired power plants can produce huge amounts of SO₂ that can be used for the production of H₂ as well as fertilizers.

Objectives

- Develop an innovative process for utilizing SO₂ in flue gas for the production of hydrogen
- Explore chemistry & chemical engineering aspects of SO₂ utilization
- Investigate effects of reaction conditions on the hydrogen production rate.

Flue Gas Treatment and H₂ Production

Conventional process:

Absorption: $SO_2 + NaOH = Na_2SO_3$

Oxidation: $Na_2SO_3 + O_2 = Na_2SO_4 + H_2O$

FSEC Approach:

Absorption: $SO_2 + NaOH = Na_2SO_3$ $SO_2 + (NH_4OH) = (NH_4)_2SO_3$

Photooxidation:

 $Na_2SO_3 + H_2O + UV light (or <math>\Delta E$) = $Na_2SO_4 + H_2$ $(NH_4)_2SO_3 + H_2O + UV light (or <math>\Delta E$) = $(NH_4)_2SO_4 + H_2$

Experimental Setup for SO₂ Treatment

Exp. Setup for H₂ Production from Aqueous Na₂SO₃ Solution

Hydrogen Production

Kinetics of H₂ Production via Photo-oxidation of Na₂SO₃

Material Balance

Ionic Species	Initial (mmol)	Final (mmol)	Diff. (mmol)	
SO ₃ ²⁻	O ₃ ²⁻ 63.41 0.00		63.41	
SO ₄ ²⁻	2.40	63.59	61.19	
Gas Theoretica (mL)		Exp. (mL)	Diff. (mL)	
H ₂	1550	1390	160	

Effect of Solution pH on H₂ Production

Effect of Solution pH on H₂ Production (cont'd)

Concentration Effect on H_2 Production Rate (at pH = 9.70)

Concentration Effect on H_2 Production Rate (at pH = 7.55)

Summary

		Conc.	•	Conc.	-	Conc.	•		•
	Solution	0.025 M	9.92	0.05 M	9.70	0.025 M	7.53	0.05 M	7.59
H ₂	prod rate	0.74 mL/min		1.40 mL/min		1.91 mL/min		1.91 mL/min	

At pH = 9.95, H_2 production rate increases with an increase in the concentration of the sulfite. At pH = 7.55, H_2 production rate is independent of the sulfite concentration.

Conclusions

- A novel approach for utilizing SO₂ in flue gas for hydrogen production has been developed
- Photolytic H₂ production from aqueous Na₂SO₃ solutions is a clean and efficient process
- Experimental data indicate that SO₃²⁻ can be fully converted into SO₄²⁻
- FSEC process requires no catalysts, reducing the process capital & operating costs.

Future Work

- Investigate effects of other flue gases (e.g. NO_x, CO₂) on the photolytic production of hydrogen
- Investigate effects of metal catalysts in enhancing the photolytic hydrogen production from SO₂
- Photoreactor design considerations
- Process design & optimization.

Acknowledgment

National Aeronautics and Space Administration (NASA) - Glenn Research Center (GRC) under contract No. NAG3-2751.