FLORIDA SOLAR

ENERGY CENTER

X-Ray Photoelectron Investigation of Phosphotungstic Acid as a Proton-Conducting Medium in Solid Polymer Electrolytes

Clovis A. Linkous Stephen L. Rhoden

Florida Solar Energy Center

Kirk Scammon
Advanced Materials Processing
and Analysis Center

University of Central Florida Cocoa, Florida, USA E-mail: calink@fsec.ucf.edu

A Research institute of the University of Central Florida

Tungsten trioxide, WO₃

- Melting point: 1473 K
- Insoluble in mineral acids
- Soluble in alkali
 WO₃ + 2NaOH → Na₂WO₄ + H₂O
- Formation of phosphotungstic acid, PTA:
 H₃PO₄ + 12WO₃ → H₃PW₁₂O₄₀-xH₂O

Outline

- PEM fuel cell function
- Conductivity in polymer electrolytes
- Effect of PTA on sulfonic acid polymer membrane conductivity
- XPS observation of W chemical shifts
- Relating chemical shift data to hydration environment
- Thermogravimetry
- Conclusion
- Future work

Polymer Electrolyte Membrane Fuel Cell

Typical Current-Voltage curve for a PEM fuel cell

Membrane Electrode Assemblythe heart of a PEM fuel cell

Polymer membranes with catalyst ink

sprayed catalyst ink layer

Base Polymer of interest: PEEK and PEKK

poly(aryletherketone)

Previous work on Nafion[®] 112 and PTA composite

Comparing Four Electrode Conductivity of NTPA to Nafion® 120 °C, 500 sccm H₂, 230 kPa

Solid Acid Additives for Membrane Modification

Keggin structure

Phosphotungstic acid (PTA)

12WO₃*H₃PO₄*24H₂O

10 Å

Conductivity vs RH for SPEEK/PTA composite membrane

Effect of Cs+ treatment on PTA/SPEEK composites

SPEEK-PTA Composites at 80C

Representative W4f spectra

Summary of W4f_{7/2} data

<u>Sample</u>	Binding Energy (eV)
WO_3	35.1
PTA + Cs ₂ CO ₃	35.4
PTA/Cs+/H ₂ SO ₄	35.6
SPEEK/PTA	35.7
PTA + CsCl	35.8
Na ₃ PTA	35.9
PTA-6H ₂ O	36.0
PTA-EtOH/DMF	36.2
PTA (anhydrous)	36.2
PTA – 24H ₂ O (recrystallized)	37.8, 36.0
Na_2WO_4 - $2H_2O$	36.7
Cs ₂ WO ₄ (anhydrous)	37.3, 35.3
PTA24H ₂ O (commercial A)	37.5
PTA24H ₂ O (commercial B)	37.6
Cs ₂ WO ₄ -2H ₂ O	37.7

Weight loss thermogram for PTA-24H₂O

Weight loss thermogram for PTA-6H₂O

Weight loss thermogram for PTA treated with Cs₂CO₃

Summary of W4f_{7/2} data

<u>Sample</u>	Binding Energy (eV)
WO_3	35.1
PTA + Cs ₂ CO ₃	35.4
PTA/Cs+/H ₂ SO ₄	35.6
SPEEK/PTA	35.7
PTA + CsCl	35.8
Na ₃ PTA	35.9
PTA-6H ₂ O	36.0
PTA-EtOH/DMF	36.2
PTA (anhydrous)	36.2
PTA – 24H ₂ O (recrystallized)	37.8, 36.0
Na ₂ WO ₄ -2H ₂ O	36.7
Cs ₂ WO ₄ (anhydrous)	37.3, 35.3
PTA-24H ₂ O (commercial A)	37.5
PTA-24H ₂ O (commercial B)	37.6
Cs ₂ WO ₄ -2H ₂ O	37.7

Conclusion

- Cs⁺ exchange improves conductivity of SPEEK/PTA composite membranes.
- W chemical shift related to O-bonding geometry (octahedral vs tetrahedral) and waters of hydration.
- Cs⁺ treatment lowers PTA water content and its enthalpy of hydration.
- Cs+ functions by destabilizing waters of hydration, rendering them more mobile and better able to conduct protons.

Future Work

- XRD of PTA vs water content
- IR analysis of retained hydrogen stretching frequencies
- Obtaining conductivity vs RH curves at temperatures on either side of the TGA water transition.
- Fabricating Pt//SPEEK/PTA//Pt membrane electrode assemblies and deriving fuel cell current voltage curve