Advanced Ceramics for Sustainability - View of Siemens Corporate Technology

Wolfgang Rossner
Siemens Corporate Technology

August 2, 2011
Contents

1 Starting Point: Megatrends Require Sustainability
2 Advanced Ceramics – Proven Solution Provider
3 Sustainability as Opportunity for Advanced Ceramics
4 Final Remarks
Advanced Ceramics at Siemens:

- Key enabler for innovation and sustainability
- Key components in distinguished applications
- Solution provider for system development and engineering
Megatrends are significantly shaping the future of our planet

- Urbanization
- Demographic change
- Climate change
- Globalization

Efficient use of resources
The result is huge challenges in terms of infrastructure and efficiency.

<table>
<thead>
<tr>
<th>Efficient use of resources</th>
<th>Demographic change</th>
<th>Climate change</th>
<th>Globalization</th>
</tr>
</thead>
</table>
| Urbanization | • By 2050, the urban population will **double** to 6 billion people.
• By 2025, China will have over **200 cities** with more than **one million** inhabitants each. | • Limiting global **warming to 2°C** requires a 15-fold increase in carbon productivity
• This results in investment needs of **10.5 trillion €** in the energy sector **by 2030** | • While the **emerging regions** of Asia/ Pacific and Africa/ Middle East provide only about 32% of today’s global economic output, they will contribute **50% of growth by 2020.** |
| Demographic change | • In the United States, **expenditure** on **healthcare** already accounts for 16 percent of GDP.
• At current trends, a **girl born** in Germany today has a 50% chance of reaching the **age of 100.** | | |

Source: McKinsey; International Energy Agency (IEA)
Siemens views these challenges as an opportunity asking for more efficiency and sustainability.

<table>
<thead>
<tr>
<th>Efficient use of resources</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urbanization</td>
</tr>
<tr>
<td>Effective and environmentally friendly infrastructure, whether in developed or rapidly growing emerging nations (e.g. the supply of energy, power and water; mobility)</td>
</tr>
<tr>
<td>Demographic change</td>
</tr>
<tr>
<td>Efficient and affordable long-term medical care and age-appropriate infrastructure (e.g. mobility, medical care, nursing care, administration)</td>
</tr>
<tr>
<td>Climate change</td>
</tr>
<tr>
<td>CO₂ reduction and energy efficiency (e.g. in power generation, transport and distribution; industry; buildings; mobility; households)</td>
</tr>
<tr>
<td>Globalization</td>
</tr>
<tr>
<td>Specific requirements of regional markets and the management of global processes and development (e.g. products for emerging countries, global value chains)</td>
</tr>
</tbody>
</table>
Sustainability: Three Joint Target Fields for Maximum Impact

> Sustainability is the capacity to endure <

- **Environmental** -
 Responsibility for climate and environment

- **Economic** -
 Value-oriented action

- **Social** -
 Responsibility for people
Advanced Ceramics for Sustainability

1 Starting Point: Megatrends Require Sustainability
2 Advanced Ceramics – Proven Solution Provider
3 Sustainability as Opportunity for Advanced Ceramics
4 Final Remarks
Advanced Ceramics: Examples for proven value drivers in system engineering

Osram LED-Lighting
OSTAR® - Product Family
- Osram’s most powerful cold-white LED
- Brightness of 1,000 lumen at 20 W (= 50W halogen lamp)
- Flat, compact and integratable
- Energy saving and longest life time
- Improved luminescent ceramics & advanced thin-film technology
- Optimized ceramics integration to LED chip

Siemens Gas Turbine – Unmatched Efficiency
Gas Turbine SGT5-8000H
- Fast start-up capability & operational flexibility
- High reliability and availability
- In combined cycle duty efficiency of over 60%
- Lowest life cycle costs and reduced investment costs/kW
- High temperature alloys
- Ceramic thermal barrier coatings

World’s first dual source Computed Tomography
Somatom Definition:
- Faster than every beating heart
- Full cardiac detail at half the dose (50% lower radiation exposure)
- One-stop shop scanning in acute care
- Scan every heart at any heart rate without beta-blockers
- Ultrafast ceramic scintillator material
- Improved machining and assembly technology

Page 9 © Siemens AG 2011. All rights reserved
Gas Turbine Technology:
A high-impact showcase for sustainable power generation

Ceramic Thermal Barrier Coatings
for efficiency and life time

Development on all hierarchic levels:
Thermal conductivity & failure tolerance

Plasma Sprayed TBCs (APS):
8% Yttria-stabilized Zirconia (YSZ)

- Heat conductivity: 2 W/(m K)
- CTE: 11×10^{-6} K$^{-1}$
- Melting temp. > 2200°C
Gas Turbine Technology:
A high-impact showcase for sustainable power generation

<table>
<thead>
<tr>
<th>Year</th>
<th>Location</th>
<th>Technology</th>
<th>Net Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>1992</td>
<td>Killingholme, 2 x 450 MW</td>
<td>52% net efficiency</td>
<td></td>
</tr>
<tr>
<td>1996</td>
<td>Didcot “B” 1&2, 710 MW + 702 MW</td>
<td>56% net efficiency</td>
<td></td>
</tr>
<tr>
<td>2001</td>
<td>Mainz-Wiesbaden, > 400 MW</td>
<td>> 58% net efficiency</td>
<td></td>
</tr>
<tr>
<td>2008/2011</td>
<td>Irsching 4 with SGT5-8000H, > 578 MW</td>
<td>60.75% net efficiency</td>
<td></td>
</tr>
</tbody>
</table>

Continuous Progress in Efficiency Increase (Combined cycle technology)
Advanced Ceramics for Sustainability

1. Starting Point: Megatrends Require Sustainability
2. Advanced Ceramics – Proven Solution Provider
3. Sustainability as Opportunity for Advanced Ceramics
4. Final Remarks
Drivers for ceramics towards more global sustainability

Energy efficiency
- Products and solutions with high energy efficiency
- Examples:
 - Gas and steam turbine power plants
 - High-voltage DC power transmission (HVDC)
 - Efficient lighting

Renewable energy
- Technologies for renewable energies
- Examples:
 - Wind farms
 - Concentrated solar power plants
 - Large photovoltaics
 - Fuel mix incl. hydrogen

Environmental technology
- Environmental technologies and resources
- Examples:
 - CO₂ capture and use
 - Water treatment
 - Air pollution control systems
 - Resource Efficiency
 - Recycling

‘Energy’ and ‘Environment’ are dominating fields …

E.g. ‘Energiewende 2011’ in Germany (‘change of energy mix’)

Page 13 © Siemens AG 2011. All rights reserved
Drivers for ceramics towards more global sustainability

... but the more detailed ‘picture’ is broader.

Energy efficiency
Industrial productivity
Affordable and personalized healthcare
Intelligent infrastructure solutions

Efficient Fossil Energy
CO₂ Capture and Utilization
Waste Heat Recovery
Renewable Energy
Energy Storage
Industrial Drives
Resource Efficiency
Diagnostic Instrumentation
Therapeutic Tools and Implants
Smart Grid (incl. ICT)
Electromobility
Green Building
Example:
Fossil power generation – ceramics for next efficiency level

Combined-cycle power plants belong to the most energy efficient fossil-fired power generators. The new gas turbine from Siemens in the Bavarian town of Irsching is has set a new efficiency record of 60.75 %. But there is still room for improvement by advanced high temperature materials.

Future ceramics impact
- Hot gas parts (TBC, CHS)
- New materials for blades, vanes
- Ceramic composites
- Coatings
- Sensors for condition monitoring
Example:
Power transmission - high-voltage direct current transmission

High transmission capacity, power transmission over long distances and low energy losses are future demands. With HVDC electricity can be effectively transmitted over great distances and can reduce CO₂ emissions due to lower losses. HVDC also provides an optimal grid access to renewable energy sources. With respect to increasing voltage and current loads advanced materials solutions are of critical importance.

- Transformer materials
- High voltage insulation
- Low loss conductors
- Superconductors
- Contact materials
- Ceramics and refractory metals
- Hybrid materials and composites

Transformer for High-voltage direct current transmission (HVDC)
Example:
Next dimension of electricity – renewable energy

Solar thermal energy offers big opportunities to generate large power volumes with minimized CO₂ footprint. Global power production by STE is expected at 31 GW in 2020 with about 90% by trough based solar power plants.

Since 2003, just Siemens has installed wind turbines with an output of over 3,300 megawatt. Off-share installation asks for highest lifetime, reliability and efficiency and is stimulating new technologies (e.g. gearless generators).

- Multifunctional ‘optical’ coatings
- Heat transfer and storage media
- Protective coatings
- New magnetic materials
- Long-life bearings
- Condition monitoring in harsh environment
- Hydrogen generation
- Fuel cells
Example:
Next dimension of electricity - e-mobility and smart grid

Electric power generated by renewable energy offers a new ‘quality’ of power supply but needs more ‘intelligent’ distribution, consumption and storage. For example smart grids are required for stable and reliable electric supply including electric storage capacities from the kW to the 100 MW range. As an example electric cars can be part of the grid acting simultaneously as consumer and storage medium with very large and flexible capacity.

- Fuel cells
- Battery technologies
- Electric storage media
- Power and control electronics
- Inductive power coupling
- Intelligent sensors (metering)
Example:
Healthcare - medical diagnostics and therapy

With respect to demographics change medical care is facing higher requirements for diagnostics and therapy. Beside improving performance energy efficiency is a matter of actions. For example, energy consumption accounts for over three quarters of the environmental impact of medical products. When developing new products, Siemens makes sure that new devices consume less energy.

- X-ray detection materials (scintillators)
- Superconductors
- Piezoelectrics (ultrasound imaging)
- X-ray generation materials
- Power electronics
- HV insulation
- Bio-medical sensors
- Drug delivery materials
- Functionalized ‘particles’

Future ceramics impact

Courtesy: Radiation Monitoring Devices, Inc.
Example: Efficient electronics and lighting

Power electronics are facing higher demands by increasing power levels and reliability aspects. However current efficiencies have to be improved to avoid self heating and waste heat generation. New technologies are seen to open new perspectives like solid state lighting.

As an example the PARATHOM® PRO CLASSIC A 80 OSRAM is the first LED lamp that can replace a 60W incandescent lamp and saves up to 80% energy.

Future ceramics impact

- New and more efficient phosphors
- Ceramic packaging
- Replacement of rare-earth based materials
- Ceramic chip-level processing
- Optical packages – photonic crystals
- Power electronics and supply
Example:
Environmental technologies – water and air

According to the UN, water consumption will increase 40 percent by 2025 while at the same time climate change will increase water scarcity in many regions. Environmentally friendly water technologies are needed today more than ever. As an example cell sensors could serve as early-warning systems for contaminated water or air by giving related information in an overarching process control system to initiate appropriate measures.
Advanced Ceramics for Sustainability

1. Starting Point: Megatrends Require Sustainability
2. Advanced Ceramics – Proven Solution Provider
3. Sustainability as Opportunity for Advanced Ceramics
4. Final Remarks
Drivers for Ceramics Towards More Sustainability

Perspectives within ‘traditional’ fields

Highest performance structural and functional ceramics
 ➢ chemical and microstructural optimization
 ➢ use of anisotropic behaviour (grain orientation)
 ➢ ceramic composites (e.g. CMCs)

Multifunctional ceramics and composites
 ➢ mixed conductors for fuel cells
 ➢ transparent electrodes, …
 ➢ catalytic function for hydrogen generation
 ➢ superconductors
 ➢ gas und liquid separation membranes

Adaptive ceramic materials
 ➢ tunable microwave ceramics for ICT
 ➢ self repairing materials systems
Drivers for Ceramics Towards More Sustainability

Perspectives at the ‘materials interfaces’

➢ Battery materials and processing:
 • smart grid
 • e-mobility

➢ Thermoelectrics:
 • waste heat recovery (energy efficiency)
 • power electronics (efficient cooling)

➢ Permanent magnets:
 • wind power
 • e-car / e-mobility

➢ Refractory metals and composites:
 • power generation (gas turbine)
 • power distribution (HV)

➢ Materials substitution:
 • environmental dangerous substances (RoHS)
 • scarce substances (e.g. rare earth elements)

➢ … more …
Drivers for Ceramics Towards More Global Sustainability

Goals and needs for research and development

- New functionalities and improved performance of components and systems through advanced ceramics
- Towards more ‘intelligent’ ceramics: load and failure tolerant, self adapting, self repair (healing), etc.
- Integration of simulation and modeling from atomic level to technical processing: engineering on the ‘defect’ level
- New manufacturing processes: low temperature synthesis, free forming, near net shaping, etc.
- Cost efficient manufacturing to improve acceptance and performance-to-cost ratio
What ‘ceramists’ can do to strengthen sustainability and innovation potential:

• Continue to approach new frontiers, mainly at the interfaces to other disciplines.

• Implement and improve application and system know-how on the system engineering level.

• Intensify dialogue with the general public about performance and potential of advanced ceramics to create sustainable benefit.
Corporate Technology

Thank you for your attention!