Emerging Applications and Challenges in using Ceramics at General Electric

Krishan L. Luthra Technology Leader Ceramic & Metallurgy Technologies GE Global Research Schenectady, NY 12309

August 2, 2011

Ceramics in Emerging Energy Systems

Gas Turbine

SOFC

NaMx Battery

CMCs Light weight, High Temperature Solid Electrolyte Oxygen & Sodium Ion Transport

2 Ceramic Leadership Summit 2011 August 2, 2011

Outline

Introduction

- Ceramic Applications
- Ceramic Matrix Composites (CMCs)
- Solid Oxide Fuel Cells
- NaMx Batteries
- Summary and Conclusions

Ceramic matrix Composites

- •What is a CMC?
- •SiC/SiC system by Melt Infiltration
- •Properties of SiC/SiC composites
- •Engine Test Experience
- •Commercialization challenges/Barriers
- •Summary

High Temperature Structural Material Capability

CMCs are the only option for significant enhancement of material capability Delivers significant fuel and pollution reductions

Peaudo-Tourahnase from Continuous Fibers

Strain

 Toughness, or damage tolerance, is derived from energy dissipated by fiber-matrix debonding and fiber pull-out

Microstructure of Prepreg MI Composites

~1-3% Matrix Porosity

imagination at work

Ceramic Leadership Summit 2011 . August 2, 2011

1400

Prepreg MI Composites

Foreign Object Damage

- Use ballistic impact to simulate foreign object damage
 - 0.175" chrome steel ball bearing at 310m/s (18J)
 - damage localized to impact site
 - impacted sample exposed in shroud rig for 100 hours

Exit

NDE

Little or no damage propagation on exposure to high temperatures

Fiber Volume Fraction Effect on Damage Tolerance

2/3 normal fiber loading

¹/₂ normal fiber loading

- **Detrimental effect on mechanical** properties
- No effect on damage tolerance as measured by ballistic impact damage resistance

1/3 normal fiber loading

Material System

Environmental Barrier Coating (EBC) needed for turbine applications to prevent silica volatilization and surface recession from water vapor in combustion gas

 $SiO_2 + H_2O \rightarrow Si(OH)_x$ (gas)

BSAS + Mullite

Silicon

3-layer EBC system

- Application by thermal spray techniques
- BSAS water vapor recession • resistance
- BSAS + mullite transition layer for CTF match
- Silicon oxidation resistance

1000 hr rig exposure

Prepreg MI composite w/o EBC - damage limited to surface recession Prepreg MI composite with EBC - no surface recession or internal oxidation

(c)

Industrial Turbine Applications

15 Ceramic Leadership Summit 2011 August 2, 2011

CMC Development Path for Gas Turbines*

Large Engine Shroud Field Tests

Prepreg CMC Combustor Liner in Solar CSGT Engine

- Combustor liner fabricated in late 2004, tested in CSGT engine (modified Solar Centaur 50s, 4MW) at Chevron/Texaco site in Bakersfield, CA from Jan 2005-Nov 2006
 - 12822 hours including 46 start/stop cycles
- CMC survived relatively unharmed despite presence of pre-existing processing defects
- EBC retained over >99% of surface

7FA Field Engine Rainbow Test

- Shrouds exposed for 5000+ fired hours and 15+ start/stop cycles with no shroud failures, engine operation issues or instrumentation anomalies
- Engine firing temperature range 1232-1288°C on daily cycle
- CMC inner shroud maximum surface temperature ran 1200° to 1260°C

No shroud failures or performance anomalies

Prepreg CMC Shroud Residual Strength

Prepreg Shroud Prepreg Shroud with EBC spallation without EBC spallation Prepreg Shroud 1116-1 60 Shroud 1299-1 60 50 50 40 40 Stress (ksi) Stress (ksi) 30 30 witness bars after engine test 20 20 region of 10 10 maximum recession 0 0 1.5 2 0 0.5 1 0.5 1.5 2 0 1 Strain (%) Strain (%)

No degradation in mechanical properties

19 Ceramic Leadership Summit 2011 August 2, 2011

Nearly 20,000 hours of Field Experience with Shrouds & Combustor Liners

~8 cm x 15 cm first stage shrouds 160 MW machine 5366hrs, 14 cycles 2002-2003

~30 cm dia x 27 cm length Combustor liner 12,855hrs, 45 cycles Solar 10 MW gas turbine 2005-2006

~8 cm x 15 cm first stage shrouds 96 per full set - 160 MW machine

>1900 hrs, 342 starts 2006- Continuing JEA, Florida

>2000 hrs, 15 starts 2011- Continuing

20 Ceramic Leadership Summit 2011 August 2, 2011

⁴⁷cm CMC Second Stage Shroud Ring 1000 hrs 2 MW Machine (2000)

Turbine Performance Benefit Verified

Measured benefits attributed to the CMC shrouds exceeded the expectation for increase in power output and met expectations for reduction in heat rate (increase in efficiency)

Publicly Announced CMC Components

GE-Rolls Royce F136 engine for the Joint Strike Fighter

GE F414 engine for F/A-18E/F Super Hornet

GE LEAP-X for narrow body aircraft

Commercialization Challenges

Design of Components

- Adequate attachment compliance to account for thermal expansion mismatch
- Adequate part sealing to realize cooling air flow and leakage goals

Life of MI-CMC Components

- Industrial applications require tens of thousands of hours
- Damage propagation after initial damage
- Requires minimization of processing defects in components

Coating Life

- Required minimum of 24,000 hours
- Damage propagation after FOD or otherwise localized damage

Component Cost

• Target is 1 - 2 times the metallic component cost

CMC Summary

- Melt Infiltrated SiC/SiC composites (HiPerComp®) are attractive for high temperature applications in industrial gas turbines & aircraft engines
 - Low matrix porosity: high thermal conductivity, high proportional limit, high interlaminar strengths, superior oxidation resistance
- Key Attributes
 - Light weight & high temperature capability make them attractive for hot stage components of gas turbines
- Several successful field engine tests
 - Small engine shroud for >1,000 hours
 - Small engine combustor for >12,000 hours
 - Large engine partial shroud set for >5,000 hours
 - Large engine full shroud set for >1,100 hours and >800 hours continuing
- Remaining hurdles to commercialization include CMC material cost and demonstration of full component life

SOFCs

- Benefits/system
- Challenges
- Status

Why SOFC?

Anode Supported Solid Oxide Fuel Cell

Solid Oxide Fuel Cells at GE

Anode Electrolyte Cathode

Planar SOFC

Stack series of cells sum

Cell operates at ~0.8V (DC)

SOFC 5kW Prototype

System stacks in parallel

28 Ceramic Leadership Summit 2011 August 2, 2011

Commercialization Challenges

Key Requirements

- Life: >40,000 hrs
- Cost: Cost of Electricity (COE) at par with existing Power Generation systems (<10 cents per KWH)

Approach

- Life
 - Limited by Materials Issues (Chemical and structural)
- Cost
 - Installed Cost
 - Low Cost Materials (Innerconnect alloy, rare earths, ...)
 - High performance materials set (Increased power density)
 - Low Cost Manufacturing (Thermal spray for processing of electrolyte & electrodes)
 - Operating Cost (Increased system efficiency & Increased life)

High power density and high degradation rate

SOFC degradation - phenomenological approach

With a 'fixed' materials set: Focus on cathode side, high-impact degradation mechanisms

Degradation reduction

Degradation mechanisms identified and mitigation strategies validated -Developed interconnect coating -Stabilized cathode

-Validated low-cost interconnect alloy

Cost reduction

Increased power density and decreased steel cost lead to significant cost reductions

Low-cost manufa

Deposition Technology Progress

- High throughput, many different structures/ compositions can be easily fabricated
- Cell and stack design tailored to deposition processes
- Performance reaching sintered cell levels
- Scale-up to 4" and 12" cell on-going

35 Ceramic Leadership Summit 2011 August 2, 2011

SOFC Summary

- SOFCs offer opportunities for high efficiency systems
- Significant progress made in past several years
- Life & Cost are key challenges in commercializing SOFCs
 - GE pursuing low cost plasma spraying technique for processing of electrolye for anode supported SOFCs

NaMx Battery

- Application Space
- Materials Needs

Power/Energy Spectrum

Power - needed to drive at high speeds, Fast charge/discharge **Energy** - needed to provide range, distance and power over extended periods

Technology areas for Na-Metal Halide Batteries

Chemistry

- Cathode chemistry
- Performance
- maintenance
- Modeling/diagnostics

- Beta''-alumina
- Sealing materials
- Joining processes
- Corrosion

- Thermal management
- Vibration hardening
- Packaging materials
- FE modeling

Control

System Integration

- System
- optimization

Key drivers/tradeoffs: Performance – Reliability - Cost

Na-NiCl₂ cell basic structure

Key materials

- Stable cathode mix
- Solid electrolyte (Beta"-Alumina)
- High-temperature seals
- Metal to Ceramic bonding
- Corrosion resistant metals and alloys
- Low resistivity current collectors

Na-NiCl₂ cell basic chemistry Cell operating conditions • Temperature ~ 270C-350C Current collector (Ni) • Voltage ~ 1.8-3.4V (OCV: 2.58V) Anode (liquid Na) • Current ~ 20-100A Cathode (Ni+NaCl+Additives) • Cell power ~ 100-200W • Resistance (initial) ~ 7-10m Ω Liquid electrolyte (NaAlCl_{Δ}) Pressure 1-2 bar Beta" Alumina Solid Electrolyte (BASE) Case (mild steel) charge **e**discharae 6 Charge Ni + 2NaCl \rightarrow NiCl₂ + 2Na⁺ + 2e⁻ $2Na^+ + 2e^- + \rightarrow 2Na$ Discharge $2Na^+ + 2e^- + \leftarrow 2Na$ Ni + 2NaCl \leftarrow NiCl₂ + 2Na⁺ + 2e⁻

Cathode current collector Cathode + liquid electrolyte

Beta" Alumina Solid electrolyte (BASE) Anode Anode Ceramic Leadership Surr Augus

Beta"-Alumina: Various processing

*T. Oshima et al, Int J. Appl. Ceram. Tech., 1 (3) 269-76 (2004).

**J. Sudworth, MRS Bulletin March 2000

Sealing materials & processes

Cell assembly steps

Bonds strength of all joints and resistance to cell chemical fill are most critical

Seal glass

Requirements

- Chemical resistance to Na and halide melt
- No interaction with Beta"-alumina (ion exchange)
- High bond strength
- CTE close to β'' and $\alpha\text{-ceramics}$
- Hermiticity
- Low process temperature (800-1050C)

Technology areas

- Material composition
- Corrosion mechanism in Na and halide melt
- Characterization (Properties & Bonding)
- Sealing process

Sodium-sulfur batteries (GE)

- Aluminoborosilicate glasses (GE 2093 and GE 2112)

Thermal compression bond

Requirements

- Chemical resistance to Na and halide
- High bonding strength
- CTE close to α -alumina
- Hermiticity

Technology areas

- Metallization material composition
- Sintering and TCB processes
- Characterization (Properties & Bonding)
- Corrosion mechanism in Na and halide

Thermal Compression Bond

Alpha-alumina

Ni

August 2, 2011

Ceramic metallization

Good conditions for glass wicking

- Small pore size in metallization layer
- Large grain size in ceramic

Materials interaction with cell chemistry

Challenge

Ability to predict material life in cell environment without testing the cell for years

Accelerated life test

- Accelerate corrosion by increasing temperature and/or using liquid phase vs vapor without introducing "un-real" failure mechanisms

- Establish stress-life curves through test data
- Estimate material life & degradation rate

Thermodynamic modeling

- Proven to be effective in several materials applications where thermochemical data are available

- Limited data for Sodium-Metal Halide battery materials and chemistry

Pristine seal sample

In Liquid Na

In Liquid halide

Electron Image

Manufacturing Investment

New York Battery Plant GE Energy Schenectady Campus

- Repurpose existing facility
- 190,000 ft² factory
- Workforce of 350

NaMx Battery Summary

- NaMx Batteries are demonstrated to be suitable for a wide spectrum of energy applications (Transportation, Power infrastructure)
- Advanced materials (cathode, ceramic electrolyte and seals) are key enablers for the performance and life of NaMx batteries

Summary & Conclusions

- Ceramics offer tremendous opportunities for improved efficiency
 of many gas generation systems
 - SOFCs, Batteries, CMCs, Ceramic Cores
- Life & Cost are key challenges in commercializing ceramic components
- GE actively working on commercializing many ceramic components
 - CMCs & NaMx batteries offer opportunities within 5 years
- Materials research key to addressing commercialization challenges
- Many companies, including GE, are actively recruiting in ceramics areas

Acknowledgements

- CMC and SOFC work were partly funded by DOE (DOE contracts DE-FC26-00CH11047& DE-NT0004109)
- Key Contributors
 - CMCs: Greg Corman
 - SOFC: Matt Alinger
 - NaMx Battery: Mohamed Rahmane

