Enhancing Atomic Mobility and Desorption Kinetics in Light Metal Hydrides (Contract: 0847464; PI: Tabbetha A. Dobbins)

Microstructure during Dehydrogenation

Hydrides are

(by USAXS)

Surface

Fractals

Nanoconfined Hydrides

Confined in 200 nm Porous Alumina

Mass Fractals in Nanoconfinement

Hydrogen Dynamics when Confined in 1.6 nm Fe-BTC MOF

Project ENERGY

Hydrogen Storage Design Challenge at LSMSA High School

Synchrotron X-ray Studies for Scientists and Engineers

Learning Activities

Friday Tours of CAMD beamlines Measurement at CAMD In-class Lectures Solving Homework Problems Exams

Primary Textbook
Elements of Modern X-ray
Physics by Jens Als-Nielsen

and Des McMorrow

Citations

- 1. Narase Gowda S., Ilavsky J., Gold S.A., Dobbins T., "Ultra Small Angle X-ray Scattering (USAXS) Studies of Morphological Changes in NaAlH4", *Materials Challenges in Energy*, Edited by Wicks G.G., et al., **224** pp 51-60 **(2010**).
- Dobbins T., Ukpai W., "A Study of the Thermodynamic Destabilization of Sodium Aluminum Hydride (NaAlH₄) with Titanium Nitride (TiN) using Xray Diffraction and Residual Gas Analysis", Materials Challenges in Alternative and Renewable Energy: Ceramic Transactions Edited by Wicks G.G., et al. 224 pp 99-106 (2010).
- 3. NaraseGowda, S., Brown C., Jenkins T., Dobbins T., "Quasi-Elastic Neutron Scattering Study of Hydrogen Dynamics in Nano-confined NaAlH4, *PRB*, in preparation.
- 4. NaraseGowda S., Brown C., Jenkins T., Dobbins T., "Synergistic Effects of Nano-Confinement and TiCl3 Catalysis on NaAlH4 Desorption Studied by Quasi-Elastic Neutron Scattering, *Int. J. Hyd. Energy*, in preparation.
- 5. Dobbins T., NaraseGowda S., Butler L, "Study of the Morphological Changes in MgH2 Destablized LiBH4 Systems Using Computed X-ray Microtomography", *Journal of Alloys and Compounds*, in preparation.