Ceramic Anode-Supported Solid Oxide Fuel Cells with High Performance and Tolerances towards Carbon Deposition and Sulfur Poisoning

Fanglin (Frank) Chen, Associate Professor Department of Mechanical Engineering, University of South Carolina

Fuel cell electrical efficiency, defined as: $\eta = \Delta G / \Delta H$		At 700°C		
Reforming by partial oxidation: C ₄ H ₁₀ +2O ₂ =4CO+5H ₂	$\Delta H(kJ/mol)$	$\Delta G(kJ/mol)$	$\eta(\%)$	# e
Direct oxidation: $C_4 H_{10} + 6 \frac{1}{2} O_2 = 4CO_2 + 5H_2O$	-2,660	-2,810	106	26
After reforming: $4CO + 5H_2 + 4\frac{1}{2}O_2 = 4CO_2 + 5H_2O$	-2,370	-1,760	74	18

Synthesis

Solution based chemistry

Sulfur poisoning

- Freeze-tape casting
- Sintering aids

Modeling

- Multiphysics
- Structure property
- Predicting and explanatory

Characterization

- Structure & microstructure
- Electrochemical performance
- In situ techniques

China University of Mining & Technology, Beijing: M. Han—Freeze casting, sintering aids Collaborators: University of South Carolina: K. Reifsnider & P. Majumdar—Multiphysics, 3D tomography Oak Ridge National Laboratory: *In-situ* neutron diffraction Brookhaven National Laboratory: X-ray absorption fine structure (XAFS)