ZnO-Based Alloys with By-Design Optical Properties

Leah Bergman and Matt McCluskey* DMR-1202532

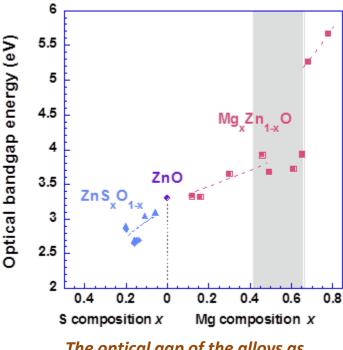
Professor of Physics, University of Idaho, *Professor of Physics, Washington State University

Primary Research Interest

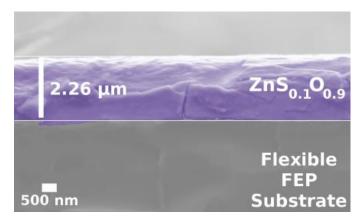
Realization of ZnO-based alloys with by-design optical properties in the blue to the UV part of the spectrum. Two alloy systems are being achieved and researched: $Mg_xZn_{1-x}O$, that enables tunability to the deep UV range: ~ 3.3 - 6 eV (376 - 207 nm), and ZnS_xO_{1-x} that enables tunability to the blue/visible range: ~ 3.3 - 2.6 eV (376 - 477 nm). The alloys are thin films grown via a magnetron sputtering technique and have granular morphology.

Challenges to overcome

I. $Mg_xZn_{1-x}O$: <u>Challenge</u>: Overcoming the inherent phase segregation tendency, reduction of intrinsic defects, and enhancement of the UV luminescence. <u>Approach</u>: Annealing under an Argon environment was found to significantly improve the material and optical properties due to the removal of the intrinsic defects.


II. ZnS_xO_{1-x} : <u>Challenge</u>: This system should exhibit a phase segregation, and in addition has energetically favorable intermediate phases such as zinc sulfate $ZnSO_4$ which impacts material and optical properties. <u>Approach</u>: $ZnSO_4$ formation is highly-sensitive to both temperature and pressure. We are exploring growth and annealing conditions to suppress this phase.

Primary Broader Impact Activity


- Creating relatively environmentally-friendly material systems via a sputtering technique which is a cost-effective growth method.
- The alloys can be used in lighting and optoelectronic technologies that require tailored optical properties with a large wavelength ranging from the blue to the deep UV. Potential applications include new-generation light sources and sensors.
- Disseminating lectures to the general public and young students on topics of materials science in consumer technology. A movie on the basics of LED is available online at http://lbergmanuidaho.wordpress.com/presentations/

Interests in New Collaborations

Fostering interaction with researchers in the field of semiconductor alloys.

The optical gap of the alloys as a function of composition, x.

Cross section SEM image of one of the alloys