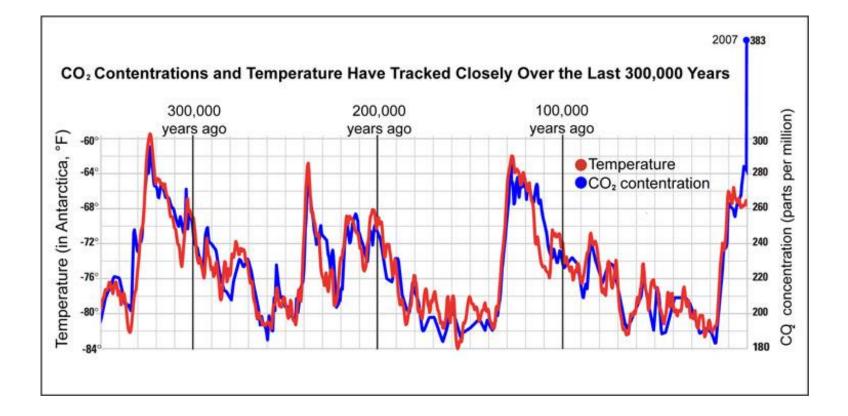


Carbonate Ceramics – A Disruptive Technology for the Brick Industry

Professor Richard Riman: Rutgers Material Science and Engineering

riman@rci.rutgers.edu

848-445-4946



A huge thanks to...

- Riman Research Group (Vahit Atakan, Qinghua Li, Surogit Gupta, Kevin Blinn, Dan Kopp, Ryan Anderson, Terence Whalen, Bahram Jadidian)
- Solidia Technologies (Nick DeCristofaro, Tom Schuler, Vahit Atakan, Larry McCandlish)
- KPCB (Bill Joy, David Wells, John Doerr)
- DOE-NETL (particularly Darin Damiani)
- ONR (Julie Christodoulou, Antti Makinen)
- ARL (Ernie Chan, Marc Pepi)
- JTC Singapore (Bij Borja)

Climate Change...What Me Worry?

http://www.southwestclimatechange.org/climate/global/past-present

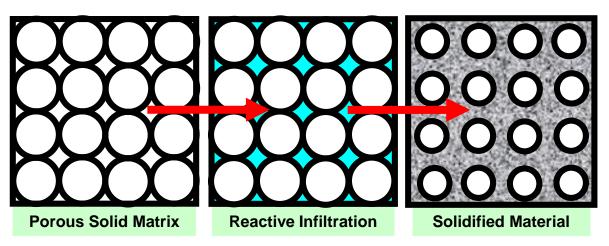
TGERS

THE STATE UNIVERSITY OF NEW JERSEY

Ordinary Portland cement

<u>Concrete</u>

- Composite material made of cement, sand, gravel, and water
- 2nd most consumed resource in world (after water)



Ordinary Portland Cement (PC)

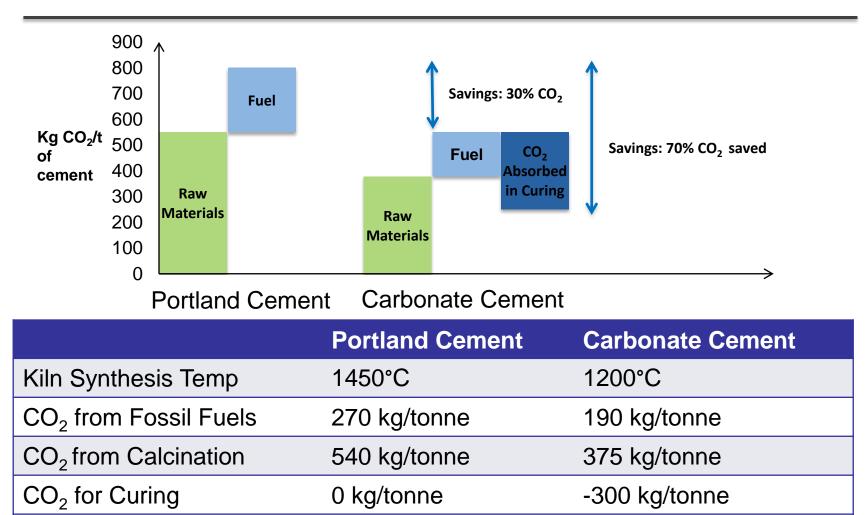
- Ca₂SiO₄ Di-Calcium Silicate
- Ca₃SiO₅ Tri-Calcium Silicate
- Hardens (reacts) with H₂O

Carbonate cement concrete - an RU Innovation

- Patented internationally, licensed globally
- Pack mix to desired shape
 - PC concrete packs & reacts at same time
- React mix with CO₂
 - PC reacts with water

 $CaSiO_3 + CO_2 = CaCO_3 + SiO_2$

A few facts about calcium silicates


 $CaCO_3 + SiO_2 = CaSiO_3$ Does not hydrate, forms @ T>900°C

 $2CaCO_3 + SiO_2 = Ca_2SiO_4$ Hydrates extensively, forms @ T> 1000°C

 $3CaCO_3 + SiO_2 = Ca_3SiO_5$ Hydrates extensively, forms @ T>1250°C

Carbonate Cement – made at any cement plant

810 kg/tonne

Total CO₂ Generated

265 kg/tonne

Carbonate Concrete Advantages

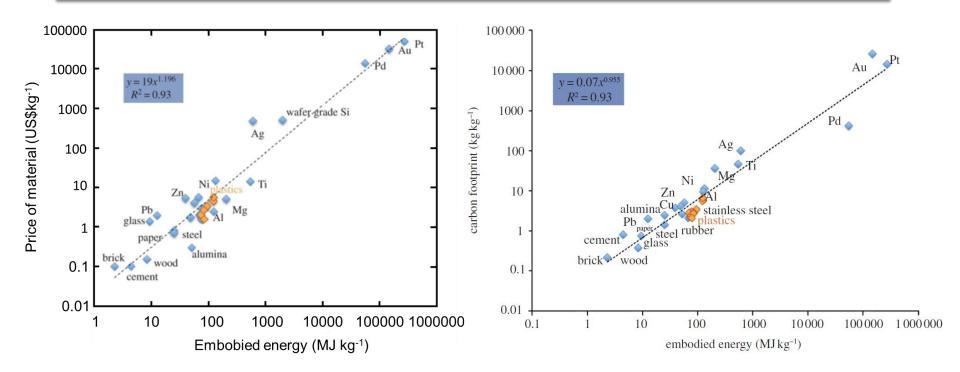
- Cement made at any cement plant for same price or less
 - Less limestone, lower grade acceptable
 - Less fuel b/c less limestone and lower temperature
- Full strength in less than a work shift
- Greater strength than PC concrete at same concentration
- Better chemical durability than PC concrete
- Virtually no shrinkage or creep
- Better temperature stability than PC concrete

Carbonate cement concrete

Carbonated C² Versus Other Materials

Materials	ρ _{вD} (g/cm³)	Water Absorption (wt%)	Compressive Strength (MPa)	Flexural Strength (MPa)	
Carbonate Cement	2.2	7.37±0.30 (5)	161±16 (5)	18.9±4.6 (15)	
Limestone (I)	1.76	<12	>12 >2.9		
Limestone (II)	2.16	<7.5	>28	>3.4	
Limestone (III)	2.56	<3	>55	>6.9	
Travertine	2.30	<2.5	34.5-52	>3.5	
Marble	2.59-2.80	0.20	>52	>7	
Sandstone	2.00	<8	27.6-68.9	>6.9	
Quartzite	2.56	<1	>137.9	>13.9	
Granite	2.56	<0.40	>131	>8.27	
Structural Concrete	2.3	-	35	6	

10


Carbonate Concrete w/with PC Concrete

		FHWA HPC Performance Grade ¹				
Performance Characteristic ¹	HFC Concrete	1	2	3	4	
Freeze/Thaw Durability (x = relative dynamic modulus of elasticity after 300 cycles)	≈87%	60% ≤ x ≤ 80%	80% ≤ x	NA	NA	
Scaling Resistance (x = visual rating of the surface after 50 cycles)	0	x = 4,5	x = 2,3	x = 0,1	NA	
Abrasion Resistance (x = avg. depth of wear in mm)	0.22±0.07	2.0 > x ≥ 1.0	1.0 > x ≥ 0.5	0.5 > x	NA	
Chloride Permeability (x = coulombs)	776±50	3000 ≥ x > 2000	2000 ≥ x > 800	800 ≥ x	NA	
Strength (x = compressive strength)	9482±920	6,000 ≤ x < 8,000	8,000 ≤ x < 10,000	10,000 ≤ x < 14,000	x ≥ 14,000	
Elasticity (psi) (x = modulus of elasticity)	5.22 x 10 ⁶	4x10 ⁶ ≤ x < 6x10 ⁶	$6x10^6 \le x < 7.5x10^6$	x ≥7.5 x10 ⁶ psi	NA	
Shrinkage (x = microstrain)	90	800 > x ≥ 600	600 > x ≥ 400	400 > x	NA	
Creep (x = microstrain/pressure unit)	0.06 (@12 mon @3000 psi)	0.52>x>0.38	0.38>C>0.21	0.21	NA	

¹ HIGH PERFORMANCE CONCRETE STRUCTURAL DESIGNERS' GUIDE, Federal Highway, 1st Editiion (2005).

Brick Energy & CO₂ emissions* - Affordable?

0.2 tco₂/tbrick @ 25-45 \$/tco₂ 5-10 \$/tbrick

*Timothy G. Gutowskiet al. Phil. Trans. R. Soc. A 2013;371:20120003

Proposal to structure clay brick manufacturers

- Manufacture structure clay brick product using carbonation instead of firing
- Stronger bricks
- Capability to make a wide range of new products
- Lower fuel costs (~10x, including cement energy)
- Reduce or eliminate, even consume CO₂
- No more shrinkage
- No more warping
- Possible reduction in water usage

Paver Samples

How difficult is it to switch over?

- Staged transition
 - Install system for capturing and concentrating furnace CO_2 to reduce plant CO_2 emissions
 - RU is in the process of inventing a cheap capture and sequestration system
- Going cold turkey...
 - Continue using your clay but use CaSiO₃ as a binder
 - Retrofitting your kiln into a carbonation chamber
 - No pressurization required
 - No heating
 - PTBD system

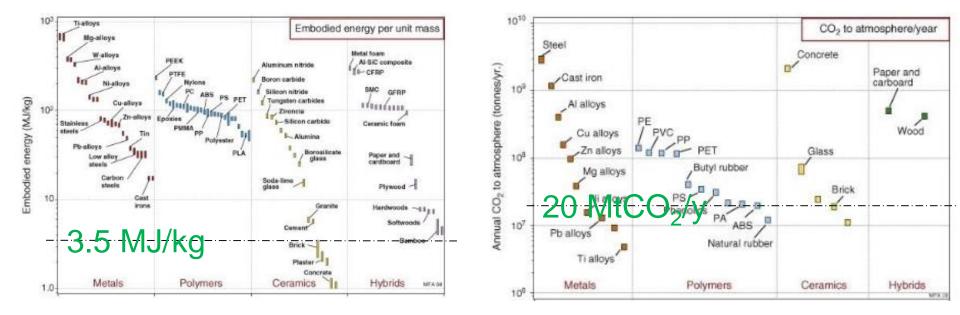
Summary

- Carbonate ceramics enable structural clay products to transition to green tech with no compromises
- Materials properties comparable to fired brick
- Energy and carbon footprint are substantially smaller
- Technical merit warrants a closer look at the economics

Appendix

Reasons to not make bricks out of concrete?

- Durability
 - Alkali-silicate-reaction (ASR)
 - Salt scaling
 - Freeze-thaw durability
- Strength is usually ~3000 psi
- We make our bricks where we mine our clay
 No way are we going to build a cement plant
- Cost is too high to make fine grain products of controlled color
 - PC is ~70-100 \$/tonne
- Any others?



Future challenges for the brick industry

- Widely varying fuel costs for firing
- CO₂ emissions
 - $-CO_2$ tax?
 - Cap & trade
- Products that compete with alternative building materials
 - Thermal properties
 - Strength
 - Cost

Brick Energy consumption and CO₂ emissions*

0.2 tco₂/tbrick @ 25-45 \$/tco₂ 5-10 \$/tbrick Can you afford it?

*Materials and the Environment Eco-Informed Material Choice, Michael F. Ashby ²⁰