Program Highlights

<table>
<thead>
<tr>
<th>Date</th>
<th>StartTime</th>
<th>Room</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS&T17 Plenary Lectures</td>
<td>TUE AM</td>
<td>Spirit of Pittsburgh Ballroom</td>
<td>71</td>
</tr>
<tr>
<td>MS&T17 Poster Session</td>
<td>TUE AM</td>
<td>Exhibition Hall</td>
<td>146</td>
</tr>
<tr>
<td>ACerS Frontiers of Science and Society - Rustum Roy Lecture</td>
<td>TUE AM</td>
<td>315</td>
<td>71</td>
</tr>
<tr>
<td>ACerS Richard M. Fulrath Award Symposium</td>
<td>MON PM</td>
<td>315</td>
<td>54</td>
</tr>
<tr>
<td>ACerS Basic Science Division Robert B. Sosman Lecture</td>
<td>WED PM</td>
<td>315</td>
<td>111</td>
</tr>
<tr>
<td>ACerS/EPDC: Arthur L. Friedberg Ceramic Engineering Tutorial and Lecture</td>
<td>MON AM</td>
<td>315</td>
<td>33</td>
</tr>
<tr>
<td>ASM Alpha Sigma Mu Lecture</td>
<td>MON PM</td>
<td>335</td>
<td>59</td>
</tr>
<tr>
<td>ASM Edward DeMille Campbell Memorial Lecture</td>
<td>TUE PM</td>
<td>407</td>
<td>75</td>
</tr>
</tbody>
</table>

Additive Manufacturing

Additive Manufacturing of Composites and Complex Materials II

- **Processing**
 - MON AM 304 33
- **Techniques/Applications**
 - MON PM 304 55
- **Metals and Metallic Composites**
 - TUE PM 304 72

Additive Manufacturing of Metals: Fatigue and Fracture

- **Session I**
 - WED AM 304 89
- **Session II**
 - WED PM 304 112
- **Session III**
 - THU AM 304 132

Additive Manufacturing of Metals: Microstructure and Material Properties

- **Microstructure Development in AM Processes**
 - MON AM 301 34
- **Microstructure and Mechanical Properties in Ti Alloys**
 - MON PM 301 56
- **Processing and Properties of Alloy 718**
 - MON PM 302 56
- **Porosity and Microstructural Effects**
 - TUE PM 301 72
- **Properties of AM Manufactured Alloys**
 - TUE PM 302 72
- **AM Processing of Stainless Steels**
 - WED AM 302 90
- **New Alloys for AM and Process Optimization**
 - WED AM 301 90
- **AM Processing of Aluminum and Non-ferrous Alloys**
 - WED PM 301 112
- **Phase Formation and Stresses**
 - WED PM 302 113

Additive Manufacturing of Metals: Post Processing

- **Physical Processing**
 - MON AM 303 34
- **Thermal Processes I**
 - MON PM 303 57
- **Thermal Processes II**
 - TUE PM 303 73

Additive Manufacturing of Metals: Powder Feedstock Characterization and Performance

- **Characterization of Powder for AM**
 - MON AM 305 35
- **Powder Production**
 - MON PM 305 57

Additive Manufacturing: In-situ Process Monitoring and Control

- **Session I**
 - WED AM 303 91
- **Session II**
 - WED PM 303 113
<table>
<thead>
<tr>
<th>Date</th>
<th>Start Time</th>
<th>Room</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modeling and Simulation in Additive Manufacturing:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Modeling and Simulation in AM - Session I</td>
<td>WED AM</td>
<td>306</td>
<td>103</td>
</tr>
<tr>
<td>Modeling and Simulation in AM - Session II</td>
<td>WED PM</td>
<td>306</td>
<td>126</td>
</tr>
<tr>
<td>Modeling and Simulation in AM - Session III</td>
<td>THU AM</td>
<td>306</td>
<td>141</td>
</tr>
<tr>
<td>Non beam-based Additive Manufacturing Approaches for Metallic Parts</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Session I</td>
<td>WED AM</td>
<td>305</td>
<td>105</td>
</tr>
<tr>
<td>Session II</td>
<td>WED PM</td>
<td>305</td>
<td>128</td>
</tr>
<tr>
<td>Session III</td>
<td>THU AM</td>
<td>305</td>
<td>142</td>
</tr>
<tr>
<td>Biomaterials</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Next Generation Biomaterials</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Innovations in Biomedical Materials/Nanostructured Biomeats</td>
<td>MON AM</td>
<td>334</td>
<td>47</td>
</tr>
<tr>
<td>Next Generation Biomaterials I</td>
<td>MON PM</td>
<td>334</td>
<td>67</td>
</tr>
<tr>
<td>Metallic Biomeats</td>
<td>TUE PM</td>
<td>334</td>
<td>84</td>
</tr>
<tr>
<td>Ceramic Biomaterials and Novel Biomaterials</td>
<td>WED AM</td>
<td>334</td>
<td>105</td>
</tr>
<tr>
<td>Next Generation Biomaterials II</td>
<td>WED PM</td>
<td>334</td>
<td>127</td>
</tr>
<tr>
<td>Surface Properties of Biomaterials</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surface Properties of Biomaterials: Porous Surfaces, Bioactivity, and Biocompatibility</td>
<td>MON AM</td>
<td>335</td>
<td>51</td>
</tr>
<tr>
<td>Surface Properties of Biomaterials: Bearing Materials and Tribological Properties</td>
<td>TUE PM</td>
<td>335</td>
<td>87</td>
</tr>
<tr>
<td>Surface Properties of Biomaterials: Bioactivity, Surface Modifications and Coatings</td>
<td>WED AM</td>
<td>335</td>
<td>109</td>
</tr>
<tr>
<td>Ceramic and Glass Materials</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alumina at the Forefront of Technology II</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Processing of Alumina Ceramics</td>
<td>MON AM</td>
<td>316</td>
<td>38</td>
</tr>
<tr>
<td>Sintering and Microstructure of Alumina Ceramics</td>
<td>MON PM</td>
<td>316</td>
<td>59</td>
</tr>
<tr>
<td>Sapphire, Nano and High Purity Alumina</td>
<td>TUE PM</td>
<td>316</td>
<td>75</td>
</tr>
<tr>
<td>Ceramic-Based Optical Materials and Advanced Processing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Session I</td>
<td>TUE PM</td>
<td>311</td>
<td>75</td>
</tr>
<tr>
<td>Session II</td>
<td>WED AM</td>
<td>311</td>
<td>93</td>
</tr>
<tr>
<td>Session III</td>
<td>WED PM</td>
<td>311</td>
<td>116</td>
</tr>
<tr>
<td>Ceramics and Glasses Simulations and Informatics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bridging Space and Time Scales</td>
<td>MON AM</td>
<td>311</td>
<td>39</td>
</tr>
<tr>
<td>Atomic-scale Modeling</td>
<td>MON PM</td>
<td>311</td>
<td>60</td>
</tr>
<tr>
<td>Glass Composites</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Applications</td>
<td>WED PM</td>
<td>318</td>
<td>119</td>
</tr>
<tr>
<td>Structure and Properties</td>
<td>THU AM</td>
<td>318</td>
<td>135</td>
</tr>
<tr>
<td>Glass, Amorphous, and Optical Materials:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Structure-property Relations I</td>
<td>MON AM</td>
<td>310</td>
<td>43</td>
</tr>
<tr>
<td>Structure-property Relations II</td>
<td>MON PM</td>
<td>310</td>
<td>63</td>
</tr>
<tr>
<td>ACerS Alfred R. Cooper Scholar Lecture and Award Presentation</td>
<td>TUE PM</td>
<td>310</td>
<td>79</td>
</tr>
<tr>
<td>Date</td>
<td>StartTime</td>
<td>Room</td>
<td>Page</td>
</tr>
<tr>
<td>------</td>
<td>-----------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>Wed</td>
<td>AM</td>
<td>310</td>
<td></td>
</tr>
<tr>
<td>Wed</td>
<td>PM</td>
<td>310</td>
<td>120</td>
</tr>
<tr>
<td>Thu</td>
<td>PM</td>
<td>310</td>
<td>136</td>
</tr>
<tr>
<td>Wed</td>
<td>AM</td>
<td>311</td>
<td></td>
</tr>
<tr>
<td>Wed</td>
<td>PM</td>
<td>311</td>
<td>121</td>
</tr>
<tr>
<td>Thu</td>
<td>AM</td>
<td>311</td>
<td>137</td>
</tr>
<tr>
<td>Mon</td>
<td>AM</td>
<td>312</td>
<td>47</td>
</tr>
<tr>
<td>Mon</td>
<td>PM</td>
<td>312</td>
<td>66</td>
</tr>
<tr>
<td>Tue</td>
<td>PM</td>
<td>312</td>
<td>83</td>
</tr>
<tr>
<td>Wed</td>
<td>AM</td>
<td>312</td>
<td>107</td>
</tr>
<tr>
<td>Wed</td>
<td>PM</td>
<td>312</td>
<td>129</td>
</tr>
<tr>
<td>Thu</td>
<td>AM</td>
<td>312</td>
<td>144</td>
</tr>
<tr>
<td>Wed</td>
<td>AM</td>
<td>331</td>
<td>93</td>
</tr>
<tr>
<td>Wed</td>
<td>PM</td>
<td>331</td>
<td>115</td>
</tr>
<tr>
<td>Thu</td>
<td>AM</td>
<td>331</td>
<td>133</td>
</tr>
<tr>
<td>Wed</td>
<td>AM</td>
<td>336</td>
<td>96</td>
</tr>
<tr>
<td>Wed</td>
<td>PM</td>
<td>336</td>
<td>117</td>
</tr>
<tr>
<td>Thu</td>
<td>AM</td>
<td>336</td>
<td>134</td>
</tr>
<tr>
<td>Mon</td>
<td>AM</td>
<td>331</td>
<td>41</td>
</tr>
<tr>
<td>Mon</td>
<td>PM</td>
<td>331</td>
<td>62</td>
</tr>
<tr>
<td>Tue</td>
<td>PM</td>
<td>331</td>
<td>78</td>
</tr>
<tr>
<td>Mon</td>
<td>AM</td>
<td>402</td>
<td>43</td>
</tr>
<tr>
<td>Mon</td>
<td>PM</td>
<td>402</td>
<td>63</td>
</tr>
<tr>
<td>Tue</td>
<td>PM</td>
<td>402</td>
<td>80</td>
</tr>
<tr>
<td>Mon</td>
<td>PM</td>
<td>408</td>
<td>63</td>
</tr>
<tr>
<td>Mon</td>
<td>AM</td>
<td>401</td>
<td>45</td>
</tr>
<tr>
<td>Mon</td>
<td>PM</td>
<td>401</td>
<td>65</td>
</tr>
<tr>
<td>Tue</td>
<td>PM</td>
<td>401</td>
<td>81</td>
</tr>
<tr>
<td>Wed</td>
<td>AM</td>
<td>401</td>
<td>101</td>
</tr>
<tr>
<td>Date</td>
<td>StartTime</td>
<td>Room</td>
<td>Page</td>
</tr>
<tr>
<td>------------</td>
<td>-----------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>WED PM</td>
<td>401</td>
<td></td>
<td>123</td>
</tr>
<tr>
<td>THU AM</td>
<td>401</td>
<td></td>
<td>138</td>
</tr>
<tr>
<td>WED AM</td>
<td>402</td>
<td></td>
<td>101</td>
</tr>
<tr>
<td>WED PM</td>
<td>402</td>
<td></td>
<td>124</td>
</tr>
<tr>
<td>THU AM</td>
<td>402</td>
<td></td>
<td>139</td>
</tr>
</tbody>
</table>

Materials Testing, Processing, and Applications

Structural Materials, Fuels, and Irradiation Effects

Materials Issues in Nuclear Waste Management

Nuclear Waste Management Strategies

Nuclear Waste Process Analysis and Modeling

Fundamental Issues in Nuclear Waste Management

Fundamentals and Characterization

Actinide and Lanthanide Materials II

Oxides, Compounds, and Metals

Metallic Fuels

Advancements in In-situ Electron Microscopy Characterization II

Mechanical Behaviors

Radiation Environments

Novel Instrumental Designs

Composites and Simulations

Characterization of Fracture and Fragmentation Phenomena Across Multiple Length Scales: From Atomistic to Macroscopic Approaches

Modeling of Fracture and Fragmentation Processes: Meso-/Macroscopic Scales

Fracture and Fragmentation Phenomena: Lower Length Scales Methodologies

Interfaces, Grain Boundaries and Surfaces from Atomistic and Macroscopic Approaches

Structure and Chemistry of Interfaces

Interface Thermodynamics

Surface Phenomena

Interfaces and Polycrystals; Interface Kinetics I

Interface Kinetics II

Interface Properties

International Symposium on Defects, Transport, and Related Phenomena

Lithium Ion Conductors/Modeling Defect and Transport

Proton Conductors

Anion Transport

Chemo-Mechanical Coupling

Transport at Interfaces

Materials Property Understanding through Characterization

Novel Tech I

Novel Tech II

Novel Tech III

Non-metals

Metals I

Metals II
<table>
<thead>
<tr>
<th>Date</th>
<th>StartTime</th>
<th>Room</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multi Scale Modeling of Microstructure Deformation in Material Processing</td>
<td>WED AM</td>
<td>403</td>
<td>104</td>
</tr>
<tr>
<td>Multi Scale Modeling of Microstructure Deformation in Material Processing: Part I</td>
<td>WED AM</td>
<td>403</td>
<td>126</td>
</tr>
<tr>
<td>Multi Scale Modeling of Microstructure Deformation in Material Processing: Part II</td>
<td>THU AM</td>
<td>403</td>
<td>141</td>
</tr>
</tbody>
</table>

Phase Stability, Diffusion Kinetics, and their Applications (PSDK-XII)

<table>
<thead>
<tr>
<th>Date</th>
<th>StartTime</th>
<th>Room</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Session I: Diffusion, Kinetics and Applications</td>
<td>MON AM</td>
<td>413</td>
<td>48</td>
</tr>
<tr>
<td>Session II: Thermodynamics, Modeling and Databases</td>
<td>MON PM</td>
<td>413</td>
<td>67</td>
</tr>
<tr>
<td>Session III: J. Willard Gibbs Phase Equilibria Award - Computational Thermodynamics</td>
<td>TUE PM</td>
<td>413</td>
<td>84</td>
</tr>
<tr>
<td>Session IV: J. Willard Gibbs Phase Equilibria Award - Theory, Modelling and Database Development</td>
<td>WED AM</td>
<td>413</td>
<td>106</td>
</tr>
<tr>
<td>Session V: J. Willard Gibbs Phase Equilibria Award - Applications of Computational Thermodynamics</td>
<td>WED PM</td>
<td>413</td>
<td>128</td>
</tr>
<tr>
<td>Session VI: Application of Thermodynamics and Diffusion</td>
<td>THU AM</td>
<td>413</td>
<td>143</td>
</tr>
</tbody>
</table>

Phase Transformations and Microstructural Evolution in Ti and Its Alloys

<table>
<thead>
<tr>
<th>Date</th>
<th>StartTime</th>
<th>Room</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experiments</td>
<td>WED AM</td>
<td>307</td>
<td>106</td>
</tr>
<tr>
<td>Simulations</td>
<td>WED PM</td>
<td>307</td>
<td>129</td>
</tr>
<tr>
<td>Experiment and Simulations</td>
<td>THU AM</td>
<td>307</td>
<td>143</td>
</tr>
</tbody>
</table>

Recent Advances in Computer-aided Materials Design

<table>
<thead>
<tr>
<th>Date</th>
<th>StartTime</th>
<th>Room</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emerging Approaches of Material Design</td>
<td>TUE PM</td>
<td>324</td>
<td>85</td>
</tr>
<tr>
<td>Method Development in Material Design</td>
<td>WED AM</td>
<td>324</td>
<td>108</td>
</tr>
<tr>
<td>Computational-experimental Synergy in Materials Discovery I</td>
<td>WED PM</td>
<td>324</td>
<td>130</td>
</tr>
<tr>
<td>Computational-experimental Synergy in Materials Discovery II</td>
<td>THU AM</td>
<td>324</td>
<td>144</td>
</tr>
</tbody>
</table>

Iron and Steel (Ferrous Alloys)

Advanced Steel Metallurgy: Products and Processing

<table>
<thead>
<tr>
<th>Date</th>
<th>StartTime</th>
<th>Room</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Session I</td>
<td>MON AM</td>
<td>406</td>
<td>36</td>
</tr>
<tr>
<td>Session II</td>
<td>MON PM</td>
<td>406</td>
<td>58</td>
</tr>
<tr>
<td>Session III</td>
<td>TUE PM</td>
<td>406</td>
<td>74</td>
</tr>
<tr>
<td>Session IV</td>
<td>WED AM</td>
<td>406</td>
<td>92</td>
</tr>
<tr>
<td>Session V</td>
<td>WED PM</td>
<td>406</td>
<td>115</td>
</tr>
<tr>
<td>Session VI</td>
<td>THU AM</td>
<td>406</td>
<td>133</td>
</tr>
</tbody>
</table>

Advances in Zinc-coated Sheet Steel Processing and Properties

<table>
<thead>
<tr>
<th>Date</th>
<th>StartTime</th>
<th>Room</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advances in Zinc-coated Sheet Steel Processing and Properties</td>
<td>MON AM</td>
<td>403</td>
<td>37</td>
</tr>
</tbody>
</table>

Gas/Metal Reactions, Diffusion and Phase Transformation during Heat Treatment of Steel

<table>
<thead>
<tr>
<th>Date</th>
<th>StartTime</th>
<th>Room</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Session I</td>
<td>WED AM</td>
<td>404</td>
<td>97</td>
</tr>
<tr>
<td>Session II</td>
<td>WED PM</td>
<td>404</td>
<td>119</td>
</tr>
</tbody>
</table>

Shaping and Forming of Advanced High Strength Steels II

<table>
<thead>
<tr>
<th>Date</th>
<th>StartTime</th>
<th>Room</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shaping and Forming of Advanced High Strength Steels: Modeling</td>
<td>MON AM</td>
<td>404</td>
<td>51</td>
</tr>
<tr>
<td>Shaping and Forming of Advanced High Strength Steels: Experiments</td>
<td>MON PM</td>
<td>404</td>
<td>69</td>
</tr>
<tr>
<td>Shaping and Forming of Advanced High Strength Steels: Performance</td>
<td>TUE PM</td>
<td>404</td>
<td>86</td>
</tr>
<tr>
<td>Materials-Environment Interactions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Advanced Coatings for Wear and Corrosion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Advanced Coatings for Wear and Corrosion Protection I</td>
<td>TUE, PM</td>
<td>338</td>
<td>73</td>
</tr>
<tr>
<td>Advanced Coatings for Wear and Corrosion Protection II</td>
<td>WED, AM</td>
<td>338</td>
<td>91</td>
</tr>
<tr>
<td>Advanced Coatings for Wear and Corrosion Protection III</td>
<td>WED, PM</td>
<td>338</td>
<td>114</td>
</tr>
<tr>
<td>Advanced Materials and Sensors for Harsh Environments</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Advanced Materials for Harsh Environments I</td>
<td>WED, PM</td>
<td>333</td>
<td>114</td>
</tr>
<tr>
<td>Advanced Materials for Harsh Environments II</td>
<td>THU, AM</td>
<td>333</td>
<td>132</td>
</tr>
<tr>
<td>Advanced Materials for Oil and Gas Applications - Performance and Degradation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Advanced Materials for Oil Gas Applications</td>
<td>MON, AM</td>
<td>338</td>
<td>36</td>
</tr>
<tr>
<td>Materials Selection and Surface Analyses for Corrosion Prevention and Detection</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Steels and Advanced Materials</td>
<td>TUE, PM</td>
<td>405</td>
<td>82</td>
</tr>
<tr>
<td>Lightweight Materials</td>
<td>WED, AM</td>
<td>405</td>
<td>102</td>
</tr>
<tr>
<td>Coatings and Protection/Corrosion Technologies</td>
<td>WED, PM</td>
<td>405</td>
<td>125</td>
</tr>
<tr>
<td>Surface Protection for Enhanced Materials Performance: Science, Technology, and Application</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal and Environmental Barrier Coatings</td>
<td>MON, AM</td>
<td>333</td>
<td>52</td>
</tr>
<tr>
<td>Oxidation and Corrosion</td>
<td>MON, PM</td>
<td>333</td>
<td>70</td>
</tr>
<tr>
<td>Oxidation, Corrosion, and Tribological Coatings</td>
<td>TUE, PM</td>
<td>333</td>
<td>87</td>
</tr>
<tr>
<td>Corrosion and Functional Coatings</td>
<td>WED, AM</td>
<td>333</td>
<td>110</td>
</tr>
<tr>
<td>Thermal Protection Materials and Systems</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TPS Materials - Methods of Testing and Analysis; TPS Materials Development and Testing</td>
<td>MON, AM</td>
<td>327</td>
<td>53</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nanomaterials</th>
</tr>
</thead>
<tbody>
<tr>
<td>Controlled Synthesis, Processing, and Applications of Structural and Functional Nanomaterials</td>
</tr>
<tr>
<td>Controlled Synthesis, Processing, and Applications of Structural and Functional Nanomaterials I</td>
</tr>
<tr>
<td>Controlled Synthesis, Processing, and Applications of Structural and Functional Nanomaterials II</td>
</tr>
<tr>
<td>Controlled Synthesis, Processing, and Applications of Structural and Functional Nanomaterials III</td>
</tr>
<tr>
<td>Controlled Synthesis, Processing, and Applications of Structural and Functional Nanomaterials IV</td>
</tr>
<tr>
<td>Nanotechnology for Energy, Environment, Electronics, Healthcare and Industry Applications</td>
</tr>
<tr>
<td>Nanotechnology for Energy, Environment, Electronics, Healthcare and Industry Applications I</td>
</tr>
<tr>
<td>Nanotechnology for Energy, Environment, Electronics, Healthcare and Industry Applications II</td>
</tr>
<tr>
<td>Nanotechnology for Energy, Environment, Electronics, Healthcare and Industry Applications III</td>
</tr>
<tr>
<td>Date</td>
</tr>
<tr>
<td>--------</td>
</tr>
<tr>
<td>MON</td>
</tr>
<tr>
<td>MON</td>
</tr>
<tr>
<td>TUE</td>
</tr>
<tr>
<td>WED</td>
</tr>
<tr>
<td>WED</td>
</tr>
</tbody>
</table>

Responsive Functional Nanomaterials

Session I
MON AM 320 50
Session II
MON PM 320 69
Session III
TUE PM 320 86
Session IV
WED AM 320 109
Session V
WED PM 320 130

Responsive Functional Nanomaterials

Session I
MON AM 319 53
Session II
MON PM 319 70

Theory, Manufacturing and Applications of Ceramic/Metal (CerMet) nano-laminates

Ceramic/Metal (CerMet) Nano-laminates I
MON AM 319 53
Ceramic/Metal (CerMet) Nano-laminates II
MON PM 319 70

Processing and Product Manufacturing

Advanced Manufacturing, Processing, Characterization and Modeling of Functional Materials

Session I
MON AM 324 35
Session II
MON PM 324 58

Boron, Boron Coatings, Boron Compounds and Boron Nanomaterials: Structure, Properties, Processing, and Applications

2D Boron & Physical Properties
MON AM 330 38
Novel Synthesis & Boron Suboxide
MON PM 330 60
Theory of Bulk Systems
TUE PM 330 75
Novel Synthesis & Coatings
WED AM 330 93

Design, Processing, and Development of Structural Materials

Advanced Processing and Additive Manufacturing
MON AM 328 41
Complex and Multicompetent Alloys
MON PM 328 61
Mesoscale Microstructure: Simulations and Experiments
TUE PM 328 77
Alloys for Power and Energy
WED AM 328 95
Deformation Behavior of Structural Materials
WED PM 328 117

Joining of Advanced and Specialty Materials (JASM XVII)

Nano & Micro Joining
MON AM 326 45
Brazing
MON PM 326 64
Friction Stir Welding
TUE PM 326 80
Welding Metallurgy
WED AM 326 99
Dissimilar Metal Welds
WED PM 326 121
Welding Processes
THU AM 326 138

Light Metals Alliance: Light Metal Technology 2017

Light Metals Technology: Invited
TUE PM 414 81
Light Metals Technology: Aluminum - Product Development
WED AM 415 100
Light Metals Technology: Titanium
WED AM 414 100
Light Metals Technology: Characterization
WED PM 415 122
Light Metals Technology: Magnesium & General Presentations
WED PM 414 122

Mechanochemical Synthesis and Reactions in Materials Science II

Session I
TUE PM 327 83
Session II
WED AM 327 103
Session III
WED PM 327 125
<table>
<thead>
<tr>
<th>Session IV</th>
<th>Date</th>
<th>StartTime</th>
<th>Room</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metal and Polymer Matrix Composites III</td>
<td>THU</td>
<td>AM</td>
<td>327</td>
<td>140</td>
</tr>
<tr>
<td>Composites: Imaging and Characterization</td>
<td>TUE</td>
<td>PM</td>
<td>319</td>
<td>83</td>
</tr>
<tr>
<td>Metal Matrix Composites</td>
<td>WED</td>
<td>PM</td>
<td>330</td>
<td>125</td>
</tr>
<tr>
<td>Polymer Matrix Composites</td>
<td>THU</td>
<td>AM</td>
<td>330</td>
<td>140</td>
</tr>
<tr>
<td>Multifunctional Ceramic- and Metal-matrix Composites: Processing, Properties, and Performance</td>
<td>MON</td>
<td>AM</td>
<td>329</td>
<td>46</td>
</tr>
<tr>
<td>Trends in the Development of CMCs and MMCs</td>
<td>MON</td>
<td>PM</td>
<td>329</td>
<td>66</td>
</tr>
<tr>
<td>General Processing and Characterization of CMCs and MMCs/Miscellaneous topics on MMM and CMCs</td>
<td>MON</td>
<td>AM</td>
<td>330</td>
<td>140</td>
</tr>
<tr>
<td>Emerging/Novel REM/REE Applications I</td>
<td>MON</td>
<td>AM</td>
<td>325</td>
<td>140</td>
</tr>
<tr>
<td>Emerging/Novel REM/REE Applications II</td>
<td>MON</td>
<td>PM</td>
<td>325</td>
<td>140</td>
</tr>
<tr>
<td>REE Panel Keynote and Discussion</td>
<td>TUE</td>
<td>PM</td>
<td>325</td>
<td>140</td>
</tr>
<tr>
<td>Regulatory Issues and the Effect of New Advances in REE Separation and Metal Making Technologies</td>
<td>WED</td>
<td>AM</td>
<td>325</td>
<td>140</td>
</tr>
<tr>
<td>Current Production Status, Availability, and Economics of REE/REM</td>
<td>WED</td>
<td>PM</td>
<td>325</td>
<td>140</td>
</tr>
<tr>
<td>Synthesis Characterization, Properties and Applications of Functional Porous Materials</td>
<td>WED</td>
<td>AM</td>
<td>329</td>
<td>140</td>
</tr>
<tr>
<td>Porous Material Applications in Environmental and Sustainable Fields</td>
<td>WED</td>
<td>AM</td>
<td>329</td>
<td>140</td>
</tr>
<tr>
<td>Structure-property-performance</td>
<td>WED</td>
<td>PM</td>
<td>329</td>
<td>140</td>
</tr>
<tr>
<td>Synthesis, Characterization and Modeling</td>
<td>THU</td>
<td>AM</td>
<td>329</td>
<td>140</td>
</tr>
<tr>
<td>The 9th International Symposium on Green and Sustainable Technologies for Materials Manufacturing and Processing</td>
<td>MON</td>
<td>AM</td>
<td>317</td>
<td>52</td>
</tr>
<tr>
<td>Novel Green Design of Ceramics I/Novel Green Technologies for Energy and High Temperature Applications</td>
<td>MON</td>
<td>AM</td>
<td>317</td>
<td>52</td>
</tr>
<tr>
<td>Novel Green Design of Ceramics II</td>
<td>MON</td>
<td>PM</td>
<td>317</td>
<td>52</td>
</tr>
<tr>
<td>Next Generation Green Technologies I</td>
<td>TUE</td>
<td>PM</td>
<td>317</td>
<td>52</td>
</tr>
<tr>
<td>Novel Green Technologies for Designing Porous Materials/Green Technologies in Biomaterials and Computational Materials</td>
<td>WED</td>
<td>AM</td>
<td>317</td>
<td>52</td>
</tr>
<tr>
<td>Novel Utilization of Waste Materials/NEXT Generation Green Technologies II</td>
<td>WED</td>
<td>PM</td>
<td>317</td>
<td>52</td>
</tr>
<tr>
<td>Novel Utilization of Waste Materials II</td>
<td>THU</td>
<td>AM</td>
<td>317</td>
<td>52</td>
</tr>
<tr>
<td>Titanium Powder Metallurgy</td>
<td>TUE</td>
<td>AM</td>
<td>317</td>
<td>52</td>
</tr>
<tr>
<td>Ultra High Performance Metals, Metal Alloys, Intermetallics, and Metal Matrix Composites for Aerospace, Defense, and Automotive Applications</td>
<td>MON</td>
<td>AM</td>
<td>307</td>
<td>54</td>
</tr>
<tr>
<td>High Performance / Ultrafine Grained / Nanostructured Low Density Alloys</td>
<td>MON</td>
<td>PM</td>
<td>307</td>
<td>54</td>
</tr>
<tr>
<td>Bulk Metallic Glass / High Entropy Alloys</td>
<td>MON</td>
<td>PM</td>
<td>307</td>
<td>54</td>
</tr>
<tr>
<td>High Temperature Materials / Composites / Hybrid / Graded Materials</td>
<td>TUE</td>
<td>AM</td>
<td>307</td>
<td>54</td>
</tr>
</tbody>
</table>
Special Topics

ACerS Robert B. Sosman Award Symposium: Tailoring Ceramic Microstructures: Understanding and Tuning of Materials Performance

<table>
<thead>
<tr>
<th>Date</th>
<th>StartTime</th>
<th>Room</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>WED</td>
<td>AM</td>
<td>315</td>
<td>89</td>
</tr>
<tr>
<td>WED</td>
<td>PM</td>
<td>315</td>
<td>111</td>
</tr>
</tbody>
</table>

Best Practices in Academic Laboratory Safety

<table>
<thead>
<tr>
<th>Date</th>
<th>StartTime</th>
<th>Room</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>MON</td>
<td>AM</td>
<td>321</td>
<td>38</td>
</tr>
<tr>
<td>MON</td>
<td>PM</td>
<td>321</td>
<td>59</td>
</tr>
</tbody>
</table>

Curricular Innovations and Continuous Improvement of Academic Programs (and Satisfying ABET along the Way): The Elizabeth Judson Memorial Symposium

<table>
<thead>
<tr>
<th>Date</th>
<th>StartTime</th>
<th>Room</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>MON</td>
<td>AM</td>
<td>306</td>
<td>40</td>
</tr>
<tr>
<td>MON</td>
<td>PM</td>
<td>306</td>
<td>61</td>
</tr>
</tbody>
</table>

Data and Tools for Materials Discovery and Design

<table>
<thead>
<tr>
<th>Date</th>
<th>StartTime</th>
<th>Room</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>MON</td>
<td>AM</td>
<td>323</td>
<td>40</td>
</tr>
<tr>
<td>MON</td>
<td>PM</td>
<td>323</td>
<td>61</td>
</tr>
<tr>
<td>TUE</td>
<td>PM</td>
<td>323</td>
<td>77</td>
</tr>
<tr>
<td>WED</td>
<td>AM</td>
<td>323</td>
<td>95</td>
</tr>
<tr>
<td>WED</td>
<td>PM</td>
<td>323</td>
<td>116</td>
</tr>
</tbody>
</table>

Diversity in STEM and Best Practices to Improve It

<table>
<thead>
<tr>
<th>Date</th>
<th>StartTime</th>
<th>Room</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>TUE</td>
<td>PM</td>
<td>403</td>
<td>78</td>
</tr>
</tbody>
</table>

Failure Analysis and Prevention

<table>
<thead>
<tr>
<th>Date</th>
<th>StartTime</th>
<th>Room</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>MON</td>
<td>AM</td>
<td>408</td>
<td>42</td>
</tr>
<tr>
<td>MON</td>
<td>AM</td>
<td>407</td>
<td>42</td>
</tr>
<tr>
<td>TUE</td>
<td>PM</td>
<td>407</td>
<td>62</td>
</tr>
<tr>
<td>TUE</td>
<td>PM</td>
<td>407</td>
<td>78</td>
</tr>
<tr>
<td>WED</td>
<td>AM</td>
<td>407</td>
<td>96</td>
</tr>
<tr>
<td>WED</td>
<td>PM</td>
<td>407</td>
<td>118</td>
</tr>
<tr>
<td>WED</td>
<td>PM</td>
<td>408</td>
<td>118</td>
</tr>
<tr>
<td>THU</td>
<td>AM</td>
<td>407</td>
<td>135</td>
</tr>
</tbody>
</table>

Fifty Years of Metallography and Materials Characterization

<table>
<thead>
<tr>
<th>Date</th>
<th>StartTime</th>
<th>Room</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>TUE</td>
<td>PM</td>
<td>409</td>
<td>79</td>
</tr>
<tr>
<td>WED</td>
<td>AM</td>
<td>409</td>
<td>96</td>
</tr>
<tr>
<td>WED</td>
<td>PM</td>
<td>409</td>
<td>118</td>
</tr>
</tbody>
</table>

Perspectives for Emerging Materials Professionals

<table>
<thead>
<tr>
<th>Date</th>
<th>StartTime</th>
<th>Room</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>MON</td>
<td>AM</td>
<td>414</td>
<td>48</td>
</tr>
<tr>
<td>MON</td>
<td>PM</td>
<td>414</td>
<td>67</td>
</tr>
</tbody>
</table>

Special Session on Emerging Technologies to Develop and Commercially Adopt Innovative Materials

<table>
<thead>
<tr>
<th>Date</th>
<th>StartTime</th>
<th>Room</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>TUE</td>
<td>PM</td>
<td>329</td>
<td>87</td>
</tr>
</tbody>
</table>
ACerS/EPDC: Arthur L. Friedberg Ceramic Engineering Tutorial and Lecture
Monday AM Room: 315 Location: DLL Convention Center
October 9, 2017

9:00 AM Invited
Structure-property-processing Relationships in Composite Materials: Rosario Gerhardt; *Georgia Institute of Technology

Actinide and Lanthanide Materials II – Oxides, Compounds, and Metals
Program Organizers: Clarissa Yablinesky, Los Alamos National Laboratory; Adam Farrow, Los Alamos National Laboratory; Jason Jeffries, Lawrence Livermore National Laboratory; Kester Clarke, Los Alamos National Laboratory; Clarissa Yablinsky, Los Alamos National Laboratory; Clinique L. Brundidge, Naval Nuclear Laboratory
Monday AM Room: 405 Location: DLL Convention Center
October 9, 2017

Session Chairs: Adam Farrow, Los Alamos National Laboratory; Jason Jeffries, Lawrence Livermore National Laboratory

8:00 AM Invited
Probing Local Disorder in Actinide Oxides: Raul Palomares; Jacob Shamblin; Maik Lang; *The University of Tennessee

8:40 AM
Purification of Lanthide Isotopes Using Electromagnetic Isotope Separation: Tyler Bronson; Kevin Dudek; Chris Leibman; *Los Alamos National Laboratory

9:00 AM
Predictive Modeling for Strongly Correlated f-electron Systems: A First-principles and Database Driven Machine Learning Approach: Tovfig Ahmed; Heike Harper; Alexander Balatsky; *Los Alamos National Laboratory; *Uppsala University

9:20 AM Invited
The Irradiated Materials Characterization Laboratory—Current Capabilities and Recent Results: Karen Wright; Lingfeng He; Brandon Miller; Daniel Jadernas; Brandon Hernandez; *Idaho National Laboratory

10:00 AM Break

10:20 AM Invited
Plutonium Phase Diagrams in the New Edition of the Plutonium Handbook: Aurelien Perron; Patrice Turchi; Lida Timofeeva; Jason Jeffries; David Clark; Robert Hanrahan; *Lawrence Livermore National Laboratory; A. A. Bochvar All-Russia Research Institute of Inorganic Materials (VNIINM); *Los Alamos National Laboratory; DOE-NNSA

11:00 AM
d-phase 239Pu-Ga Alloys at Low Temperature by Pulsed Neutron Diffraction: Alice Smith; Sven Vogel; Jianzhong Zhang; Adrian Losko; Scott Richmond; Michael Ramos; Franz Freibert; *Los Alamos National Laboratory

11:20 AM
Real Time Evolution of Elastic Moduli to Study Aging δ-Pu: Boris Maiorov; *Los Alamos National Laboratory

11:40 AM
Peak-force Quantitative Nanomechanical Mapping of Ga-stabilized d-Pu: Miles Beach; Miguel Santiago Cordoba; Igor Usov; *Los Alamos National Laboratory

Additive Manufacturing of Composites and Complex Materials II – Processing
Program Organizers: Dirk Lehmhus, ISIS Sensorial Materials Scientific Centre; Jonathan Spowart, Air Force Research Laboratory; Nikhil Gupta, New York University
Monday AM Room: 304 Location: DLL Convention Center
October 9, 2017

Session Chairs: Jonathan Spowart, Air Force Research Laboratory; Nikhil Gupta, New York University

8:00 AM
3D Printing in Maxillofacial Surgery: Assessment to Print Mandibular Fixation Plates: Iliaria Campioni; Nikhil Gupta; Iliaria Cacciotti; Niccolò Cusano University; New York University, Tandon School of Engineering

8:20 AM Invited
Additive Manufacturing of Functional Graded Multi-materials via Selective Laser Melting – Microstructure and Mechanical Behavior: Florian Hengsbach; Peter Koppa; Martin Holzweissig; Madison Buns; Peter Hoyer; Thomas Tröster; Mirko Schaper; Paderborn University; Benteler Automotive

8:40 AM Invited
Additive Manufacturing of Interpenetrating Phase Composites with Exceptional Damage-tolerance: Alexander Pawlowski; Zachary Cordero; Matthew French; Thomas Math; J. Keith Carver; Ralph Dinwiddie; Amy Elliot; Amit Shyam; Derek Splitter; University of Tennessee; Rice University; Oak Ridge National Laboratory

9:00 AM Invited
Additive Manufacturing via Ambient Reactive Extrusion: Cynthia Katchko; Orlando Rios; David Fenn; Reza Rock; Kurt Olson; Oak Ridge National Laboratory; PPG Industries

9:20 AM Keynote
Development of New Resin Chemistries for Additive Manufacturing Processes of Composites: Hilmar Koerner; Air Force Research Laboratory

10:00 AM Break

10:20 AM
Effect of Porosity on Stochastic Fracture of Additive Manufactured Polymer Matrix Composites: Eric Anderson; Ozgur Keles; San Jose State University

10:40 AM
Formulation of UV Curable Resins Utilized in Vat Photo Polymerization for the Additive Manufacturing of Gun Propulsion Charge in 3D Printers: David Bird; Elbert Caravaca; US Army

11:00 AM
Laser-matter Interactions in Laser Beam Melting of High Performance Alumina-zirconia Oxide Ceramics: Liliana Moniz; Christophe Colin; Marie-Hélène Berger; Jean-Dominique Bartout; Mines Paristech

11:20 AM
Development of New Resin Chemistries for Additive Manufacturing Processes of Composites: Hilmar Koerner; Air Force Research Laboratory

11:40 AM
Peak-force Quantitative Nanomechanical Mapping of Ga-stabilized d-Pu: Miles Beach; Miguel Santiago Cordoba; Igor Usov; *Los Alamos National Laboratory

Additive Manufacturing of Composites and Complex Materials II – Processing
Program Organizers: Dirk Lehmhus, ISIS Sensorial Materials Scientific Centre; Jonathan Spowart, Air Force Research Laboratory; Nikhil Gupta, New York University
Monday AM Room: 304 Location: DLL Convention Center
October 9, 2017

Session Chairs: Jonathan Spowart, Air Force Research Laboratory; Nikhil Gupta, New York University

8:00 AM
3D Printing in Maxillofacial Surgery: Assessment to Print Mandibular Fixation Plates: Iliaria Campioni; Nikhil Gupta; Iliaria Cacciotti; Niccolò Cusano University; New York University, Tandon School of Engineering

8:20 AM Invited
Additive Manufacturing of Functional Graded Multi-materials via Selective Laser Melting – Microstructure and Mechanical Behavior: Florian Hengsbach; Peter Koppa; Martin Holzweissig; Madison Buns; Peter Hoyer; Thomas Tröster; Mirko Schaper; Paderborn University; Benteler Automotive

8:40 AM Invited
Additive Manufacturing of Interpenetrating Phase Composites with Exceptional Damage-tolerance: Alexander Pawlowski; Zachary Cordero; Matthew French; Thomas Math; J. Keith Carver; Ralph Dinwiddie; Amy Elliot; Amit Shyam; Derek Splitter; University of Tennessee; Rice University; Oak Ridge National Laboratory

9:00 AM Invited
Additive Manufacturing via Ambient Reactive Extrusion: Cynthia Katchko; Orlando Rios; David Fenn; Reza Rock; Kurt Olson; Oak Ridge National Laboratory; PPG Industries

9:20 AM Keynote
Development of New Resin Chemistries for Additive Manufacturing Processes of Composites: Hilmar Koerner; Air Force Research Laboratory

10:00 AM Break

10:20 AM
Effect of Porosity on Stochastic Fracture of Additive Manufactured Polymer Matrix Composites: Eric Anderson; Ozgur Keles; San Jose State University

10:40 AM
Formulation of UV Curable Resins Utilized in Vat Photo Polymerization for the Additive Manufacturing of Gun Propulsion Charge in 3D Printers: David Bird; Elbert Caravaca; US Army

11:00 AM
Laser-matter Interactions in Laser Beam Melting of High Performance Alumina-zirconia Oxide Ceramics: Liliana Moniz; Christophe Colin; Marie-Hélène Berger; Jean-Dominique Bartout; Mines Paristech
Additive Manufacturing of Metals: Microstructure and Material Properties – Microstructure Development in AM Processes

Program Organizers: Andrzej Wojcieszynski, ATI Powder Metals; Ulf Ackelid, Freemelt AB; Ola Harrysson, North Carolina State University; Sudarsanam Babu, The University of Tennessee, Knoxville

Session Chair: Andrzej Wojcieszynski, ATI Powder Metals

8:00 AM Invited
Microstructure Development in 3D Printed Metals: Anthony Rollett; 'Carnegie Mellon University

8:40 AM Characterization of Novel Lattice Structures Formed through Additive Manufacturing with Aluminum, Titanium, and Magnesium Alloys: Eric Faerison; 'Quad City Manufacturing Laboratory & Western Illinois University

9:00 AM Influence of Volumetric Energy Density and Temperature on Crystallographic Texture and Microscopic Defects in a 3-D Printed Stainless Steel Alloy: Hahn Choo; Austin Ngo; Xianghui Xiao; Yang Ren; Manyalibo Matthews; Elena Garleat; 'University of Tennessee; 'Argonne National Laboratory; 'Lawrence Livermore National Laboratory; 'N-D National Security Complex

9:20 AM Experimental and Numerical Study of Additive Manufactured Stain-less Steel Lattice Structures: Alexander Tanabe; Wadim Reschetnik; Kay-Peter Hoyer; Gunter Kullmer; Mirko Schaper; 'Paderborn University

9:40 AM Effect of Microstructure on Anisotropic Ductility in Additively Manufactured Metallic Materials: Allison Beese; Zhuqing Wang; Alexander Wilson-Heid; 'Pennsylvania State University

10:00 AM Break

10:20 AM Location Dependence of the Microstructure in Selectively Laser Melting NITi: Brian Franco; Ji Ma; Gustavo Tapia; Jun Liu; Alaa Elwawy; Raymundo Arroyave; Ibrahim Karaman; 'Texas A&M University

10:40 AM A Comparative Study of Solidification Microstructure of Electron Beam and Laser Melted Powder Mixtures of Ni and Sn: Jianrong Gao; Rijie Zhao; Yeqing Wang; Jerry Guo; Brant Wu; 'Northeastern University; '2Dynasty Metal Additive Manufacturing Systems Co., Ltd

11:00 AM Manufacturing TiAl Parts with Electron Beam Melting: Processing - Microstructure - Mechanical Property Relationships: Ercan Cakmak; Peeyush Nandwana; Yukinori Yamamoto; Dongwon Shin; Indrani Sen; Thomas Watkins; Ryan Dehoff; Roger England; Allen Haynes; 'Oak Ridge National Laboratory; 'India Institute of Technology Kharagpur; 'Cummins Inc.

Additive Manufacturing of Metals: Post Processing – Physical Processing

Program Organizers: Ola Harrysson, North Carolina State University; Andrzej Wojcieszynski, ATI Powder Metals; Ulf Ackelid, Freemelt AB; Sudarsanam Babu, The University of Tennessee, Knoxville

Monday AM Room: 303 Location: DLL Convention Center

Session Chair: Ola Harrysson, NC State University

8:00 AM Keynote
A Method for Integrating Additive and Subtractive Operations for Metal Parts - Direct Additive Subtractive Hybrid Manufacturing (DASH): Matt Frank; Ola Harrysson; Rick Wysk; Niechen Chen; Harshad Srinivasan; Guangyu Hou; Carter Keough; 'Iowa State University; 'North Carolina State University

8:40 AM Analysis of Fatigue Behavior of Ti-6Al-4V Made by Electron Beam Melting after Additional Surface Processing: Carter Keough; Harvey West; Richard Wysk; Ola Harrysson; 'North Carolina State University

9:00 AM Effect of Shot Peening on Steel: Sachin Patil; 'Bharat Forge Ltd

9:20 AM Electrochemical Surface Finishing of Additively Manufactured Parts: Timothy Half; Holly Garich; Stephen Snyder; E Taylor; 'Faraday Technology Inc.

9:40 AM Keynote
Mechanism and Effect of Post-processing on the Morphology and Surface Integrity of Metal AM Components: Ashif Iquebal; Satish Bukkapatnam; 'Texas A&M University

10:20 AM Break

10:40 AM The Effects of Ultrasonic Nanocrystal Surface Modification on the Fatigue Performance of 3D-printed Ti6Al4V: Hao Zhang; Richard Chiang; Haifeng Qin; Zhencheng Ren; Dong Lin; Gary Doll; Vijay Vasudevan; Yalin Dong; Chang Ye; 'University of Akron; 'University of Cincinnati; 'Timken Engineered Surfaces Laboratories, University of Akron; 'Kansas State University

11:00 AM Tailoring Microstructure and Residual Stress Profile of Selective Laser Melted Parts by Laser Shock Peening: Nikola Kalentics; Eric Boillat; Patrice Peyre; Roland Logé; 'EPFL; 'Processes and Engineering in Mechanics and Materials Laboratory (PIMM), CNRS-ENSAM ParisTech

11:40 AM Microstructural Evolution of a Novel High Strength Aluminum Alloy for Aerospace Additive Manufacturing Applications: Jacob Rindler; Eric Fodrai; John Barnhart; Michael DeVito; 'Northrop Gruman
Additive Manufacturing of Metals: Powder Feedstock Characterization and Performance – Characterization of Powder for AM
Program Organizers: Andrzejest Wójcieszynski, ATI Powder Metals; Ulf Ackelid, Freemelt AB; Ola Harrysson, North Carolina State University; Sudarsanam Babu, The University of Tennessee, Knoxville

Monday AM Room: 305 Location: DLL Convention Center
Session Chair: Timothy Horn, North Carolina State University

8:00 AM
Additive Manufacturing: Characterizing Metal Powder Features and Detecting Contaminants: Amber Dalley1; Stephen Kennedy1; Greg Kotyk1; ‘RJ Lee Group

8:20 AM
Preparation and Characterization of Alternative Stainless Steel Feedstock Powders for Use in Additive Manufacturing: Blake Fallenwider1; Julie Schoenung1; Kaka Ma1; ‘Colorado State University; ‘University of California Irvine

8:40 AM
Characterization of Differently Atomized Powder Using Micro Computed X-ray Tomography for Additive Manufacturing of Alloy 625: Colleen Hilla1; Amir Mostafaei1; Erica Stevens1; Markus Chmielus1; ‘University of Pittsburgh

9:00 AM
Industry Comparison of Powder Feedstock Variability on The Performance of Selective Laser Melting Ni-based Superalloy 718: Chantal Sudbrack1; David Ellis1; Bradley Lerch1; Timothy Smith1; Richard Booth1; Kenneth Cooper1; Jonathan Tyka1; Ivan Locci1; Paul Chao1; Benjamin Richards1; ‘NASA Glenn Research Center; ‘NASA Marshall Space Flight Center; ‘NASA White Sands Test Facility; ‘University of Toledo; ‘Carnegie Mellon University; ‘Northwestern University

9:20 AM
From Powder to Part – Why AM Needs a TQM System from Starting Material to Built Component: Nate Kistler1; ‘LPW Technology

9:40 AM
Characterization of Ejected Particles or Spatter during Laser Powder Bed Additive Manufacturing: Chris Rock1; Maria Witherow1; Tim Horn1; Harvey West1; ‘NC State, Center for Additive Manufacturing and Logistics

10:00 AM Break

10:20 AM
Chemical and Physical Characterization of Recycled Metal Powders: Bradley Barnhart1; James McGuffin-Cawley1; ‘Case Western Reserve University

10:40 AM
Proposed Strategy for Analysis and Management of Re-cycled Powder Materials: Najib Baig1; Will Marsden1; Stephen Warde1; John Twedal1; ‘Granta Design

11:00 AM
Inductively-coupled Plasma Powder Metallurgy: An Overview of Applications for Additive Manufacturing: Jean-Francois Carrier1; ‘Tekna Plasma Systems

11:20 AM
Characterizing the Effect of Thermal Processing on Powder Al Alloys for Additive Manufacturing Applications: Caitlin Walde1; Danielle Cote1; Richard Sisson1; Victor Champagne1; ‘Worcester Polytechnic Institute; ‘US Army Research Laboratory

11:40 AM
Design of Experiments Approach for DMLS: Krista Limmer1; Andelle Kudzi1; Efrain Hernandez1; Mark Tschoopp1; Brandon McWilliams1; ‘U.S. Army Research Laboratory

Advanced Manufacturing, Processing, Characterization and Modeling of Functional Materials – Session I
Program Organizers: Markus Chmielus, University of Pittsburgh; Mohammad Elahinia, University of Toledo; Reginald Hamilton, The Pennsylvania State University; Haluk Karaca, University of Kentucky; Reza Mirzaeifar, Virginia Tech

Monday AM Room: 324 Location: DLL Convention Center
Session Chair: To Be Announced

8:00 AM Invited
Complexity of and Broader Opportunities in Additively Manufactured NiTi Shape Memory Alloys: Ibrahim Karan1; Ji Ma1; Brian Franco1; Kubra Karayagiz1; Luke Johnson1; Jun Liu1; Gustavo Tapia1; Mohammad Mahmoud1; Alaa Elwany1; Raymundo Arroyave1; ‘Texas A&M University

8:40 AM
Selection of SLM Process Parameters to Tailor the Microstructure and Superelasticity of Ni-rich NiTi Alloys: Soheil Soadi1; Narges Shayesteh Moghaddam1; Sayed Ehsan Saghai1; Amirhesam Amerinatanz2; Mohammad Elahinia1; Haluk Karaca1; ‘University of Kentucky; ‘University of Toledo

9:00 AM
Laser Directed Energy Deposition Additive Manufactured NiTi SMAs: Heat-Treated Material Microstructures and Superelasticity: Beth Bimber-Last1; Reginald Hamilton1; Todd Palmer1; ‘The Pennsylvania State University

9:20 AM
Heat-free Processing and Low-power Additive Manufacturing of Metallic Products through Metastable Material States: Andrew Martin1; Christophe Frankiewicz1; Ian Tevis1; Zach Martin1; Dipak Paramanik1; Martin Thuo1; ‘Iowa State University; ‘SAFI-Tech

9:40 AM
High-throughput Experimentally Guided Discovery of Next Generation High-temperature Shape Memory Alloys: Bandar AlMangour1; Zongkai Yan1; Mark Miao1; Joost Vlassak1; ‘Harvard University
10:00 AM Break

10:20 AM Invited
Additive Manufacturing and Processing of Functional Magnetic Materials: Markus Chmielus1; Eric Stevens2; Katerina Kimes2; Amir Mostafaei2; Jakub Toman2; 1University of Pittsburgh

11:00 AM Numerical Modeling of Mechanical Behavior of 3D Printed Ni-Mn-Ga Parts Using Finite Element Analysis: Eric Myers2; Matt Caputo2; Rafaela Vannutelli1; C. Virgil Solomon1; 1Youngstown State University

11:20 AM Additive Manufacturing of Geometrically Complex Parts from Ni-Mn-Ga Prealloyed Powders with Various Morphologies: Matthew Caputo1; C. Virgil Solomon1; 1Youngstown State University

11:40 AM Epitaxial Growth of a Magnetic Shape-memory Alloy via Directed Energy Deposition: Jakub Toman1; Peter Müllner1; Markus Chmielus1; 1University of Pittsburgh; 2Boise State University

Advanced Materials for Oil and Gas Applications - Performance and Degradation – Advanced Materials for Oil Gas Applications
Program Organizers: Yellapu Murty, MC Technologies LLC; Paal Bratland, OneSubsea; Andrzej Wojcieszynski, ATI Powder Metals; Maria Sawford, ATI; Xi Shan, GE Oil & Gas

Monday AM Room: 338 Location: DLL Convention Center
Session Chair: Ria Asfahani, US Steel

8:00 AM Invited
Understanding the Corrosion Behavior in High Strength Copper-nickel-tin Spinodal Alloys: Carole Trybus1; Bob Kusner1; Nathan Goebel1; Fritz Grensing2; William Nielsen1; Diane Nielsen1; 1Matierion Performance Alloys; 2Matierion Performance Alloy

8:40 AM Predicting (Downhole) Solid Particle Erosion: Insights from a Material Perspective: John Stevens1; Bo Yu1; 1Baker Hughes

9:00 AM Synchrotron Based Tomographic Imaging of Shale: C.M. Hefferan1; B.R. Bandli1; D.R. Blood1; R. Cunningham1; D.B. Menasche1; A.D. Rollett1; S.F. Schlaegle1; 1R.J. Lee Group; 2EQT Corporation; 3Carnegie Mellon University; 4Hamiltonian Group LLC

9:20 AM Sour Service Material Qualification Challenges for Div 3 HPHT Equipment: Michael Burns3; 1Stress Engineering Services, Inc.

9:40 AM Temperature and Strain Rate Dependence of Mechanical Properties in Line Pipe Steels: Taylor Jacobs1; Mary Rosprim1; David Matlock1; Kip Findley1; 1Colorado School of Mines

10:00 AM Break

10:20 AM Development of High Strength Low C – 13%Cr Martensitic Stainless Steel by More Mo Addition: Shuji Hashizume1; 1TenarisNKK Tubes

10:40 AM Controlled Degradation and Self-expanding Materials for Oil and Gas: Andrew Sherman1; Brian Werry1; Nick Farkas2; 1Terves Inc; 2Powdermet Inc

11:00 AM Nanostructured Steel Susceptibility to Sulfide Stress Cracking: Arash Shadavaran1; Raymundo Case1; Argie Rumann2; 1Texas A&M University; 2VODIK Industries

11:20 AM A Metallurgical Look at the Direct Energy Deposition Additive Manufacturing Repair of Ferrous Alloy Parts: Manuel Marya1; Srinand Karuppoo1; Virendra Singh2; You Lu3; 1Schlumberger Technology Corporation

11:40 AM Additive Manufacturing for Oil and Gas Applications: Matthias Giesecke1; Christoph Wangenheim1; Madison Burns2; René Kube3; 1Baker Hughes INTEQ GmbH

Advanced Steel Metallurgy: Products and Processing – Session I
Program Organizers: Emmanuel De Moor, Colorado School of Mines; Amar De, ArcelorMittal Global R&D; Kester Clarke, Colorado School of Mines; Alia Sergueeva, The NanoSteel Company; Charles Enloe, General Motors; Daniel Branagan, The NanoSteel Company; Matthew Kiser, Caterpillar Inc

Monday AM Room: 406 Location: DLL Convention Center
Session Chairs: Emmanuel De Moor, Colorado School of Mines; Charles Enloe, General Motors

8:00 AM Microstructure and Tensile Properties of Medium Mn Two-stage TRIP Steels: Daniel Field1; David Van Aken1; 2Missouri S&T

8:20 AM Deformation Twinning Mechanisms of TWIP Steel Revealed by In-situ Transmission Electron Microscopy: Jin-Kyung Kim1; Minhyeok Kwon1; Bruno De Cooman1; 1Graduate Institute of Ferrous Technology, POSTECH

8:40 AM The Impact of Aluminum on the Microstructure and Deformation Behavior in Medium-Mn TRIP Steels: B Yu1; Y Injeti1; Devesh Misra1; 1University of Texas at El Paso

9:00 AM The Role of Microstructure in Damage Development of 1st and 3rd Generation AHSS during Air Bending: Clemens Suppan1; Thomas Hebesberger1; Andreas Pichler1; Johannes Rehl1; Otmar Kolednik2; 1Voestalpine Stahl GmbH; 2Erich Schmid Institute of Materials Science, Austrian Academy of Sciences

9:20 AM High Temperature Tempering Behavior of Martensite during AHSS Manufacturing: Evgenii Poliak1; Olga Girina1; Pavan Venkatasury1; Damon Panahi1; 1ArcelorMittal USA

9:40 AM Hydrogen Trapping Behavior in a Strained Ferritic-martensitic Dual Phase Steel: Hiroshi Okano1; Shusaku Takagi1; 1JFE Steel Corporation
10:00 AM Break

10:20 AM
An Integrated Computational Approach for the Development of Automotive Steels: JiHyu Park1; Myung-Yeon Kim1; Jae-Hyeok Shim1; Jin-Yoo Suh2; Woo-Sang Jung1; Sung Chul Cha2; Seung-Hyun Hong2; 1Korea Institute of Science and Technology; 2Hyundai Motor Group

10:40 AM
Architecturing TWIP Steels for Energy Absorption and Lightweighting: Mackenzie Jones1; Hang Yu1; 'Virginia Tech

11:00 AM
Austenite Growth and Retention Simulations in Intercritically Annealed Medium Manganese Steels: Josh Mueller2; Emmanuel De Moor1; 1Advanced Steel Processing and Products Research Center, Colorado School of Mines

11:20 AM
Characterizing High Mn TRIP STEELS for Thick Plate Applications: Katherine Sebeck1; Richard Gerth1; Ryan Howell1; 1US Army TARDEC; 2US Army PEO GCS

11:40 AM
Temperature and Strain Rate Effects on Tensile Deformation Behavior of a Medium Mn TRIP Steel: Whitney Poling1; Kip Findley2; Emmanuel De Moor1; John Speer2; 1National Institute of Standards and Technology; 2Colorado School of Mines

Advancements in In-situ Electron Microscopy Characterization II – Mechanical Behaviors
Program Organizers: Yue Liu, Shanghai Jiao Tong University; Nan Li, Los Alamos National Laboratory; Khalid Hattar, Sandia National Laboratories; T. John Balk, University of Kentucky; Josh Kacher, Georgia Tech

Monday AM
Room: 411
Location: DLL Convention Center

Session Chairs: Yue Liu, Shanghai Jiao Tong University; Nan Li, Los Alamos National Lab

8:00 AM Invited
Integrative In-situ TEM: Khalid Hattar1; Brittany Muntifering1; Patrick Price1; Chris Barr1; Samuel Briggs1; Caitlin Taylor1; Daniel Bufford1; 1Sandia National Laboratories

8:30 AM Invited
Dislocation Shielding Enhancement of Toughness in Brittle Materials: William Gerberich1; Eric Hintsala1; University of Minnesota; Hysitron, Inc.

9:00 AM Invited
In Situ High Resolution TEM for Diffusive Deformation: Scott Mao1; Li Zhong1; Yang He1; University of Pittsburgh

9:30 AM Invited
In Situ Observations of Twin Interactions in HCP Metals: Rodney McCabe1; Fulin Wang1; Yue Liu1; Benjamin Morrow1; Sean Agnew2; 1Los Alamos National Laboratory; 2University of Virginia

10:00 AM Break

10:20 AM Invited
Atomic-level Study of Twinning and Phase Transformation Mechanisms in Crystalline Materials: Jian Wang1; 1University of Nebraska-Lincoln

10:50 AM Invited
Insights into the Deformation of Nanoporous Gold Using Scanning Nanobeam Diffraction: Thomas Ball1; James Ciston1; Nicolas Briot1; Andrew Minor2; 1University of Kentucky; 2National Center for Electron Microscopy

11:20 AM
Probing Deformation of Amorphous Porous Carbon Nanospheres: In-situ Experiment and Computational Analysis: Baoxing Xu1; 1University of Virginia

11:40 AM
In Situ TEM Investigation of the Thermal, Mechanical, and Corrosion Stability of CoCrFeNiMn High Entropy Alloy: Elaf Anber1; Chris Barr1; Mitra Taheri1; 1Drexel University

Advances in Zinc-coated Sheet Steel Processing and Properties – Advances in Zinc-coated Sheet Steel Processing and Properties
Program Organizers: Frank Goodwin, International Zinc Association; Joseph McDermid, McMaster University

Monday AM
Room: 403
Location: DLL Convention Center

Session Chair: To Be Announced

8:00 AM
Influence of Oxidizing Gas and Surface Microstructure on the Kinetics of High-temperature Oxidation of a CMnSi Advanced High-Strength Steel (AHSS): Mary Story1; Bryan Webler1; 1Carnegie Mellon University

8:20 AM
A Phase Field Model for Multiphase Oxidation of Advanced High Strength Steels: Alireza Togbafwe1; Mohsen Asle Zaeem1; 1Missouri University of Science and Technology

8:40 AM
Study on Selective Oxidation of a Mn-Al Advanced High Strength Steel: Shiang-Ren Tsai1; Chiung-Wen Hsu1; Liwen Chang1; 1National Sun Yat-Sen University

9:00 AM
Internal Stresses and Processing Modeling for Galvanized and Galvannealed DP Steels: Hongwei Ma1; 1WISCO

9:20 AM
Application of V-N Microalloying in Ultra-high Strength Martensitic Sheet Steels for Hot-dip Galvanising: David Martin1; Bevis Hutchinson1; 1Swerea KIMAB AB

9:40 AM
New Filler Metal for Producing High-Speed Welds in Thin-gauge Coated Steels with Minimal Porosity: Susan Fiore1; 1Hobart Brothers

10:00 AM Break

10:20 AM
Design and Characterization of Core-shell Nanocounters Impregnated with Inhibitor for Active Corrosion Protection of Low Carbon Steel: Kamelia Kamburova1; Neli Boshkova1; Nikolai Boshkov1; Tssetsa Radeva1; 1Institute of Physical Chemistry, Bulgarian Academy of Sciences
10:40 AM
Obtaining Zinc Coatings on a Sheet Steel in SHS Conditions: Borys Sereda1; Dmytro Sereda2; 1DSTU; 2Zaporizhzhya State Engineering Academy

Alumina at the Forefront of Technology II – Processing of Alumina Ceramics
Program Organizers: William Walker, Federal-Mogul Corporation; Marina Pascucci, CeraNova Corporation; Charles Compson, Almatis; William Carty, Alfred University

Monday AM Room: 316 Location: DLL Convention Center
Session Chair: William Walker, Federal-Mogul Powertrain

8:00 AM Invited
Colloidal Behavior of Alumina Suspended in an Aqueous Medium: William Carty1; Hyojin Lee1; 1Alfred University

8:40 AM Invited
An Exact DLVO Solution for Various Powders in Non-aqueous Mediums to Predict Suspension Stability: Keith DeCarlo1; 1Blasch Precision Ceramics

9:20 AM
Corrosion of Alumina Powders in an Aqueous Medium: William Carty2; Hyojin Lee1; Randy Mauzy1; Paul Ormond1; 1Alfred University; 2AluChem, Inc.

9:40 AM
3D Printing of High-performance Alumina Parts: Johannes Homa1; Martin Schwentenwein1; 1Lithoz GmbH

10:00 AM Break

10:20 AM
Particle Packing and Sintering of 3-D Printed Alumina: Patrick Cigno1; William Carty1; Hyojin Lee1; 1Alfred University

10:40 AM
Injection Molding Different Shaped Ceramics and Understanding Process Variation: Jordan Otminski1; 1LEDVANCE LLC

11:00 AM
Evaluation of Polishing Damage and Relief in Sintered Alumina: Alicia Mayville1; Hyojin Lee1; William Carty1; 1Alfred University

11:20 AM
Surface Finish Improvements for Alumina Components Shaped by Green Grinding: William Walker1; 1Federal-Mogul Corporation

Best Practices in Academic Laboratory Safety – Session I
Program Organizers: Elizabeth Kupp, Penn State University; Theresa Kotancheck, Evolved Analytics LLC; Edgar Lara-Curzio, Oak Ridge National Laboratory

Monday AM Room: 321 Location: DLL Convention Center
Session Chairs: Theresa Kotancheck, Evolved Analytics LLC; Elizabeth Kupp, Penn State University

8:00 AM Invited
Value Based Safety and Its Potential to Transform Workplace Culture (…and How Your Attitude towards Safety Can Make You a Better Job Candidate): Daniel Vaughn1; 1Corning Incorporated

8:40 AM Invited
Creating an Effective Safety Culture in a University Environment: Gary Messing1; 1The Pennsylvania State University

9:20 AM Invited
Engaging Diverse Stakeholders for Improving Safety Culture in Academic Laboratories: John Howarter1; 1Purdue University

10:00 AM Break

10:20 AM Invited
Risk in Academic Laboratories from the Perspective of an Industrial Safety Professional: J. Douglas Jeter1; 1Verity Technical Consultants, LLC

11:00 AM Invited
ABET Safety Criteria for Accreditation of Colleges of Engineering: Diane Albert1; 1Diane Albert Law

11:40 AM Invited
Root Cause Investigations & Key Learnings: Dawn Mason1; 1Eastman Chemical Company

Boron, Boron Coatings, Boron Compounds and Boron Nanomaterials: Structure, Properties, Processing, and Applications – 2D Boron & Physical Properties
Program Organizers: Jens Kunstmann, TU Dresden; Roumiana Petrova, New Jersey Institute of Tech; Scott Beckman, Washington State University

Monday AM Room: 330 Location: DLL Convention Center
Session Chair: Jens Kunstmann, TU Dresden

8:00 AM Invited
Novel Properties of Dirac Fermions in Borophene: Iwao Matsuda1; Baojie Feng1; 1The University of Tokyo

8:40 AM Invited
Borophene in Its Multiple Forms: Structure, Properties, and Possible Applications: Nevill Gonzalez Szwacki1; 1University of Warsaw

9:20 AM Invited
Two-Dimensional Boron Icosahedral Structures: Ming Ye1; 1University of Louisville
10:00 AM Break

10:20 AM Invited
Physical Properties of Liquid Boron: Junpei Okada¹; ¹Tohoku University

11:00 AM
High-entropy Metal Diborides: A New Class of Ultrahigh Temperature Ceramics: Joshua Gild², Yuan Yao Zhang³, Tyler Harrington¹, Cormac Toher¹, Pranab Sarker¹, Sicong Jiang¹, Matthew Quinn¹, Will Mellor¹, Naixie Zhou¹, Lavina Backman¹, Elizabeth Opila¹, Stefano Curtarolo², Kenneth Vecchio², Jian Luo¹; ¹University of California, San Diego; ²Duke University; ³University of Virginia

Ceramics and Glasses Simulations and Informatics – Bridging Space and Time Scales
Program Organizers: Mathieu Bauchy, University of California, Los Angeles; Peter Kroll, University of Texas Arlington

Monday AM Room: 311 Location: DLL Convention Center

Session Chairs: Mathieu Bauchy, University of California, Los Angeles; Liping Huang, Rensselaer Polytechnic Institute

8:00 AM Invited
Development and Application of ReaxFF Reactive Force Field for Glass/Electrolyte Systems: Adri van Duin¹, Seung Ho Hahn¹, Mark Fedkin¹, Yun Shin¹, Nabankur Dasgupta¹; ¹Penn State

8:40 AM Invited
A Reax-Force-Field for Simulations of Silicon Oxycarbide Ceramics: Iliia Ponomarenko¹, Peter Kroll¹; ¹University of Texas at Arlington

9:20 AM
Rapid Composite Material Property Prediction Using Machine Learning: Grace Gu¹, Chun-Teh Chen¹, Markus Buehler¹; ¹MIT

9:40 AM
Influence of Mass and Charge Disorder on Thermal Conductivity of Entropy Stabilized Oxides by Molecular Dynamics Simulation: Mina Lim¹, Zsolt Rak², Ashutosh Giri², Samuel Daigle², Jeffrey Braun², Christina Rost², Patrick Hopkins², Donald Brenner¹; ¹North Carolina State University; ²University of Virginia

10:00 AM Break

10:20 AM Invited
Reaching Experimental Times at the Atomic Scale in Complex Materials: The Kinetic Activation-Relaxation Technique: Normand Mousseau¹; ¹Université de Montréal

11:00 AM
Molecular Mechanisms of Amorphous Creep: Dynamical Heterogeneities in Deformation and Flow: Penghui Cao¹, Michael Short¹, Sidney Yip¹; ¹Massachusetts Institute of Technology

11:20 AM
Characterization and Modeling of Microstructural Level Stresses in Brittle Materials: Melissa Teague¹; ¹Sandia National Laboratories

11:40 AM
Direct Numerical Simulation of Failure Mechanisms in Brittle Polycrystalline Structures: Hao Jiang¹, Zongyue Fan¹, Bo Li¹; ¹Case Western Reserve University

Characterization of Fracture and Fragmentation Phenomena Across Multiple Length Scales: From Atomistic to Macroscopic Approaches – Modeling of Fracture and Fragmentation Processes: Meso-/Macroscopic Scales
Program Organizers: Remi Dingeville, Sandia National Laboratories; Pierre-Alexandre Juan, Sandia National Laboratories

Monday AM Room: 415 Location: DLL Convention Center

Session Chair: To Be Announced

8:00 AM Invited
An Integrated Two-scale Modeling Approach to the Simulation of Fragmentation in Brittle Materials: John Bignell¹; ¹Sandia National Laboratories

8:20 AM
Fracture between a Suspended Polymeric Film and a Metallic Substrate: Experiments and Models: Jing Du¹, Emily Hampp², Wanliang Shan³, Wole Soboyejo⁴; ¹Penn State University; ²Stryker; ³University of Nevada, Reno; ⁴Worcester Polytechnic Institute

8:40 AM
Quantitative Phase-field Modeling of Crack Propagation in Multiphase Materials: Arezoo Emdadi¹, Mohsen Asle Zaeem¹, William Fahrenholz¹, Gregory Hilmas¹; ¹Missouri University of Science and Technology

9:00 AM
Predicting the Impact of Material Microstructure on Brittle Fracture Using a Phase Field Fracture Model: Michael Tonks¹, Shuaifang Zhang¹, Srujan Rokkam², Pritam Chakraborty³; ¹Pennsylvania State University; ²Advanced Cooling Technologies; ³Indian Institute of Technology Kanpur

9:20 AM
Crystal Plasticity Finite Element Simulation of Fatigue Failure in Polycrystalline Al7075-T651 Alloys, Part I: The Reconstruction, and Microstructure/Property Convergence of RVE: Xiaohui Tu¹, Ahmad Shahba¹, Jinlei Shen¹, Somnath Ghosh¹; ²Johns Hopkins University

9:40 AM
Crystal Plasticity Finite Element Simulation of Fatigue Failure in Polycrystalline Al7075-T651 Alloys, Part II: Modeling Cyclic Deformation and Fracture: Ahmad Shahba¹, Xiaohui Tu¹, Jinlei Shen¹; ²Johns Hopkins University

10:00 AM Break

10:20 AM Invited
Applying Micromorphic Filter on 3D Beam FEA with Idealized Periodic Micro-structure: Richard Regueiro¹, Farhad Shahabi¹, Boning Zhang¹, Joseph Bishop¹, ¹University of Colorado Boulder; ²Sandia National Laboratories
11:00 AM
The Effect of Loading Rate on Fracture Toughness Measurements for Various Materials: Carl Cady1; Cheng Liu2; 1Los Alamos National Laboratory

11:20 AM
A Peridynamics Framework for Modeling of Corrosion Damage Phenomena: Srujan Rokkan1; Michael Brothers1; Max Gunzburger2; Sachin Shanbhag3; Kishan Goel1; 1Advanced Cooling Technologies, Inc.; 2Florida State University; 3Naval Air Station - Pax River

11:40 AM
A Peridynamics-FEM Approach for Crack Path Prediction in Fiber-reinforced Composites: Quang Truong1; Srujan Rokkan1; Max Gunzburger2; Kishan Goel1; 1Advanced Cooling Technologies, Inc.; 2Florida State University; 3Naval Air Systems Command

12:00 PM
Crack Growth Path Prediction Based on Surface Roughness Evolution: Jalal Fathi Sola1; Randall Kelton1; Haiying Huang1; Efstathios Meletis1; 1University of Texas at Arlington

Curricular Innovations and Continuous Improvement of Academic Programs (and Satisfying ABET along the Way): The Elizabeth Judson Memorial Symposium – Course and Curriculum Improvements; ABET Update

Program Organizers: Devarajan Venugopalan, University of Wisconsin-Milwaukee; Jeffrey Fergus, Auburn University; Janet Callahan, Boise State University; Thomas Bieler, Michigan State University; Ronald Gibala, University of Michigan; Tonya Stone, Mississippi State University

Monday AM Room: 306
October 9, 2017 Location: DLL Convention Center

Session Chair: Dev Venugopalan, Univ of Wisconsin-Milwaukee

8:00 AM
Levelling the Field – Inclusive Excellence: Janet Callahan1; 1Boise State University

8:20 AM
Effects of Flipped and Inter-semester Calculus I on Engineering Retention and Graduation Rates: Steven Pilgrim1; Joseph Petrillo1; 1Alfred University

8:40 AM
Thermal Spray Operator Certification: Dale Moody1; Peter Foy1; 1Plasma Powders and Systems Inc.

9:00 AM
Changes in ABET Engineering Criteria 3 and 5: Jeffrey Fergus1; 1Auburn University

9:20 AM Invited
ABET Academic Advisory Council Participation & Listening Session: Joseph Sussman1; Michael Milligan1; 1ABET

10:00 AM Break

10:20 AM
An Active-learning Experience with ‘Doc’ Neelley: Ronald Gibala1; 1University of Michigan

10:40 AM
Enhanced Student Learning from Computer-based Visualizations of Crystal Structures: Susan Gentry1; Tanya Faltens2; 1University of California, Davis; 2Purdue University

11:00 AM
Successes & Lessons Learned in an Undergraduate Computational Lab Sequence for Materials Science & Engineering: Alison Polasik1; Stephen Niezgoda1; 1The Ohio State University

11:20 AM
New Resources for Teaching Introductory Materials Science and Engineering: Hannah Melia1; Luca Mas1; Marc Fry1; 1Granta Design

11:40 AM Invited
Everyday Adventures of Applying Active Learning Pedagogies: The Great, the Good, and the Unfortunate: Jennifer Carter1; 1Case Western Reserve University

Data and Tools for Materials Discovery and Design – Materials Information Infrastructure

Program Organizers: Zi-Kui Liu, The Pennsylvania State University; David McDowell, Georgia Institute of Technology; Carelyn Campbell, National Institute of Standards and Technology; Laura Bartolo, Northwestern University; Bryce Meredig, Citrine Informatics; Mark Tschopp, Army Research Laboratory; Dane Morgan, University of Wisconsin - Madison; Afina Lupulescu, ASM International

Monday AM Room: 323
October 9, 2017 Location: DLL Convention Center

Session Chairs: David McDowell, Georgia Tech; Zi-Kui Liu, Penn State

8:00 AM Keynote
A Data Laboratory for Materials Design: A New Paradigm for a Materials Information Infrastructure: Krishna Rajan1; 1University at Buffalo: SUNY

8:40 AM Invited
The Role of Infrastructure in Materials Informatics: C. Campbell1; I. Foster2; G. Olson1; L. Bartolo1; J. de Pablo1; Peter Voorhees2; 1National Institute for Standards and Technology; 2University of Chicago; 3Northwestern University

9:00 AM Invited
Using the Materials Commons in Integrated Computational Materials Science Workflows: Brian Puchala1; Glenn Tarcea1; Terry Weymouth1; Tracy Berman1; John Allison1; 1University of Michigan, Ann Arbor

9:20 AM Invited
Developing Infrastructure for High Quality Data of Materials Properties: Zi-Kui Liu1; Richard Otis2; Brandon Bocklund1; 1The Pennsylvania State University; 2Jet Propulsion Laboratory

9:40 AM
Materials Informatics Discovery Platform & RESTfulAPI: Alexandr Isayev1; Alexander Tropsha1; 1University of North Carolina at Chapel Hill

10:00 AM Break

10:20 AM Invited
Methods for Discovery and Design of Advanced Materials Across Length Scales: Susan Sinnott1; 1The Pennsylvania State University
10:40 AM Invited
An Integrated Collaborative Environment for ICME: Charles Ward¹; Matthew Jacobsen¹; ¹Air Force Research Laboratory

11:00 AM
Development of the NIST Materials Resource Registry as a Means to Advertise, Find, and Use Materials-related Resources: Chandler Becker¹; Alden Dima¹; Raymond Plante¹; Sharief Yousef³; Andrea Medina-Smith¹; Laura Bartolo³; Robert Hanisch³; Bryan Webler³; ³Carnegie Mellon University; ¹National Institute of Standards and Technology; ³Northwestern University

11:20 AM
A Paradigm Shift in Advanced Manufacturing and System Life Management: Jerry Evans¹; Grizelda Loy-Kraft³; ³Future Way Designs LLC; ²Air Force Research Lab/RQTE

Design, Processing, and Development of Structural Materials – Advanced Processing and Additive Manufacturing

Program Organizers: Tomoko Sano, U.S. Army Research Laboratory; Mitra Taheri, Drexel University

Monday AM Room: 328 Location: DLL Convention Center

Session Chairs: Suveen Mathaudhu, University of California, Riverside; Mitra Taheri, Drexel University

8:00 AM Invited
Novel Structural Materials Processing via Shear Assisted Processing and Extrusion (ShAPE): Nicole Overman³; Scott Whalen³; Matthew Olszta³; David Catalini¹; Karen Kruska¹; Jens Darsell¹; Vineet Joshi¹; Hellen Jiang¹; Glenn Grant¹; Suveen Mathaudhu¹; ³Pacific Northwest National Laboratory; ¹University of California Riverside

8:20 AM
Severe Plastic Deformation Effects on Nanoscale Oxide Dispersion of Internally Oxidized Fe-V Alloys: Anna Weiss¹; Stephen Kachur¹; Yoosuf Picard¹; Bryan Webler¹; ¹Carnegie Mellon University

8:40 AM
High Strength and High Conductivity in Re-processed Hypereutectic CuCr Alloys: Ayodele Olufinjana²; NY Woo²; ²University of the Sunshine Coast; ²Universiti Brunei Darussalam

9:00 AM
Machining-based Process for Sheet Directly on As-cast AA6013: Xiaolong Bai³; Srinivasan Chandrasekar³; Kevin Trumble³; ³Purdue University

9:20 AM
Laser-assisted Ultrasonic Surface Modification of Ti6Al4V Alloy: Jun Liu¹; Sergey Suslov¹; Haiqin Qin¹; Zhengcheng Ren¹; Gary Doll¹; Yalin Dong¹; Chang Ye¹; ¹University of Akron; ²Qatar Environment and Energy Research Institute

9:40 AM
Increasing Fracture Strength in Bulk Metallic Glasses Using Ultrasonic Nanocrystal Surface Modification: Chi Ma¹; Haiqin Qin¹; Zhengcheng Ren¹; Stephanie O’Keefe¹; Joseph Stevick¹; Gary Doll¹; Yalin Dong¹; Bartloniec Wilinski¹; Chang Ye¹; ¹The University of Akron; ²Liquidmetal Technologies, Inc; ³University of Manchester

10:00 AM Break

10:20 AM Invited
Processing of Ferritic Alloys for Nuclear Applications: Stuart Maloy¹; Eda Aydogan¹; Thomas Lienert¹; Ben Eftink¹; G. Robert Odette³; Md Ershadul Alam³; Souptik Pal³; David Hodzer³; John Lewandowski³; R. Webster³; Thak Sang Byun³; ³Los Alamos National Laboratory; ²University of California, Santa Barbara; ³Oak Ridge National Laboratory; ¹Case Western Reserve University; ²Pacific Northwest National Laboratory

10:40 AM Invited
Hybrid Advanced Manufacturing of Structural Materials: Brett Conner¹; Richard Wysk¹; Ola Harisson¹; Guha Manogharan¹; ²Youngstown State University; ²North Carolina State University; ²Pennsylvania State University

11:20 AM
Application of FEA to Determine the Effect of Forging Variables on the Occurrence of Abnormal Grain Growth during Subsequent Beta Annealing of Ti-6Al-4V: Lee Morris¹; ¹Air Force Institute of Technology

11:40 AM
Effect of Solidification Behavior on Microstructures and Mechanical Properties of K4169 Alloy Investment Casting: Maodong Kang¹; Jun Wang¹; Haiyan Gao¹; ¹Shanghai Jiao Tong University

Emerging Multifunctional Materials for Bio, EO, RF and Radiation Sensors – Emerging Multifunctional Materials for Bio, EO, RF and Radiation Sensors I

Program Organizers: Narsingh Singh, University of Maryland, Baltimore County; Dimitra Stratis-Cullum, Army Research Laboratory; Ravindra Nuggehalli, NJIT

Monday AM Room: 331 Location: DLL Convention Center

Session Chairs: Nuggehalli Ravindra, New Jersey Institute of Technology; Koyar Rane, Rani Channamma University

8:00 AM Invited
Introductory Remarks: Carbon with Unique Mixed Morphologies for EO, Microelectronics and Structural Applications: Narsingh Singh¹; ¹University of Maryland, Baltimore County

8:20 AM Invited
Solution Combustion Synthesis of Alumina-titania Ceramics for High-frequency Electronic Packaging: Francesca Deganello¹; Leonardo Francesca Liotta¹; Valeria La Parola¹; Gabriel Maria Ingo¹; Cristina Riccucci¹; Goffredo De Portù¹; Oscar Peverini¹; Anna Venezia¹; ¹CNR-ISMN Palermo, Italy; ²CNR-ISMN Montelibretti, Roma, Italy; ³CNR-ISTEC Faenza, Italy; ⁴CNR-IEIIT Torino, Italy

8:40 AM Invited
Dielectric and Magnetic Properties of Bismuth Copper Titatanate Based Nanocomposite: Kamdeo Manda³; ³Indian Institute of Technology (BHU)

9:00 AM Invited
Magnetic Field Assisted Assembly: B.S. Mani¹; Nuggehalli Ravindra¹; ¹New Jersey Institute of Technology
9:20 AM Invited
Characterizing Nitrogen-vacancy (NV) Centers in Diamond Nanostructure
Formed by Pulsed Laser Annealing Technique at Room Temperature and
Ambient Pressure: Anagh Bhaumik; Jagdish Narayan; North Carolina State
University
9:40 AM
Design of Multifunctional Materials: Chalcogenides and Chalcopyrites:
Christopher Cooper; Ching Hua Su; Fow-Sen Choa; Bradley Arnold; Narsingh
Singh; University of Maryland, Baltimore County
10:00 AM Break
10:20 AM Invited
Electrical Properties of Multifunctional Double Perovskite Oxides for
Future Application: Dev Mahato; National Institute of Technology Patna
10:40 AM
Development of Next Generation Biosensors and Biohybrid Systems Using
Synthetic Biology Approaches: Bryn Adams; Jessica Terrell; Dimitra Stratis-
Cullum; US Army Research Lab
11:00 AM
Domain Structure and Evolution in Magnetostrictive Fe-Ga Alloys: Matt
Tianen; Yongmei Jin; Keat Ong; Michigan Tech
11:20 AM
Black Silicon Based Microbolometer: Sita Rajyalaxmi Marthi; Ashan
Banobre; Nuggehalli Ravindra; New Jersey Institute of Technology
11:40 AM
Solid-state Synthesis of Novel Organic Complexes and Their Physico-
chemical and Fluorescence Studies: Ramanand Rai; Umesh Neupane; Banaras
Hindu University

Failure Analysis and Prevention – Fatigue and Fracture
Program Organizers: Andrew Havics, pH2, LLC; Pierre Dupont,
Schaeffler Belgium Spt/Bvba; Burak Akyuz, ATS, Inc.
Monday AM Room: 408
October 9, 2017 Location: DLL Convention Center
Session Chairs: William Rossey, General Electric Aviation; Brett Miller,
IMR Metallurgical Services; Thomas Kozina, NTN Bearing Co.; Robert
Kupkovits, Exponent
8:00 AM
Failure Analysis of a Large Silo: Milo Kral; University of Canterbury
8:20 AM
Rolling Bearings Failures and Prevention: Dorota Szczesniak; Aneta
Komada; General Electric
8:40 AM
Fracture Mechanism Observed in a Pressure Vessel: Diane Boose; Debbie
Aliya; T. K. Holdings; Aliya Analytical, Inc.
9:00 AM
Gas Turbine Blade Failure Behavior During High Cycle Regime: Tomasz
Didenko; GE Aviation
9:20 AM
The Role of Nickel Plating on the Fatigue Failure of a Bronze Consumer
Product: Jonathan Trenkle; Noah Budiansky; Paul Vergheese; Quinn Horn; Exponent, Inc.
9:40 AM
Low Time Starter Gear Fracture Event in Large Commercial Aviation
Engine: Wesley Pridemore; GE-Aviation
10:00 AM Break
10:20 AM Invited
Failure Analysis of Tactical Aircraft Ejection Seat Catapult Sleeves: Erik
Mueller; National Transportation Safety Board
10:40 AM
Nuts and Bolts - Atypical and Interesting Failures: Ronald Parrington;
Engineering Systems Inc. (ESI)
11:00 AM
Fatigue Life Extension of the M4A1 Carbine Bolt: Adam Foltz; Thomas
Grego; Gregory Vigilante; US Army ARDEC
11:20 AM
Metallurgical Evaluation of 2 Cracked Gas Turbine Fuel Tube Flanges with
Unusual Loading: William Rossey; GE Aviation
11:40 AM
Fatigue Behavior of Sheet-bulk Metal Formed Components: Hans-Bernward
Besse; Dmytro Rodman; Leibniz Universität Hannover

Failure Analysis and Prevention – Microanalysis,
Microscopy and Metallography in Failure Analysis (Joint FAS-IMS)
Program Organizers: Andrew Havics, pH2, LLC; Pierre Dupont,
Schaeffler Belgium Spt/Bvba; Burak Akyuz, ATS, Inc.
Monday AM Room: 407
October 9, 2017 Location: DLL Convention Center
Session Chairs: Daniel Dennies, DMS, Inc.; James Lane, Professional
Analysis and Consulting, Inc; Andrew Havics, pH2, LLC
8:00 AM Invited
Methanol Pipeline Failure in the Canyon Express Pipeline System: George
Vander Voort; Consultant - Struers Inc.
8:20 AM Invited
Use of Nomarski Differential Interference Contrast (DIC) Microscopy in
FA: Andrew Havics; pH2, LLC
8:40 AM Invited
Investigation of Mechanical Property Changes due to Low Temperature
Thermal Treatment of Steels: Daniel Dennies; DMS, Inc.
9:00 AM Invited
Fastener Failure Mode Effects Analysis – A Microstructural Approach:
Michael Connelly; Frauke Hogue; Casey Products; Hogue Metallography
9:20 AM Invited
Failure of High-Strength Socket Head Cap Screws due to Incorrect Alloy:
Jeff Rodelas; Donald Susan; Rob Sorensen; Joseph Michael; Sandia National
Laboratories
9:40 AM Structural and Thermal Behavior of CuS-Na$_2$S-P$_2$S$_5$ Glasses: Piyush Sharma; Paramjyot Jha; O. P. Pandey; Thapar University; Chandigarh University

10:00 AM Break

10:20 AM Effects of B$_2$O$_3$/SiO$_2$ Substitution on In Vitro Bioactivity and Properties of Bioactive Glasses: Xiaonan Lu; Lu Deng; Po Hsuen Kuo; Mengguo Ren; Ian Buterbaugh; Caitlin Huntley; Ty Thomas; Jincheng Du; University of North Texas

10:40 AM The Effects of B203 on the Structures and Properties 20Na2O-30CaO-50P2O5 Glasses: Parker Freudenberg; Britanny Curtis; Richard Brow; Missouri University of Science and Technology; Iowa State University

11:00 AM New Optimization Scheme for Potential Development for Multi-component Oxide Glasses: Siddharth Sundararaman; Simona Ispas; Walter Kob; Liping Huang; Rensselaer Polytechnic Institute; University de Montpellier

11:20 AM Pressure Quenching Effect on Structure and Property of Sodium Borosilicate Glasses from Molecular Dynamics Simulations: Mengguo Ren; Jincheng Du; University of North Texas

11:40 AM Molecular Dynamics Simulation on Aluminosilicate Oxyfluoride Glass: Junjie Zhao; Xiaotong Chen; Jincheng Du; Qian Xu; Zhou Luo; Xusheng Qiao; Xianping Fan; Zhejiang University; University of North Texas; Massachusetts Institute of Technology

MONDAY AM

Hybrid Organic-Inorganic Materials for Alternative Energy – Battery and Electrolytes
Program Organizers: Andrei Jitianu, Lehman College, City University of New York; Lisa Klein, Rutgers University; Lia Stanciu, Purdue University; Mihaela Jitianu, William Paterson University

Monday AM Room: 402
October 9, 2017 Location: DLL Convention Center

Session Chairs: Lisa Klein, Rutgers University; Andrei Jitianu, Lehman College - City University of New York

8:00 AM Invited
Cold Sintering of Ceramic and Composite Solid Lithium Ion Conductors: Enrique Gomez; Chris Lyon; Clive Randall; The Pennsylvania State University

8:30 AM Invited
Carbon Nanotube Aerosols: Mohammad Islam; Carnegie Mellon University

9:00 AM Invited
Chemical Pre-intercalation Approach for Facile Synthesis of Hybrid Battery Electrode Materials: Ekaterina Pomerantseva; Drexel University

9:30 AM Invited
Development of Inorganic-organic Hybrid Materials for Electrochemical Energy Storage: Donghai Wang; Penn State University

Glass, Amorphous, and Optical Materials: Common Issues within Science & Technology – Structure-property Relations 1

Program Organizers: Gang Chen, Ohio University; Steve Martin, Iowa State University

Monday AM Room: 310
October 9, 2017 Location: DLL Convention Center

Session Chairs: Pierre Lucas, University of Arizona; Jincheng Du, University of North Texas

8:00 AM
Glass: A Structural Definition Rather than a Material Type?: Alis Clare; NYSCC Alfred University

8:20 AM
Determining the Structure of Stable and Supercooled Liquids by High Energy X-ray Diffraction: Martin Wilding; Chris Benmore; Rick Weber; Oliver Alderman; Anthony Tamalonis; Mark Wilson; John Parise; University College London; Argonne National Laboratory; Materials Development Inc.; University of Oxford; Stony Brook University

8:40 AM
Observation of a Strong-to-fragile Transition in the Tetrahedral Melt ZnCl2: Pierre Lucas; Garrett Coleman; Venkateswara Rao Manga; Pierre Deymier; B.G. Potter; Krishna Muralidharan; University of Arizona

9:00 AM
The Effect of Thermal History on Glass Structure and Its Crystallization Mechanism: Ji-Yeon Baek; Seung-Ho Shin; Seon-Hyo Kim; Jung-Wook Cho; Pohang University of Science and Technology(PoSTECH); Graduate Institute of Ferrous Technology(GIFT), Pohang University of Science and Technology(PoSTECH)

9:20 AM
Research on the Activation Energy of the Crystallization Process for the Amorphous Solids in Blast Furnace Slag: Haifeng Wang; Central Iron & Steel Research Institute, China

9:40 AM
Failure Analysis of a Retaining Ring of a Motor: Mehdi Taheri; Erhan Ulwan; Otto Yong; 1-30- Forensic Engineering; Acuren Group Inc; Ontario Power Generation

10:00 AM Break

10:20 AM
Failure Analysis of a Galvanized Pull-Out Step: Joseph Lemberg; Myra Dyer; Eric Guyer; Exponent Failure Analysis Associates, Inc.

10:40 AM
Forensic Evaluation of Ball Valve Failures in HVAC Recirculation Lines of High-rise Residential Buildings: Eduardo Marti; Dinh Matei; Origin and Cause

11:00 AM
Precipitation Behavior and Microstructure Evolution of High Cr Steel during Creep Deformation: Genki Nishikawa; Shoichi Nambu; Toshihiko Koseki; The University of Tokyo

9:40 AM
Structural and Thermal Behavior of CuS-Na$_2$S-P$_2$S$_5$ Glasses: Piyush Sharma; Paramjyot Jha; O. P. Pandey; Thapar University; Chandigarh University

10:00 AM Break

9:40 AM
Cold Sintering of Ceramic and Composite Solid Lithium Ion Conductors: Enrique Gomez; Chris Lyon; Clive Randall; The Pennsylvania State University

8:30 AM Invited
Carbon Nanotube Aerosols: Mohammad Islam; Carnegie Mellon University

9:00 AM Invited
Chemical Pre-intercalation Approach for Facile Synthesis of Hybrid Battery Electrode Materials: Ekaterina Pomerantseva; Drexel University

9:30 AM Invited
Development of Inorganic-organic Hybrid Materials for Electrochemical Energy Storage: Donghai Wang; Penn State University
10:00 AM Break

10:20 AM Invited
Exfoliation of Transition Metal Dichalcogenides into Nanosheets and Performance as Sodium Ion Battery Electrode: Monsur Abass; Lamuel David; Gurpreet Singh; 1Kansas State University

10:50 AM Invited
Hybrid Solid Polymer Electrolytes for Lithium Metal Batteries: Christopher Li; Qiwei Pan; 1Drexel University

11:20 AM Invited

11:50 AM Cold Sintering Process for Development of High-performance Lithium Ion Batteries: Joo-Hwan Seo; Kris Verlinde; Ramakrishnan Rajagopalan; Thomas Mallouk; Clive Randall; 1Penn State University

Interfaces, Grain Boundaries and Surfaces from Atomistic and Macroscopic Approaches – Structure and Chemistry of Interfaces
Program Organizers: Dominique Chatain, CNRS, Aix-Marseille University; John Blendell, Purdue University; Wayne Kaplan, Technion - Israel Institute of Technology

Monday AM Room: 410
October 9, 2017 Location: DLL Convention Center

Session Chairs: Wayne Kaplan, Technion; Eduardo Saiz, Imperial College London

8:00 AM Keynote
Surface Ordering on Eutectic Droplets and Its Relationship to Nanowire Growth: Frances Ross; 1IBM T. J. Watson Research Center

8:40 AM Keynote
Imaging Dynamic Materials Processes at Solid-liquid Interfaces by Scanning Transmission Electron Microscopy (STEM): Nigel Browning; B. Mehdi; Andrew Stevens; Libor Kovarik; Andrey Liyu; 1Pacific Northwest National Laboratory

9:20 AM Invited
Electric Field Induced Equilibrium Grain Boundary Configurations in Perovskite Ceramics: Klaus van Benthem; 1University of California, Davis

9:40 AM Invited
Understanding Grain and Domain Boundary Network Evolution Using In Situ Microscopy: Mitra Taberi; 1Drexel University

10:00 AM Break

10:20 AM Keynote
The Structure and Properties of Low-angle Tilt Grain Boundaries in SrTiO$_3$: Roger De Sousa; 1RWTH Aachen University

11:00 AM Invited
The Effect of Interfaces on Magnetic Structure in Skyrmion B20 Thin Films Using Aberration Corrected TEM/STEM: Bryan Esser; Adam Ahmed; Roland Kawakami; David McComb; 1Ohio State University

11:20 AM Invited
Interfacial Line Defects: Bridging Structural Information Between Atomic and Continuum Length Scales: Douglas Medlin; 1Sandia National Laboratories

11:40 AM Ag Segregation Induced Nano facetting of an Asymmetric Tilt Grain Boundary in Copper: Nicolas Peter; Christian Liebscher; Raheleh Hadian; Blazej Grabowski; Christoph Kirchlechner; Gerhard Dehm; 1Max-Planck Institut für Eisenforschung GmbH

International Symposium on Defects, Transport and Related Phenomena – Lithium Ion Conductors/Modeling Defect and Transport
Program Organizers: Tatsuya Kawada, Tohoku University; Manfred Martin, RWTH Aachen University; Sangtae Kim, University of California, Davis

Monday AM Room: 409 Location: DLL Convention Center

Session Chairs: Manfred Martin, RWTH Aachen University; Xing Guo, Huazhong University of Science and Technology

8:00 AM Invited
Garnet-type Ionic Conductors for All-solid-State Lithium Ion Batteries: Xin Guo; 1Huazhong University of Science & Technology

8:40 AM Invited
The Crucial Role of Structural Defects in Modulating the Anion Redox Mechanism in Li-rich Layered Transition Metal Oxide Electrodes: William Gent; Kipil Lim; Jihyun Hong; Yufeng Liang; Michael Toney; Wanli Yang; David Prendergast; William Chueh; 1Stanford University; 2Lawrence Berkeley National Laboratory; 3SLAC National Accelerator Laboratory

9:20 AM Preparation and Lithium-ion Conduction of Nonstoichiometric Lithium Hydro-closo-borates: Akira Takano; Itaru Oikawa; Hitoshi Takamura; 1Tohoku University

9:40 AM Predicting Defect Formation Energies from Statistical Learning of Bulk Properties: Amit Samanta; Joel Varley; Vince Lordi; 1Lawrence Livermore National Laboratory; 2SLAC National Accelerator Laboratory

10:00 AM Break

10:20 AM Modeling of Transport Properties in Bulk Silicon Thermoelectric Materials with high ZT: Aria Hosseini; Jackson Harter; Devin Coleman; Todd Palmer; Lorenzo Mangolini; Alex Greenay; 1University of California, Riverside; 2Oregon State University

10:40 AM First-principles Study of Inert Gas Incorporation and Migration in Zirconium Nitride: Zhi-Gang Mei; Abdellatif Yacout; 1Argonne National Laboratory
11:00 AM
Density Functional Theory Modeling of the Cation Diffusion in Bulk La$_{1-x}$Sr$_x$MnO$_{3-d}$ for Solid Oxide Fuel Cell Cathodes: Yueh-Lin Lee1; Yuhua Duan1; Dane Morgan2; Dan Sorescu1; Harry Abernathy1; Gregory Hachtel1; 1National Energy Technology Laboratory; 2University of Wisconsin-Madison

11:20 AM
Percolation Effects during Ionic Motion: Manfred Martin1; 1RWTH Aachen University

Joining of Advanced and Specialty Materials (JASM XIX) – Nano & Micro Joining

Program Organizers: Boian Alexandrov, The Ohio State University; Mathieu Brochu, McGill University; Anming Hu, University of Tennessee; Darren Barborak, A2Z WSI; Akio Hirose, Osaka University; Peng He, Harbin Institute of Technology; Zhiyong Gu, University of Massachusetts Lowell; Vikas Patel, ArcelorMittal USA

Monday AM

- **Room:** 326
- **Location:** DLL Convention Center

Session Chairs: Anming Hu, University of Tennessee Knoxville; Tomokazu Sano, Osaka University

Evolving Nanojoining: Akio Hirose1; 1Osaka University

Mechanism Study of Resistive Switching Memory Devices in Perspective of Nanojoining: Ming Xiao1; Kevin Musselman1; Walter Duley1; Norman Zhou1; 1University of Waterloo

Synthesis and Nano-joining of Multi-segmented Metallic Nanowires: Jirai Wang1; Fan Gao1; Zhiyang Li1; Zhiyong Gu1; 1University of Massachusetts Lowell

Materials for Nuclear Energy Applications – Irradiation Effects in Materials

Program Organizers: Kumar Sridharan, University of Wisconsin; Jake Amoroso, Savannah River National Laboratory; Aladar Csontos, Nuclear Regulatory Commission; Kevin Fox, Savannah River National Laboratory; Yutai Kato, Oak Ridge National Laboratory; Bill Lee, Imperial College of London; Josep Matyas, Pacific Northwest National Laboratory; Raul Rebak, GE Global Research; Cory Trivelpiece, Savannah River National Laboratory

Monday AM

- **Room:** 401
- **Location:** DLL Convention Center

Session Chairs: Kumar Sridharan, University of Wisconsin; Peter Hosemann, University of California, Berkeley

Low-temperature Sintering Joining Techniques through Reduction of Metallic Oxides: Akio Hirose1; 1Osaka University

Ultrafast Laser Sintering of Al Nanoparticles for Al-air Batteries: Anming Hu1; Yongchao Yu1; 1University of Tennessee

Improvement of Reliability of Metal-to-Metal Joints Bonded Using Redox Reactions of Ag-O-CuO-Mixed Paste: Takafumi Yao1; Tomoki Matsuda1; Tomokazu Sano1; Akio Hirose1; 1Osaka University

Development of High Dose Radiation Tolerant Materials for Nuclear Applications: Stuart Malloy2; Eda Aydogan1; B. Eftink1; Tarik Saleh1; Mychailo Teloczko1; Thak Sang Byun1; R. Webster1; G. Robert Odette1; Md Ershadul Alam1; Souptik Pal1; David Hoezler1; Los Alamos National Laboratory; Pacific Northwest National Laboratory; University of California, Santa Barbara; Oak Ridge National Laboratory

Proton Irradiation of Pure Nickel: Mitchell Mattucci1; Pooyan Changizian1; Mark Daymond1; Queen’s University

Promise and Limitations of Ion Irradiations for Understanding High Dose Radiation Effects in Materials: Steven Zinkle1; 1University of Tennessee

Development of High Dose Radiation Tolerant Materials for Nuclear Applications: Stuart Malloy2; Eda Aydogan1; B. Eftink1; Tarik Saleh1; Mychailo Teloczko1; Thak Sang Byun1; R. Webster1; G. Robert Odette1; Md Ershadul Alam1; Souptik Pal1; David Hoezler1; Los Alamos National Laboratory; Pacific Northwest National Laboratory; University of California, Santa Barbara; Oak Ridge National Laboratory

Proton Irradiation of Pure Nickel: Mitchell Mattucci1; Pooyan Changizian1; Mark Daymond1; Queen’s University
9:00 AM
Automation of Selected Area Channeling Pattern Acquisition and Analysis in a Field-emission Gun Scanning Electron Microscope: Joseph Tessmer1; Sarasang Singh2; Yoosuf Picard3; Marc DeGraef4; ’Carnegie Mellon University

10:20 AM Invited
Recent Developments Using Electron Channelling for Non-destructive Structural Characterization: Yoosuf Picard1; Joseph Tessmer2; Marc DeGraef3; ’Carnegie Mellon University

11:40 AM
Investigation of Magnetic Domain Walls in Co-Pt Ordered Alloys Using Lorentz TEM: Isha Kashyap1; Marc De Graef2; ’Carnegie Mellon University

Multifunctional Ceramic- and Metal-matrix Composites: Processing, Properties and Performance – Trends in the Development of CMCs and MMCs
Program Organizers: Martin Pech-Canul, Cinvestav IPN- Unidad Saltillo; Golam Nowaz, Wayne State University

Monday AM Room: 329
Location: DLL Convention Center

Session Chair: Martin Pech-Canul, Cinvestav Saltillo

8:00 AM
Fe-Cr-B Metal/Ceramic Composite Manufacturing with Metal Injection Molding and Its Microstructure, High Temperature Tensile and High Temperature Oxidation Properties: Yeon-Ab Joo1; Young-Kyun Kim1; Tae-Sik Yoon2; Kee-Ahn Lee1; ’Inha University; ’Bestmer

8:20 AM
Effect of Carbon Nanostructures on Aluminum Metal Matrix Composites Performance: Jacob Smith1; Aditya Kameshwara1; Frank Kraft2; Keerti Kappagantula3; ’Nanomaterials and Energetic Systems Lab (NESL); ’Center for Advanced Materials Processing (CAMP)

8:40 AM
Integrated Computational/Experimental Design of Self-healing CMCs: Ingo Markel1; Damian Cupid1; Martin Steinbrück1; Hans Seifert1; ’Karlsruhe Institute of Technology

9:00 AM
Comparisons between Liquid and Solid Phase Sintering of Ta-Cu Composite for Electric Contact Materials: Won Ju1; Sang-Hoon Choi2; Tae-Koo Kim3; Yong-Jin Park4; Jun-Sung Park5; Jae-Young Song3; Yong-Do Kim4; Ho-Sang Sohn5; So-Yeong Lee2; Kyoung-Tae Park7; ’Korea Institute of Industrial Technology, Hanyang University; ’Korea Institute of Industrial Technology; ’Shinseung Metal Industrial Co. Ltd.; ’Hanyang University; ’Kyungpook National University
Effect of Impact Angle on Ceramic Deposition Behavior in Composite Cold Spray: A Finite-Element Study; Rohan Chakrabarty; Jun Song; 1McGill University

Microstructure and Properties of Al-TiAl3 Composites Fabricated by Liquid-phase Reaction of Al with Accumulative Roll-bonded Ti; Qingsong Mei; Ye Ma; X. Y. Yang; 2Wuhan University

Boron Nitride Nanosheet Reinforced Copper Matrix Composite with Improved Corrosion Resistance; Shui Sia Su; 1Texas A&M University

Cavitation Erosion, Slurry Erosion and Solid Particle Erosion Performance of Metal Matrix Composite (MMC) Coatings Sprayed with Modern High Velocity Thermal Spray Processes; Ville Matikainen; Silvia Rubio Peregrina; Niko Ojala; Heli Koivuluoto; Jan Schubert; Sarka Houdkova; Petri Vuoristo; 1Tampere University of Technology; 2University of West Bohemia

New Insights to the Bonding Mechanisms in Metal-ceramic Composite Cold Spray; Rohan Chakrabarty; Jun Song; 1McGill University

Multifunctional Oxides – Properties and Applications of Multifunctional Metal Oxides

Program Organizers: Xiaqing Pan, University of California, Irvine; Chonglin Chen, University of Texas at San Antonio; Quanxi Jia, University at Buffalo – The State University of New York; Judith Driscoll, University of Cambridge

Monday AM Room: 312 Location: DLL Convention Center

Session Chairs: Shijie Wang, Institute of Materials Research and Engineering (IMRE), A*STAR (Agency for Science, Technology, and Research); Bae Ho Park, Konkuk University

8:00 AM Invited
The Development of Pseudocapacitance in Oxide Materials; Bruce Dunn; 1University of California, Los Angeles

8:40 AM
Magnetoelectricity of CoFe2O4 and Tetragonal Phase BiFeO3 Thin Films Prepared by Pulsed Laser Deposition; Min Gao; Ravindranath Viswan; Xiao Tang; Jiefang Li; Dwight Viehland; 1Virginia Tech

9:00 AM
Asymmetric Structure of 90°176 Domain Walls and Interaction with Defects in PbTiO3; Anand Chandrasekaran; 1University of Connecticut

9:20 AM Invited
Integration of High-k Metal Oxide Dielectrics with 2D MoS2 Materials; Shijie Wang; 1Institute of Materials Research and Engineering (IMRE), A*STAR (Agency for Science, Technology, and Research)

9:40 AM Invited
Van der Waals Oxide Heteroepitaxy for Transparent and Flexible Electronics; Ying-Hao Chu; 1National Chiao Tung University

10:00 AM Break

10:20 AM
E-field Induced Giant Dynamic Magnetization Change in Self-assembled BFO-CFO/PMN-PT Heterostructures; Xiao Tang; Ravindranath Viswan; Min Gao; Jiefang Li; Dwight Viehland; 1Virginia Tech

10:40 AM Invited
Electric-field Control of Tri-state Phase Transformation with Selective Dual-ion Switch; Pu Yu; 1Tsinghua University

11:20 AM
Domain Specific Photoreduction of Ag+ on the Surface of Ferroelastic 947-WO3; Ajay Pisat; Paul Salvador; Gregory Rohrer; 1Carnegie Mellon University

Next Generation Biomaterials – Innovations in Biomedical Materials/Nanostructured Biomaterials

Program Organizers: Roger Narayan, UNC/NCSU Joint Department of Biomedical Engineering; Jie Huang, University College London; Vipul Davé, Johnson & Johnson; Sanjiv Lakshman, Lynntech, Inc.; Marc in het Panhuis, University of Wollongong; Mohan Edirisinghe, University College London

Monday AM Room: 334 Location: DLL Convention Center

Session Chairs: Leif Hermansson, Doxa AB; Eng San Thian, National University of Singapore; Hideyuki Kanematsu, Suzuka National College of Technology; Mohan Edirisinghe, University College London

8:00 AM
Biokinetic Modeling of Nickel Released from Cardiovascular Devices; David Saylor; Vaishnavi Chandrasekar; Brent Craven; David Simon; Eric Sussman; Alan Hood; Ronald Brown; 1FDA-CDRH-OSR

8:20 AM Invited
Functional Materials and Structures by Pressurised Gyration Process; Santharavathanan Mahalingam; Mohan Edirisinghe; University College London

8:40 AM Invited
Bioceramic Dental Cements - An Application Area Extended; Leif Hermansson; 1Doxa AB

9:00 AM Invited
Nanoscale Structure and Properties of Biomaterials; Federico Rosel; 1INRS

9:20 AM Invited
Solving Musculoskeletal Issues Using Engineering Approaches; Eng San Thian; 1National University of Singapore

9:40 AM Invited
Material Selection to Manufacture Percutaneous Heart Valves: Where are the Priorities?; Robert Guidoin; Rachid Zegdir; Jifu Mao; Daniel How; Ze Zhang; 1Laval University; 2Hôpital Européen Georges Pompidou; 3Peninsula College of Medicine and Dentistry; 4Université Laval
Perspectives for Emerging Materials Professionals – Perspectives for Emerging Materials Professionals, Session I
Program Organizers: Dharma Maddala, Arconic Technology Center; Rachel Bethancourt, Failure Analysis Associates; Jesse Angle, Exponent, Failure Analysis Associates; K Shugart, UES, Inc

Monday AM
October 9, 2017
Room: 414
Location: DLL Convention Center

Perspectives for Emerging Materials Professionals – Perspectives for Emerging Materials Professionals, Session I

Perspectives for Emerging Materials Professionals – Perspectives for Emerging Materials Professionals, Session I
Program Organizers: Dharma Maddala, Arconic Technology Center; Rachel Bethancourt, Exponent, Failure Analysis Associates; K Shugart, UES, Inc

Monday AM
October 9, 2017
Room: 414
Location: DLL Convention Center

Session Chairs: Dharma Maddala, Arconic Technology Center; Rachel Bethancourt, Failure Analysis Associates; K Shugart, UES, Inc

8:00 AM
Finding a Materials Engineering Position within the US Federal Government: Brian Bayette1; 1NAVAIR FRC East, Cherry Point, NC

8:20 AM Invited
Experiences and Thoughts on Professional Development: Kevin Fox2; 1Savannah River National Laboratory

8:40 AM Invited
Career Planning...Professionalism/Networking: Who is the Decision Maker?: Frederick Schmidt3; 1ASM International

9:00 AM
New Challenges, New Connections and New Solutions: John Stevens1; 1Baker Hughes

9:20 AM Invited
Careers in Technical Consulting: David Schoen1; 1Exponent, Inc.

9:40 AM Invited
Environmental Sustainability in the Material World: John Wolodko1; 1University of Alberta

10:00 AM Break

10:20 AM Invited
International Experience: Preparing American Engineers with Global Perspective: Mufit Akinc1; 1Iowa State University

10:40 AM
My International Metal Career: Production, Equipment and Services – From Entrepreneur to Corporate Structures: Thomas Wingens1; 1WINGENS - International Industry Consultancy

11:00 AM

Phase Stability, Diffusion Kinetics, and Their Applications (PSDK-XII) – Session I: Diffusion, Kinetics and Applications
Program Organizers: Wei Xiong, University of Pittsburgh; Raymundo Arroyave, Texas A & M University; Ji-Cheng Zhao, The Ohio State University; Arthur Pelton, Ecole Polytechnique

Monday AM
Room: 413
Location: DLL Convention Center

Session Chairs: Shuanglin Chen, CompuTherm LLC; William Yi Wang, Northwestern Polytechnic University

8:00 AM
Primary Crystallization of Al Nanocrystals in a Al88Y7Fe5 Metallic Glass: Thermodynamic and Kinetic Analyses: Ye Shen1; 1University of Wisconsin-Madison; Seth Imhoff1; 1Los Alamos National Laboratory

8:20 AM
Diffusivity Analysis with Steep Concentration Gradient: Zhangqi Chen1; 1The Ohio State University

8:40 AM
Dissolution of Secondary Phases in Al Alloys Using DICTRA Simulations: Kyle Fitzpatrick-Schmidt1; 1University of Central Florida; Abhishek Mehta1; 1The University of Newcastle

9:00 AM
Experimental Demonstration of Simultaneous Measurement of Isotope-free Tracer and Interdiffusion Coefficients: Esin Schulte1; 1Chesapeake Research Laboratory; Abhishek Mehta1; 1The University of Newcastle

9:20 AM
First-principles Calculations of Factors Contributing to Non-dilute Impurity Diffusion Coefficients in Metals: Chelsey Hargather1; 1Harrison Lee1; 1John O’Connell1; 1ShunLiang Chang1; 1Xi-Kui Liu1; 1New Mexico Institute of Mining and Technology; 2John Wolodko1; 1University of Alberta

9:40 AM
My International Metal Career: Production, Equipment and Services – From Entrepreneur to Corporate Structures: Thomas Wingens1; 1WINGENS - International Industry Consultancy

11:00 AM
9:40 AM Invited

Improvement of a Mobility Database for the γ Phase in the Co-rich Co-Al-W-Ni System: Kil-Won Moon1; Carolyn Campbell1; Maureen Williams1; Greta Lindwall1; Peisheng Wang2; Ursula Kattner1; ‘National Institute of Standards and Technology

10:00 AM Break

10:20 AM Multicomponent Diffusion Mobility Descriptions for Co Based Superalloys: Greta Lindwall1; Kil-Won Moon1; Eric Lass1; Carolyn Campbell1; ‘National Institute of Standards and Technology

10:40 AM Simulations of Precipitation Kinetics: Elastic Stress Effect and Non-spherical Particles: Kaisheng Wu1; Qing Chen1; Johan Jeppsson1; Paul Mason1; ‘Thermo-Cale Software Inc; ‘Thermo-Cale Software AB

11:00 AM Diffusion Kerf Couples and Thermotransport Experiments for Synthesis and Screening of Non-equimolar High Entropy Alloys: Nagraj Kulkarni1; Graeme Murch1; Irina Belova1; ‘The University of Newcastle

11:20 AM Liquid-solid Diffusion in Liquid Aluminum/Stainless Steel: Farzaneh Farhadi1; Richard Sisson1; ‘Center for Heat Treating Excellence (CHTE), Worcester Polytechnic Institute (WPI)

11:40 AM Grain Growth and Precipitate Coarsening during Ultrasonic Welding of Nanocrystalline Alloys: Donovan Leonard1; Matthew French2; Austin Ward2; Zachary Cordero2; ‘Oak Ridge National Laboratory; ‘Rice University

11:00 AM Break

10:20 AM Variable Frequency Microwave (VFM) Processing of Battery Electrodes: Ifshikhar Ahmad1; Pa Zhang1; Peter Aurora1; ‘Lambda Technologies; ‘Navitas Advanced Solutions Group

10:40 AM Average Permittivity and Microwave Heating Characteristics of Electric Conductor and Insulator (Dielectrics) Mixtures: Noboru Yoshikawa1; ‘Tohoku University

11:00 AM Evolution of Distinct Phase Composition in TiO2 Thin Films Grown under Electromagnetic Excitation: Nathan Nakamura1; Maxwell Terban1; Simon Billinge2; B. Reeja Jayan1; ‘Carnegie Mellon University; ‘Columbia University

11:20 AM Investigation of Microwave Solid State Synthesis of Highly Ordered Structures: Christina Wildfire1; Edward Sabolsky2; Michael Spencer1; Dushyant Shekhar1; ‘NETL; ‘West Virginia University

11:40 AM Effect of Zn Substitution on Bi1.6Pb0.4Sr2Ca2Cu3−xZnxO10 Thin Films Prepared by Pulsed Laser Deposition: Ghazala Hermiz1; Mahdi Suhail1; Suzan Shakouri1; ‘Baghdad University-College of Science; ‘Department of Physics, College of Education University of Mustansiriyah
Responsive Functional Nanomaterials – Session I
Program Organizers: Ziqi Sun, Queensland University of Technology; Jiahua Zhu, The University of Akron; Wenxian Li, Shanghai University; Dawei Wang, University of New South Wales; Wenping Sun, University of Wollongong; Liangzhi Kou, Queensland University of Technology; Wenzhuo Wu, Purdue University

Monday AM Room: 320
October 9, 2017 Location: DLL Convention Center

Session Chairs: Ziqi Sun, Queensland University of Technology; Yue Li, Institute of Solid State Physics, CAS

8:00 AM Keynote Design and Property Studies of Organic-inorganic Hybrid Semiconductor Materials for Solar Cell Applications: Clemens Burda; Case Western Reserve University

8:40 AM Keynote Nanocarbons in Novel Solar Cells: Joe Shapter; Munkhbayar Batmunkh; Mahmaz Jazi; LePing Yu; Cameron Shearer; Flinders University

9:20 AM Invited Direct Photocatalysts of Metal Nanoparticle: Not Only Surface Plasmon: Sarina Sarina; Queensland University of Technology

9:40 AM Keynote One-dimensional Nanomaterials for Energy Storage: Liqiang Mai; Wuhan University of Technology

10:20 AM Break

10:40 AM Invited Edible Electronics: Bioinspired Materials and Structures for Ingestible Batteries: Christopher Bettinger; Carnegie Mellon University

11:00 AM Invited Nanoarchitectural Design of Functional Materials for Electrochemical Energy Storage: Xiaolei Wang; Concordia University

11:20 AM Invited Carbon-based Materials for Energy Storage and Conversion: Ji Liang; Hui-Ming Cheng; Shizhang Qiao; Institute for Superconducting & Electronic Materials; Institute of Metal Research; Institute of Metal Research; School of Chemical Engineering

Rare Earth Metals, Compounds, and Alloys: Synthesis, Processing, Emerging Applications, Recent Advances, Future Challenges – Emerging/Novel REM/REE Applications I
Program Organizers: Yellapu Murty, MC Technologies LLC; Eric Klier, U.S. Army Research Laboratory; Jack Lifton, Jack Lifton LLC

Monday AM Room: 325
October 9, 2017 Location: DLL Convention Center

Session Chair: Yellapu Murty, MC Technologies

8:00 AM Introductory Comments - Yellapu V. Murty

8:05 AM Keynote Historical Perspectives on Rare Earths, Critical Materials, and the Legacy of Karl Gschneidner: Alexander King; The Ames Laboratory

8:45 AM Invited Opportunities and Challenges for the Rare Earth Magnet Industry: Jinfang Liu; Electron Energy Corporation

9:15 AM Invited On The Utility of Rare Earth Elements as Alloying Additions to Magnesium Alloys: Current Status and Considerations: Nick Birbilis; Monash University

9:45 AM Invited Rare Earth Metals (REMs) Additions for Precipitation Strengthening High-performance Al and AlMg Alloys: Frank Palm; Dieter Isheim; Airbus Defence and Space GmbH; Northwestern University

10:15 AM Break

10:35 AM Invited Magnetocalorics: Rare Earths are Paving the Way to Efficient Cooling: Vitaly Pecharsky; Iowa State University

11:05 AM Invited Advances in Scalable Nano-manufacturing and Assembly Techniques - Role of REEs: Josh Collins; Intelligent Material Solutions, Inc.

11:35 AM Invited Cost-effective Separation of Rare-earth Elements Using the RapidSX(TM) Process: Gareth Hutch; Darcy Tait; Patrick Wong; Innovation Metals Corp; Process Research Ortech Inc.
Shaping & Forming of Advanced High Strength Steels
II – Shaping & Forming of Advanced High Strength Steels: Modeling
Program Organizers: Kester Clarke, Colorado School of Mines; Tyson Brown, General Motors Corporation; Myoung-Gyu Lee, Korea University; Amy Clarke, Colorado School of Mines; Kip Findley, Colorado School of Mines; Mark Stoudt, National Institute of Standards and Technology
Monday AM
October 9, 2017
Room: 404
Location: DLL Convention Center
Session Chair: Kester Clarke, Colorado School of Mines

8:00 AM Keynote
Robust CAE Modeling of Retained Austenite-containing GEN3 Steels: Louis Hector Jr.; T.W. Brown; Anil Sachdev; General Motors

8:40 AM Invited
Computational Design of Steel Chemistries: Matthias Militzer; The University of British Columbia

9:20 AM Invited
Modeling Yield Surface Evolution for Steels after Uniaxial Tension Prestrain: Frederic Barlat; Shakil Bin Zaman; Kim Jin-Hwan; Pohang University of Science and Technology; University of Twente

9:40 AM Invited
Joining of Double Sheet Metal Blanks Using Deep Drawing and Springback Behavior: Dennis Hofmann; Mathias Liewald; University of Stuttgart

10:00 AM Break

10:20 AM
Modeling Springback with a Multi-surface Approach for Nonlinear Unloading-reloading Behavior of Sheet Metal: Jeong-Yeon Lee; Gihyun Bae; Frederic Barlat; Myoung-Gyu Lee; Korea University; POSCO; POSTECH

11:00 AM
A Design of Experiments Approach for Determining Sensitivities of Various Forming Limit Analyses Techniques to Changes in Experimental Parameters: Dilip Banerjee; Mark Iadicola; National Institute of Standards and Technology

Surface Properties of Biomaterials – Surface Properties of Biomaterials: Porous Surfaces, Bioactivity and Biocompatibility
Program Organizers: Jason Langhorn, DePuy Synthes Joint Reconstruction; Susmita Bose, Washington State University; Amit Bandyopadhyay, Washington State University; Venu Varanasi, Texas A & M Health Science Center
Monday AM
October 9, 2017
Room: 335
Location: DLL Convention Center
Session Chair: Jason Langhorn, DePuy Synthes

8:00 AM Invited
Characterization of Current and Evolving Porous Surface Structures of Titanium Implants and Medical Devices via Scanning Electron Microscope Imaging and White Light Interferometry: Julius Bonini; Dayna Kinsey; Kevin Shoemaker; Krista Biggs; Laciedeon M + P

8:40 AM Osteoblast Functions of Bioactive 3D Printed Porous Ti-6Al-4V Scaffolds: Krishna Chaitanya Nune; RDK Misra; SJ Li; YI Hao; W Zhang; University of Texas at El Paso

9:00 AM
Biofilm Formation on Titanium Alloy Surfaces in a Laboratory Biofilm Reactor: Hideyuki Kanematsu; Shun Kanesaki; Hikonaru Kudara; Akiko Ogawa; Takeshi Kourogi; Daisuke Kuroda; Nobumitsu Hira; National Institute of Technology, Suzuka College

9:20 AM
Electrothermally Polarized TiO2 Nanotubes for Early Stage Osseointegration: Anish Shivaram; Indranath Mitra; Susmita Bose; Amit Bandyopadhyay; Washington State University

9:40 AM
Impact of Wettability of Copper-based Surfaces on Its Antimicrobial Efficacy: Monika Walikowska; Piotr Osuch; Beata Smyrak; Andrzej Mamala; Tadeusz Krych; Anna Rozanska; Dorota Romaniszyn; Agnieszka Chmielarczyk; Malgorzata Bulanda; AGH University of Science and Technology; Jagiellonian University Medical College

10:00 AM Break

10:20 AM
Curcumin Loaded 3D Printed Calcium Phosphate Bone Tissue Engineering Scaffolds with Enhanced Osteogenesis and Angiogenesis: Naboneeta Sarkar; Dishary Banerjee; Susmita Bose; Washington State University

10:40 AM
Curonometrically Smooth Surfaces for Studying Cell-surface Interactions: Paige Stock; Terry Lowe; Casey Davis; Rebecca Reiss; Andras Korenyi-Both; Colorado School of Mines; New Mexico Institute of Mining & Technology

11:00 AM
Manufacture Cell Actuator Using Ultrasonic Nanocrystal Surface Modification: Yuan Liang; Yalin Dong; Chang Ye; University of Akron
11:20 AM
In Vitro Hydroxyapatite Precipitation on Ti-6Al-4V and Ti-6Al-7Nb Alloys: Effect of Alkaline & Hydrothermal Treatments: Mahmoud Abdel-Salam1; Waleed Khalifa1; Shimaaw El-Hadaf1; ‘Cairo University; ’Central Metallurgical Research and Development Institute

11:40 AM
X-ray Activated Photocatalytic TiO2 Coatings for Self-disinfection: Keng Ho Cheung1; Praned Koshy1; Morejca Pabrubwe1; Brendan Lee1; Megan Lord1; Charles Sorrell1; ’UNSW Sydney; ’Royal Perth Hospital

Surface Protection for Enhanced Materials Performance: Science, Technology, and Application—Thermal and Environmental Barrier Coatings
Program Organizers: Kang Lee, NASA Glenn Research Center; Yutaka Kagawa, University of Tokyo; Dongming Zhu, NASA Glenn Research Center; Rodney Trice, Purdue University; Daniel Mumm, University of California, Irvine; Mitch Dorfman, Oerlikon Metco (US); Christian Moreau, Concordia University; Emmanuel Boakye, UES Inc.

Monday AM
Room: 333
Location: DLL Convention Center

Session Chairs: Kang Lee, NASA Glenn Research Center; Daniel Mumm, University of California, Irvine

8:00 AM Invited
Suspension Plasma Spraying of Thermal Barrier Coatings: Robert Vaßen1; Dapeng Zhou1; ’Forschungszentrum Jülich GmbH

8:40 AM
Interactions between ZrO2-Y2O3-Ta2O5 Thermal Barrier Oxides and Silicate Melts: Najeh Abdul-Jabbar1; Abel Fernandez1; Richard Jackson1; Carlos Levi1; ’University of California, Santa Barbara

9:00 AM
Determination of Crystallization Kinetic Parameters of CMAS with T/EBC Materials: James Stokes1; Bryan Harder1; Valerie Wiesner1; Douglas Wolfe1; ’Applied Research Laboratory, The Pennsylvania State University; ’NASA Glenn Research Center

9:20 AM
High Temperature Environmental Barrier Coatings Deposited Via Plasma Spray–physical Vapor Deposition: Bryan Harder1; Kang Lee1; Dongming Zhu1; Valerie Wiesner1; ’NASA Glenn Research Center

9:40 AM
CMAS-induced Failure of Environmental Barrier Coatings: Experiments and Modelling: Will Summers1; David Poerschke1; Matt Begley1; Carlos Levi1; Frank Zok1; ’University of California, Santa Barbara

10:00 AM Break

10:20 AM
Experimental Measurements of Thermal Barrier Coating Interfacial Fracture Toughness as a Function of Mode-mix: Simon Lockyer-Bratton1; Jaafar El-Awady1; Kevin Hemker1; ’Exponent; ’Johns Hopkins University

10:40 AM
Characteristics of Thermal Barrier Coatings in ZrO2-La2O3-Gd2O3 Systems Fabricated by Suspension Plasma Spray: Hyung-Tae Kim1; Soyal Lee1; Yoon-Suk Oh1; Sung-Min Lee1; Seongwon Kim1; Byung-Koo Kang2; ’Korea Institute of Ceramic Engineering and Technology; ’National Institute of Materials Science

11:00 AM
Oxidation Resistance of Diffusion Coatings of Advanced TBCs Elaborated from Low Al-activity slurries: Benjamin Greigore1; Gilles Bonnet2; Fernando Pedraza3; ’University of La Rochelle

11:20 AM
On the Thermal Insulation Performances of Advanced TBCs based on Al/Cr and Al/Al2O3 slurries: Germain Boissonnet1; John Nicholls2; Gilles Bonnet1; Fernando Pedraza3; ’Univérsité de La Rochelle; ’Cranfield University

11:40 AM
Sintering Behaviour of Columnar Nanostructured Thermal Barrier Coatings Produced by Axial Suspension Plasma Spraying: Ashish Ganvir1; Nicolaie Markoescu1; Mohit Gupta1; Robert Vassen1; Shrikant Joshi1; ’University West; ’Forschungszentrum Julich

The 9th International Symposium on Green and Sustainable Technologies for Materials Manufacturing and Processing – Novel Green Design of Ceramics/I Novel Green Technologies for Energy and High Temperature Applications
Program Organizers: Surojit Gupta, University of North Dakota; Jun-ichi Talami, Yokohama National University; Tatsuki Ohji, National Institute of Advanced Industrial Science and Technology (AIST); Mrityunjay Singh, Ohio AeroSpace Institute, NASA Glenn Research Center; Marsha Bischel, Armstrong World Industries, Inc., PA; Makio Naito, Osaka University, Japan; Hisayuki Suematsu, Nagaoka University of Technology, Japan; Yiquan Wu, Alfred University, NY

Monday AM
Room: 317
Location: DLL Convention Center

Session Chairs: Sankha Banerjee, Lyles College of Engineering; Yu Zhong, Florida International University; Daniel Kopp, Rutgers University; Surojit Gupta, University of North Dakota

8:00 AM Invited
Reducing CO2 Emissions by 20% With Ceramics: Richard Riman1; Daniel Kopp1; Ryan Anderson1; Kevin Blint2; ’Rutgers University; ’RRTC, Inc.

8:40 AM Invited
Review of Recent Advances in Green Concrete: Allen Aphlett1; ’Oklahoma State University

9:20 AM
Glass-ceramics from Sinter-crystallization of Engineered Waste Glass Mixtures: Patricia Rabelo Monich1; Eurico Bernardo1; ’University of Padova

9:40 AM Invited
Fabrication and Characterization of Flexible Multiphasic Electro-active Thin Films Towards Development of Energy Harvesting Devices: Sankha Banerjee1; ’California State University, Fresno

10:20 AM Break

10:40 AM Invited
The Impact of CO2 and SO2 Gas Impurities to the Formation of Secondary Phases on LSCF Cathode: Shadi Darvish1; Yu Zhong2; ’Florida International University
11:00 AM Invited
High Temperature Oxidation Behavior of Kanthal A1 and Kanthal APM:
Sedigheh Rashidi1; Amit Pandey2; Rajeev Kumar Gupta3; 1The University of Akron; 2Rolls Royce LG Fuel Cell Systems Inc

11:20 AM Invited
Cure Monitoring for Production Cycle Optimization of Composite Wind
Turbine Blades: Matthew Cavalli1; 1University of North Dakota

Theory, Manufacturing and Applications of Ceramic/Metal (CerMet) Nano-laminates – Ceramic/Metal (CerMet) Nano-laminates I

Program Organizers: Iman Salehinia, Northern Illinois University; Jian Wang, University of Nebraska-Lincoln; Ioannis Mastorakos, Clarkson University; Siddhartha Pathak, University of Nevada, Reno; Bilal Mansoor, Texas A&M University at Qatar; Georges Ayoub, American University of Beirut; Shuai Shao, Louisiana State University

Monday AM Room: 319
October 9, 2017 Location: DLL Convention Center

Session Chairs: Shuai Shao, Louisiana State University; Ioannis Mastorakos, Clarkson University

8:00 AM Invited
Strain Hardening and Plasticity in Metal-hard Phase Nanolaminates: Amit Misra1; Jian Wang2; 1University of Michigan

8:30 AM Invited
Designing High Fracture Toughness Nanocomposites via In Situ TEM Approach: Nan Li1; Satyesh Yadav2; Xiang-Yang Liu3; Jian Wang4; Amit Misra5; Nathan Mara1; 1Los Alamos National Laboratory; 2University of Nebraska-Lincoln; 3University of Michigan

9:00 AM Invited
Corrosion Resistance Properties of Advanced Interface Material Based on Ti-TiN Nano-layers: Bilal Mansoor1; Chaudhry Usman2; 1Texas A&M University at Qatar

9:20 AM Invited
Atomistic and Meso-scale Modeling on Deformation and Fracture Behavior of TiN-Al Nanolaminates: Ridvan Sakidjo1; Paul Simanjuntak2; Caizhi Zhou3; 1Missouri State University; 2Missouri University of Science and Technology

9:40 AM Invited
Atomistic Simulation of Scratch Behavior of Ceramic/Metal (CerMet) Nanolaminates: Iman Salehinia1; Adnan Rasheed2; 1Northern Illinois University

10:00 AM Break

10:20 AM Invited
Deformation Behavior of AI/SiC Nanolaminates: Experiments and Simulation: Nikhilesh Chawla1; 1Arizona State University

10:50 AM Invited
Deformation Mechanisms in Ti/TiN Multilayer under Compressive Loading and Nanoindentation: Wei Yang1; Georges Ayoub2; Bilal Mansoor3; Iman Salehinia4; 1Texas A&M University at Qatar; 2American University of Beirut; 3Northern Illinois University

11:10 AM Invited
Continuum Modeling of Dislocation Structures at Semicoherent Interfaces: Niaz Abdolrahim1; Michael Demkowicz2; 1University of Rochester; 2Texas A&M University

11:40 AM Invited
Deformation behavior of Ceramic/Metallic Multilayer Nano-composites: Mohsen Damad1; Shuai Shao2; Iman Salehinia3; Ioannis Mastorakos4; Georges Ayoub5; Hussein Zbib6; 1Washington State University; 2Louisiana State University; 3Northern Illinois University; 4Clarkson University; 5University of Michigan Dearborn

Program Organizers: Sylvia Johnson, NASA Ames Research Center; Jeff DeMange, University of Toledo; Thomas Reimer, German Aerospace Center; Wolfgang Fischer, Airbus Safran Launchers GmbH; Erica Corral, The University of Arizona

Monday AM Room: 327
October 9, 2017 Location: DLL Convention Center

Session Chairs: Jeff DeMange, University of Toledo; Thomas Reimer, DLR - Institute of Structures and Design; Sylvia Johnson, NASA Ames (Ret.); Wolfgang Fischer, Airbus Defence & Space

8:00 AM Invited
Characterization Capabilities of Ultrasonic Interferometry for Estimating Surface Temperature and Heat Flux of Materials under Severe Heating Loads: Dominik Bottländer1; Jay Frankel1; 1University of Tennessee

8:20 AM Invited
Nonlinear Inverse Heat Conduction Problem of Surface Temperature and Heat Flux Estimation for TPS Materials by Calibration Integral Equation Method: Hongchu Chen1; Jay Frankel1; 1University of Tennessee at Knoxville, Department of Mechanical, Aerospace and Biomedical Engineering

8:40 AM Invited
Development of a New Small Sample High Temperature and Heat Flux Test Facility for Evaluating and Characterizing Material Responses through an Inverse Analysis: Jay Frankel1; Hongchu Chen2; Dominik Bottladder3; 1University of Tennessee

9:00 AM Invited
Review of High Temperature Thermal Conductivity Measurement Methods: Justin Griffin1; Ryan Nelson2; Stephen Steiner3; 1Aerogel Technologies

9:40 AM Invited
Influence of Extreme Thermal Cycling on Multi-layer Insulators Used in Space: Megan Cordill1; 1Erich Schmid Institute of Materials Science

10:00 AM Break

10:20 AM Invited
CMC Sandwich Development and Testing for TPS Application: Thomas Reimer1; Bernhard Heidenreich2; Dietmar Koch1; 1DLR
10:40 AM
Development of the European Conformal Ablative-charring Material and Performances Assessment: Grégory Pinaud1; M. Desbordes1; J. Bertrand1; J.M. Bouilly1; G. Vekinis2; Jorge Barcena2; B. Esser4; 1Airbus Safran Launchers; 2Institute of Nanoscience and Nanotechnology, NCSR; 3Tecnalia Research & Innovation; 4Deutsches Zentrum für Luft- und Raumfahrt e.V. German Aerospace Center (DLR)

11:00 AM
The Potential of Aerogels as Insulators for Thermal Protection Systems of Reusable Launch Vehicles: Thomas Reimer1; Barbara Milow1; Christian Zuber1; Anna Kolbe1; 1DLR

11:20 AM
Syntactic Composites for Thermal Protection Systems: Andrew Sherman1; 1Powdermet Inc

Program Organizers: Ali Yousefiani, Boeing Research and Technology; Troy Topping, California State University, Sacramento; Robert Dillon, Jet Propulsion Laboratory

Monday AM
Room: 307
October 9, 2017
Location: DLL Convention Center

Session Chair: Troy Topping, California State University, Sacramento

8:00 AM
Novel Castable High Strength Al-Mg-Za Alloys: Yangyang Fan1; Diran Apelian1; 1Worcester Polytechnic Institute

8:20 AM
A New Strategy to Achieve High Strength at Elevated Temperatures in Aluminum Alloys: Nhon Vo1; Evander Ramos1; Davaadog Bayansan1; Amirreza Sanaty-Zadeh1; David Dunand2; David Seidman2; 1NanoAl LLC; 2Northwestern University

8:40 AM
Improved Mechanical Properties of Si3N4 Metal Matrix Nanocomposites Fabricated by Microwave Sintering Followed by Hot Extrusion: Abdal Shakeroot1; Penchal Reddy Mariti1; Fareeza Ubaid1; Ana Mohamed1; M Gupta1; 1Qatar University, Doha, Qatar; 2Suez University; 3National University of Singapore

9:00 AM
Large Strain Extrusion Machining Production of Strong Aluminum Alloy Electrical Conductors: Mohammed Issaah1; Xiaolong Bai1; Srinivasan Chandrasekar1; Kevin Trumble1; 1Purdue University

9:20 AM
Fracture Characteristics of Discontinuously Reinforced Aluminum Composites: Conrad Park1; Erica Bindas1; Corey Meyer1; Don Hashiguchi2; Kyung Chung2; John Lewandowski2; Matthew Willard3; 1Case Western Reserve University; 2Materion Brush Incorporated

9:40 AM
Features of the Microstructure of Rapidly Cooled Alloys of the Al-Mg-Zr-X System: Dmitrii Budelovskii1; Vadim Lipin1; Sergey Petrovich1; Sergey Ganin1; 1Saint Petersburg Polytechnic University

10:00 AM Break

10:20 AM Invited
Ultrafine Grained Al Alloy Matrix Composites: A Review on the Effect of Microconstituents on Mechanical Performance: Kaka Ma1; 1Colorado State University

11:00 AM
Effect of Sintering Temperature on the Hardness and Corrosion Behavior of a Nanocrystalline Al-Ni Alloy: Javier Esquivel1; Matthew Wachowiak1; Sean O’Brien1; Rajeev Gupta1; 1The University of Akron

11:20 AM
Mechanical Properties of Aluminum Silicon Carbide Particulate Metal Matrix Composites: Erica Bindas1; Corey Meyer1; Conrad Park1; John Lewandowski1; Matthew Willard1; Don Hashiguchi1; Kyung Chung1; 1Case Western Reserve University; 2Materion Brush

11:40 AM
High Strength Mg-Al Alloys Produced by High-energy Ball Milling: Mohammad Umar Farooq Khan1; Farhan Mirza1; Rogelio De Las Casas Aranda1; Rajeev Gupta1; 1The University of Akron

ACerS Richard M. Fulrath Award Session
Program Organizer: Sheikh Ali Akbar, The Ohio State University

Monday PM
Room: 315
October 9, 2017
Location: DLL Convention Center

2:00 PM Invited
Development of Ion-conducting Glasses for Solid-state Batteries: Akitoshi Hayashi1; 1Osaka Prefecture University

2:40 PM Invited
Synthesis of High Crystalline and Fine BaTiO3 Powder for Thinner Ni-MLCCs Via Solid State Root: Chie Kawamura1; 1Taiyo Yuden Co., Ltd.

3:00 PM Invited
New Functionality from Reconfigurable Ferroelastic Domains in Ferroelectric Films: Jon Ihlefeld1; 1Sandia National Laboratories

3:20 PM Invited
Development of Mass Production of Ni-nanopowder for the Internal Electrode of MLCC by DC Thermal Plasma Process: Hideki Tanaka1; 1Shoei Chemical, Inc.

3:40 PM Invited
Do Fields Matter? -- Microstructure Evolution in Ceramic Oxides: Klaus van Benthem1; 1University of California, Davis

54
Actinide and Lanthanide Materials II – Metallic Fuels

Program Organizers: Clarissa Yablinsky, Los Alamos National Laboratory; Adam Farrow, Los Alamos National Laboratory; Jason Jeffries, Lawrence Livermore National Laboratory; Kester Clarke, Los Alamos National Laboratory; Clinique L. Brundidge, Naval Nuclear Laboratory

Monday PM Room: 405 Location: DLL Convention Center

Session Chairs: Clarissa Yablinsky, Los Alamos National Laboratory; Clinique Brundidge, Bechtel Marine Propulsion Corp.

2:00 PM Invited
Coupled Experimental and Simulation Approach to Study Transmutation Fuels: Assel Aitkaliyeva1, a University of Florida

2:40 PM
Mitigating Fuel-cladding Chemical Interactions Using Tellurium and Antimony as Dopants in Metallic Fuel Systems: Nathan Jerred1, Rabi Khanal1, Indrajit Chari1, Samrat Choudhury1, Michael Benson1, Robert Mariani1, University of Idaho; Idaho National Laboratory

3:00 PM
Electronic Structure of Metal Cerium under High Pressure: Lu Haiyan1, Li Huang1, China Academy of Engineering Physics Physics and Chemistry Laboratory

3:20 PM
The Recrystallization Behavior of Deformed Uranium: Cody Miller1, Rodney McCabe1, Daniel Coughlin1, John Carpenter1, David Alexander1, Los Alamos National Laboratory

3:40 PM
Unraveling the Age Hardening Response in U-Nb Alloys: Robert Hackenberg1, Geralyn Hemphill1, Robert Forsyth1, Pallas Papin1, Ann Kelly1, Tim Tucker1, Robert Aikin, Jr.1, David Alexander1, Mike Lopez1, Amy Clarke1, Logan Ward1, Los Alamos National Laboratory; Colorado School of Mines; University of Chicago

4:00 PM
An Examination of Differences between Single Crystal and Polycrystalline UBe12, Heather Vols1, Sven Vogel1, Alice Smith1, James Smith1, Zachary Fisk1, Bjorn Winkler1, Matthew Dirmeyer1, Elizabeth Judge1, Los Alamos National Laboratory; University of California - Irvine; Goethe Universität

Additive Manufacturing of Composites and Complex Materials II – Techniques/Applications

Program Organizers: Dirk Lehnhus, ISIS Sensorial Materials Scientific Centre; Jonathan Spowart, Air Force Research Laboratory; Nikhil Gupta, New York University

Monday PM Room: 304 Location: DLL Convention Center

Session Chairs: Tushar Borkar, Cleveland State University; Linmin Wu, Indiana University-Purdue University Indianapolis

2:00 PM Invited
A Novel Concept of Micro-extrusion through High Aspect Ratio Nozzles for High Speed Additive Manufacturing: Leon Shaw1, Ling Li1, S. M. Imran Ayub1, Illinois Institute of Technology

2:20 PM
Additive Manufacturing for Innovative Electric Motor Designs: Michael Halbig1, NASA Glenn Research Center

3:00 PM
Additively Manufactured Pseudo A-sandwich Structures: Gerard Simon1, Thomas Ekiert1, Air Force Research Laboratory; Riverside Research Institute

3:20 PM
Experimental and Computational Study of Novel Additively Manufactured Foams: Diab Abueidda1, Iwona Jasiuk1, Rashid Abu Al-Rub1, University of Illinois at Urbana-Champaign; Masdar Institute of Science and Technology

3:40 PM
Interfacial Bonding Quality Prediction and Improvement for Fusion Deposition Modeling by Layerwise Additive Manufacturing Analytical Block Technique: Jinquan Cheng1, CS3DM

4:00 PM
Selective Reinforcement of Aerospace Structures Using Ultrasonic Additive Manufacturing: Adam Hehr1, Justin Wenning1, Mark Norfolk1, John Sheridan1, Marcia Domack1, Fabrisonic LLC; Sheridan Solutions LLC; NASA Langley Research Center

4:20 PM
Structural Integration of Sensors / Actuators by Laser Beam Melting for Tailored Smart Components: Thomas Toeppe1, Holger Lausch1, Michael Arnold1, Michael Brand1, Eric Hense1, Fraunhofer Institute for Machine Tools and Forming Technology IWU; Fraunhofer Institute for Ceramic Technologies and Systems IKTS

4:40 PM Invited
Thermomechanical Characterization of 3D Printed Epoxy Nanocomposites: Brett Compton1, University of Tennessee
Additive Manufacturing of Metals: Microstructure and Material Properties – Microstructure and Mechanical Properties of Ti Alloys

Program Organizers: Andrzej Wojcieszynski, ATI Powder Metals; Ulf Ackelid, Freemelt AB; Ola Harrysson, North Carolina State University; Sudarsanam Babu, The University of Tennessee, Knoxville

Monday PM Room: 301 Location: DLL Convention Center

Session Chair: Anthony Rollett, Carnegie Mellon University

2:00 PM Invited
Linking Microstructure, Impact Properties and Deformation Mechanisms of Laser Powder Bed Fusion Ti-6Al-4V Parts: Joon Phil Choi1; Flavio Silva1; Mathieu Brochu1; 1McGill University

2:40 PM Microstructural Evolution and Mechanical Properties of Optomec LENS Fabricated Ti6Al4V (ELI) Alloy Components: Nana Arthur1; Hein Moller1; Annelize Botes1; Sisa Pityana1; ‘Council for Scientific and Industrial Research (CSIR)

3:00 PM Microstructural Properties of Heat Treated LENS In-situ Additively Manufactured Titanium Aluminide: Monnamme Tlotleng1; Thabo Lengopeng1; Sisa Pityana1; Lerato Tshabalala1; Nombi Mathé1; Bathulele Masina1; ‘Council of Scientific and Industrial Research; University of Johannesburg; ‘Council of Scientific and Industrial Research; Tshwane University of Technology

3:20 PM Laser Metal Deposition of Ti-6Al-4V Structures: Analysis of the Build Height Dependent Microstructure and Mechanical Properties: Markus Hellmann1; Mauritz Moeller1; Claus Emmelmann1; Imela Burkhardt1; Stefan Riekehr1; Volker Ventzek1; Nikolai Kashaev1; Josephin Enz1; ‘Institute of Laser and System Technologies (iLAS), Hamburg University of Technology (TUHH); ‘LZN Laser Zentrum Nord GmbH; ‘Heinrich-Hertz-Institut fuer Nachrichtentechnik; ‘Institute of Materials Research, Materials Mechanics

3:40 PM Residual Stress Characterization in Additive Manufactured Powder Bed Fusion – Laser (PBF-L) Ti-6Al-4V Alloy: You Lu1; Michael Gharhouri1; Srinad Karuppoor1; Manuel Marya1; ‘Schlumberger; ‘Canadian Nuclear Laboratories

4:00 PM Influence of Scan Velocities on Material Properties of Laser Based Coatings of Ni-Co on Ti-6Al-4V Alloy: Oluwemijade Adesina1; Abinshola Popoola1; ‘Tshwane University of Technology, Pretoria, South Africa

4:20 PM Decomposition of a’ Martensite of Ti-6Al-4V Alloy during Electron Beam Melting: Kentir Jumana1; Manami Mori1; Yasuke Onuki1; Shigeo Sato1; Akihiko Chiba1; ‘Tohoku University; ‘National Institute of Technology, Sendai College; ‘Ibaraki University

Additive Manufacturing of Metals: Microstructure and Material Properties – Processing and Properties of Alloy 718

Program Organizers: Andrzej Wojcieszynski, ATI Powder Metals; Ulf Ackelid, Freemelt AB; Ola Harrysson, North Carolina State University; Sudarsanam Babu, The University of Tennessee, Knoxville

Monday PM Room: 302 Location: DLL Convention Center

Session Chair: Sudarsanam Babu, University of Tennessee

2:00 PM Creep Response of Post-processed Electron-beam-melted Inconel 718 at 650°C and 580/600 MPa: Alfred Okello1; Ryan Dehoff1; Michael Kirka1; Kinga Unocic1; ‘Oak Ridge National Laboratory

2:20 PM Effect of Processing Parameters on the Properties of Inconel 718 Manufactured by Direct Metal Laser Sintering: Grace De Leon Nope1; Diego Espinosa-Arbelaez1; Jorge Corona1; Juan Muñoz-Saldaña1; Luis Gerardo Trapa Martínez1; Juan Alvarado-Orozco1; ‘CINVESTAV-QRO; ‘CIDESI; ‘CIATEQ

2:40 PM Microstructural Characterization and Modeling of SLM Superalloy 718: Timothy Smith1; Pete Bonacuse1; Chantal Sudbrack1; ‘NASA Glenn Research Center

3:00 PM Microstructure and Mechanical Properties of Direct Laser Metal Deposited Inconel 718: Ajay Bhagavatnam1; Abhishek Ramakrishnan1; Karthik Adapa1; Amrinder Singh1; Guru Dinda1; ‘Wayne State University

3:20 PM Microstructural Prediction in 3D Printed IN 718: Pachara Pipat Prompattum1; Shi-Chune Yao1; Austin Gerlt1; P. Chris Pistorius1; Anthony Rollett1; Richard Martukanitz2; Peter Coutts2; ‘Carnegie Mellon University; ‘Penn State University

3:40 PM Quantitative Microstructure Analysis of Inconel 718 Grain Boundary Network: Sharniece Holland1; Lin Li1; ‘The University of Alabama

4:00 PM STEM Phase Mapping and Precipitate Evolution in Additively Manufactured Alloy 718: C. Austin Wade1; Bernd Baufeld2; ‘Nuclear Advanced Manufacturing Research Centre; ‘University of Manchester

4:20 PM Effect of Geometry on Grain Structure for a Custom High Gamma Prime Ni-alloy Processed by EBM AM: Curtis Frederick1; Edwin Schwappbach1; Michael Kirka1; Alex Plotkowski1; Suresh Babu1; ‘UTK; ‘AFRL; ‘ORNL
Additive Manufacturing of Metals: Post Processing – Thermal Processes

Program Organizers: Ola Harrysson, North Carolina State University; Andrzej Wojcieszynski, ATI Powder Metals; Ulf Ackelid, Freemelt AB; Sudarsanam Babu, The University of Tennessee, Knoxville

Monday PM, Room: 303 October 9, 2017 Location: DLL Convention Center

Session Chair: Matthew Frank, Iowa State University

2:00 PM
Characterization of Hastelloy X Fabricated by Electron Beam Melting and Selective Laser Melting: Sebastien Dryepondt¹; Mike Kirka¹; Oak Ridge National Laboratory

2:40 PM
Effect of Hot Isostatic Pressing on the Microstructure and Mechanical Properties of Steel Matrix Nanocomposites Fabricated by Selective Laser Melting: Bandar AlMangour¹; Dariusz Grzesiak²; Jenn-Ming Yang³; ¹Harvard University; ²West Pomeranian University of Technology; ³University of California, Los Angeles

3:00 PM
Effect of Post-processing on AM Pore Geometry: Richard Fonda¹; Andrew Geltmacher¹; Jerry Feng¹; David Rowenhorst¹; ¹US Naval Research Laboratory

3:20 PM
Exposure of Additively Manufactured Material to Elevated Temperatures Post HIP: Michael Velez¹; Patrick Martin²; John Porter³; Brian Hayes¹; ¹UES inc.; ²AFRL (Ret.)

3:40 PM
Investigating the Effect of Post-HIP Heat Treatments on Porosity Regrowth in Powder-bed Metal Additively Manufactured Components Using Synchrotron-based X-ray Microtomography: Ross Cunningham¹; Anthony Rollett¹; ¹Carnegie Mellon University

4:00 PM
Microstructure and Indentation Hardness of SLE-Deposited René80 Superalloy with Post-process Heat Treatment: Andriy Dotsenko¹; Amrita Basak¹; Suman Das¹; ¹Georgia Tech

4:20 PM
Microstructure and Mechanical Properties of Selectively Laser Melted AlSi10Mg Alloy before and after Heat Treatment: Le Zhou¹; Abhishek Mehta¹; Esin Schulz²; Brandon McWilliams³; Kyu Cho³; Yongho Sohn³; ¹University of California, Los Angeles; ²Army Research Laboratory

4:40 PM
Hot Pressing Effect on Microstructural and Mechanical Properties of SLM Al10Si1Mg Alloy: Katsumashi Kondoh¹; Biao Chen¹; Junko Umeda¹; Seung Moon¹; Xiling Yao¹; Guijun Bi¹; ¹Osaka University; ²Nanyang Technological University; ³Singapore Institute of Manufacturing Technology

Additive Manufacturing of Metals: Powder Feedstock Characterization and Performance – Powder Production

Program Organizers: Andrzej Wojcieszynski, ATI Powder Metals; Ulf Ackelid, Freemelt AB; Ola Harrysson, North Carolina State University; Sudarsanam Babu, The University of Tennessee, Knoxville

Monday PM, Room: 305 October 9, 2017 Location: DLL Convention Center

Session Chair: Andrzej Wojcieszynski, ATI Powder Metals

2:00 PM
Comparison of Water and Gas Atomized 316L Powder Material for PBF: Simon Jahn¹; ¹IFW Jena

2:20 PM
Role of Atomization Gas on Stabilizing Retained Austenite in Additively Manufactured 17-4 PH Grade Stainless Steel: Scott Meredith¹; Todd Palmer¹; Rich Martukanitz¹; Jared Blecher²; ¹Applied Research Laboratory, Pennsylvania State University; ²3D Systems, Inc

2:40 PM
Effects of Atomizing Pressure, Melt Temperature and Molten Metal Flow Rate on the Particle Size and Yield of Gas Atomized Al10SiMg Powders: Sharon Park¹; Le Zhou¹; Jae'mara Mundy²; Edward Dein³; Brandon McWilliams³; Kyu Cho³; Yongho Sohn³; ¹University of Central Florida; ²Army Research Laboratory

3:00 PM
Characterization of Powder Produced by Modulation-assisted Machining: Indrani Biswas¹; Steven Rodriguez¹; James Mann¹; Kevin Trumble¹; Srinivasan Chandrasekar¹; ¹Purdue University

3:20 PM
Shape Memory Alloy Powders from a Low Pressure, Low Temperature Hydriding-pulverizing-dehydriding Process: Silvia Murguia¹; Yoav Snir¹; Arielle Clauer¹; Heather Dunn¹; Wendy Grogg¹; Raymond Brennan¹; Marcus Young¹; ¹University of North Texas; ²Nuclear Research Center-Negev; ³U.S. Army Research Laboratory

3:40 PM
Property Variation of AM Fabricated Parts – Influence of Feed Stock Powder: Elias Jelis¹; Rajendra Sadangi¹; Michael Hespos¹; Matthew Clemente¹; Fernando Echavarria-Hidalgo¹; ¹U.S. Army, ARDEC, Picatinny Arsenal

4:00 PM
Robust Production. Microcracking Eliminated: It Starts with Chemistry: Larry Somrack¹; William Jarosinski¹; Bill Andreski¹; Melissa Gorris¹; ¹NSL Analytical Services, Inc.; ²Praxair Surface Technology
Advanced Manufacturing, Processing, Characterization and Modeling of Functional Materials – Session II
Program Organizers: Markus Chmielus, University of Pittsburgh; Mohammad Elahinia, University of Toledo; Reginald Hamilton, The Pennsylvania State University; Haluk Karaca, University of Kentucky; Reza Mirzaeiifar, Virginia Tech

Monday PM Room: 324 Location: DLL Convention Center
Session Chair: To Be Announced

2:00 PM Invited
Additive Manufacturing for Shape Memory Material Design: Reginald Hamilton1; Todd Palmer1; 1The Pennsylvania State University

2:20 PM
In Vitro Corrosion Behavior of Additively Manufactured NiTi Porous Structures for Bone Implant Applications: Hamdy Ibrahim1; Ahmadreza Jahadakbar1; Narges Moghaddam1; Amirhesam Amerinatanz1; Mohammad Elahinia1; 1The University of Toledo

2:40 PM
Superelasticity in Room Temperature Aged Fe-Mn-Al-Ni Wires: Hande Ozcan1; Ji Ma1; Jeffrey Brown1; Ronald Noebe1; Yurii Chumlyakov1; Ibrahim Karaman1; 1Texas A&M University

3:00 PM
Modeling of Biomimetic Structures Actuated by Shape Memory Alloys: Natalie Zelezni1; Alejandro Hinojos1; Michael Mills1; Haluk Karaca2; Mohammad Elahinia3; James McGuffin-Gawley1; Peter Anderson1; 1The Ohio State University; 2University of Kentucky; 3University of Toledo; 3Case Western Reserve University

3:20 PM
Modeling of Coaxial Jet Mixing for Novel Material Properties: David Spang1; 1Rowan College at Burlington County

3:40 PM
Binder Jet Additive Manufacturing of Magnetocaloric Foams: Katerina Kimes1; Erica Stevens1; Amir Mostafaei1; Jakub Toman1; Markus Chmielus1; 1University of Pittsburgh

4:00 PM
Rapid Intense Pulsed Light Sintering of Silver Nanowire Networks on Polycarbonate for Transparent, Conductive Films: Rajiv Malhotra1; Michael Dexter1; 1Oregon State University

4:20 PM
Conductivity Investigation of Cubic-YSZ Single Crystals by Applying the CALPHAD Approach: Mohammad Asadikya1; Yu Zhong1; 1Florida International University

Advanced Steel Metallurgy: Products and Processing – Session II
Program Organizers: Emmanuel De Moor, Colorado School of Mines; Amar De, ArcelorMittal Global R&D; Kester Clarke, Colorado School of Mines; Alla Sergueeva, The NanoSteel Company; Charles Enloe, General Motors; Daniel Branagan, The NanoSteel Company; Matthew Kiser, Caterpillar Inc

Monday PM Room: 406 Location: DLL Convention Center
Session Chairs: Kip Findley, Colorado School of Mines; Matthew Kiser, Caterpillar Inc

2:00 PM
Mechanical Stability of Retained Austenite in Austempered Fe-Mn-Si Medium Carbon Steel: Tadashi Furuhara1; Takeshi Kaneshita1; Goro Miyamoto1; 1Tohoku University

2:20 PM
Liquid Metal Embrittlement of Resistance Spot Welded 1180TRIP Steel - Effects of Crack Geometry on Weld Mechanical Performance: Du-Youl Choi1; Sang-Ho Uhm1; Charles Enloe2; Hokook Lee1; Gyoosung Kim1; Curt Horvath2; 1POSCO Global R&D Center; 2General Motors

2:40 PM
Effect of Austenite Transformation on the Hole Expansion Properties of Q&P and Medium Mn Steels: Singon Kang1; Jihoon Kim1; Jiyeon Yun1; Jinkyung Kim1; Bruno De Cooman1; 1POSTECH

3:00 PM
Chemical Composition and Cooling Rate Effect on Microstructure Evolution in AHSS Grades: Rafael Coura Giacomin1; Bryan Weber1; Jonathan Becerril1; Carnegie Mellon University

3:20 PM
Designing Tough Nanostructured Bainite: Peter Kirbiš1; Tatjana Pintosk1; Ivan Anzel1; Mihael Bruncko1; 1SIJ Metal Ravne d.d.; 2University of Maribor, Slovenia

3:40 PM
Structures and Mechanisms Enabling Cold Formability In NanoSteel 3rd Generation AHSS: Alla Sergueeva1; Andrew Frerichs1; Brian Meacham1; Sheng Cheng1; Daniel Branagan1; 1The NanoSteel Company

4:00 PM
Flash® Bainite: Cold Stamping 1500 to 1800MPa Structural and Energy Absorbing Components to <2T Bend Radii: Gary Cola1; 1SFP Works, LLC

4:20 PM
Microstructure and Mechanical Behavior of a TWIP Fe-15Mn-2.5Si-2Al Steel: Xiaoxue Chen1; Jianguo Li1; Laszlo Kecskes1; Quiming Wei1; 1UNC-Charlotte; 2University of Northwestern Poly-technical University; 3US Army Research Laboratory
Advancements in In-situ Electron Microscopy Characterization II – Radiation Environments
Program Organizers: Yue Liu, Shanghai Jiao Tong University; Nan Li, Los Alamos National Laboratory; Khalid Hattar, Sandia National Laboratories; T. John Balk, University of Kentucky; Josh Kacher, Georgia Tech

Monday PM Room: 411
October 9, 2017 Location: DLL Convention Center

Session Chairs: Khalid Hattar, Sandia National Laboratories; Engang Fu, Peking University

2:00 PM Invited
TEM with In Situ Ion Irradiation of Nuclear Materials: Meimei Li1; 1Argonne National Laboratory

2:30 PM Invited
Detwinning through Migration of Twin Boundaries (TBs) in Nanotwinned Cu Films under Ion Irradiation: Jinlong Du1; Y.X. Liang1; P.P. Wang1; K.Y. Yu1; M.A. Kirk1; Z.M. Wu1; E.G. Fu1; 1Peking University; 2Chinese University of Petroleum; 3Argonne National Laboratory

3:00 PM Invited
In Situ Studies on Radiation Resistance of Nanoporous Metals: Jin Li1; Cuncai Fan1; Youxing Chen1; Xinghang Zhang1; 1Purdue University; 2Los Alamos National Laboratory

3:30 PM Invited
In Situ Analysis of Ion Irradiation Damage in Nanocrystalline Tungsten Alloys: Olivia Donaldson1; Khalid Hattar2; Jason Trelewicz2; 1Stony Brook University; 2Sandia National Laboratories

3:50 PM Invited
Irradiation of Nanoporous Gold and Niobium – Effects on Mechanical Properties: Nicolas Briot1; Maria Kosmidou1; 1University of Kentucky

Alumina at the Forefront of Technology II – Sintering and Microstructure of Alumina Ceramics
Program Organizers: William Walker, Federal-Mogul Corporation; Marina Pascucci, CeraNova Corporation; Charles Compson, Almatis; William Carty, Alfred University

Monday PM Room: 316
October 9, 2017 Location: DLL Convention Center

Session Chair: Charles Compson, Almatis, Inc.

2:00 PM Invited
New Approaches for Grain Boundary Informatics as a Pathway to Processing Reliability: Jeffrey Rickman1; Yan Wang2; Christopher Marvel3; Martin Harmer1; Anthony Rollett1; Charles Compson1; 1GrainBound, Inc.; 2Lehigh University; 3Lehigh University; 4Carnegie Mellon University; 5Almatis Inc.

2:40 PM Invited
Powder Chemistry Effects on the Sintering of Bayer Alumina: Tobias Frueh1; Elizabeth Kupp1; Charles Compson2; Joe Atria3; Gary Messing1; 1The Pennsylvania State University; 2Almatis, Inc.

3:00 PM Invited
Densification and Grain Growth of Alumina in the Presence of a Liquid Phase: Sarah Whipkey1; Hyojin Lee2; William Carty2; 1New York State College of Ceramics at Alfred University

3:20 PM Invited
Investigating the Origin of Abnormal Grain Growth in Specialty Alumina: Christopher Marvel1; Yan Wang2; Animesh Kundu3; Jeffrey Rickman1; Martin Harmer1; Joe Atria3; Charles Compson1; 1GrainBound, Inc.; 2Lehigh University; 3Lehigh University; 4Almatis Inc.

3:40 PM Invited
Second Phase Formation During Sintering of Bayer Alumina: Tobias Frueh1; Elizabeth Kupp1; Charles Compson2; Joe Atria3; Gary Messing1; 1The Pennsylvania State University; 2Almatis, Inc.

4:00 PM Invited
Pore Size Analysis for Alumina Ceramics: William Walker1; 1Federal-Mogul Corporation

ASM Alpha Sigma Mu Lecture
Monday PM Room: 335
October 9, 2017 Location: DLL Convention Center

2:30 PM Invited
Creating the Materials of Tomorrow: Joseph Newkirk1; 1Missouri University of Science and Technology

Best Practices in Academic Laboratory Safety – Session II
Program Organizers: Elizabeth Kupp, Penn State University; Theresa Kotanchek, Evolved Analytics LLC; Edgar Lara-Curzio, Oak Ridge National Laboratory

Monday PM Room: 321
October 9, 2017 Location: DLL Convention Center

Session Chair: Edgar Lara-Curzio, Oak Ridge National Laboratory

2:00 PM Invited
Laying the Foundation: Ten Elements of an Effective Laboratory Safety Management Program: J Cocchio1; Gord Winkel2; Neil Anderson3; 1The University of Alberta

2:40 PM Question and Answer Period Discussion about Laboratory Safety Management Program Presentation

3:00 PM Demonstration Student video competition - presentation of videos and announcement of prize winners
2:00 PM Invited
Ternary Borides Nb7Fe3B8 and Ta7Fe3B8 with Kagome-type Iron Framework: Andreas Leithe-Jasper1; Qiang Zheng1; Roman Gumieniuk2; Juri Grin1; 1MPI-CPIS; 2TU-Bergakademie, Freiberg

2:40 PM
Microstructure and Phase Control during Synthesis of Nanocrystalline Ultrahigh Temperature Tantalum Hafnium Diboride Powders (Tax Hf1-B) via Carbothermal/Borothermal Reduction Reaction: Paniz Foroughi1; Zhe Cheng1; 1Florida International University

3:00 PM
Synthesis, Consolidation and In-situ Indentation Studies on Bulk Boron Suboxide: Archana Loganathan1; Pranjal Nautiyal1; Paniz Foroughi1; Jian Yu2; Brandon McWilliams1; Zhe Cheng1; Benjamin Boesl1; Arvind Agarwal1; 1Florida International University; 2US Army Research Laboratory

3:20 PM Question and Answer Period

3:40 PM
Processing Effects on Stoichiometry in Hot-pressed Boron Suboxide Ceramics: Taylor Shoulders1; Kristopher Behler1; Jerry LaSalvia1; Lionel Vargas-Gonzalez2; 1U.S. Army Research Laboratory

4:00 PM
Effect of Oxide Additives on the Densification, Microstructure, and Hardness of Hot-pressed Boron Suboxide: Kristopher Behler1; Jerry LaSalvia1; Christopher Marvel1; Scott Walck1; Martin Hamer1; 1U.S. Army Research Laboratory (SURVICE Engineering); 2U.S. Army Research Laboratory; 3Lehigh University

2:00 PM Invited
Atomic Level Simulation of Defects and Diffusion in Ceramics: Ram Devanathan1; Kerry Garret1; Michele Conroy1; Weilin Jiang1; 1Pacific Northwest National Laboratory

2:40 PM Invited
Tuning the Structure and Properties of Glass Aided by Computer Simulation: Liping Huang1; 1Rensselaer Polytechnic Institute

3:20 PM Invited
Effect of Irradiation on Cement Hydrates: Evidence of a Topological Self-organization: N. M. Anoop Krishnan1; Bu Wang2; Gaurav Sant1; Mathieu Bauchy1; 1University of California, Los Angeles

4:00 PM
Ab-initio Molecular Dynamic Simulations of Amorphous Nitrides at High-Pressure: Peter Kroll1; 1University of Texas at Arlington

4:20 PM
Commonalities in Frequency-dependent Viscoelastic Damping in Glasses: Raghavan Ranganathan1; Pawel Keblinski1; Yunfeng Shi1; 1Massachusetts Institute of Technology; 2Rensselaer Polytechnic Institute

Characterization of Fracture and Fragmentation Phenomena Across Multiple Length Scales: From Atomistic to Macroscopic Approaches – Fracture and Fragmentation Phenomena: Lower Length Scales Methodologies
Program Organizers: Remi Dingreville, Sandia National Laboratories; Pierre-Alexandre Juan, Sandia National Laboratories

2:00 PM Invited
Interface Chemistry and Strain Rate Effect on Fracture in Energetic Material Interfaces: Chandra Prakash1; Vikas Tomar2; 1Purdue University

2:40 PM
A Novel Approach for Selecting Grain Boundary Sets for Intergranular Fracture Studies Using Molecular Dynamics Simulations: Doruk Aksoy1; Remi Dingreville1; Douglas Spearot1; 1University of Florida; 2Sandia National Laboratories

3:00 PM
Do Voids Initiate at Grain Boundaries?: Philip Noell1; Brad Boyce1; Jay Carroll1; Khalid Hattar1; Blythe Clark1; 1Sandia National Laboratories

3:20 PM
Thermo-mechanical Deformation Responses in Transition Metal Carbides at Ultra-high Temperatures: Gregory Thompson1; Morgan Ross2; Chase Smith1; Nick DeLeon1; Christopher Weinberger2; 1University of Alabama; 2Colorado State University

3:40 PM
In-situ 3D Observation of Grain Evolution in a Cu Polycrystal: Ruili Chen1; Reeju Pokharel1; Bjorn Clausen2; Ricardo Lebonsohn2; Peter Kenesel2; Robert Suter1; 1Carnegie Mellon University; 2Los Alamos National Laboratory; 3Argonne National Laboratory

4:00 PM
Investigating Heterogeneous Deformation in Polycrystalline Al 6061 Using In-situ SEM Tensile Test and HREBSD Characterization: Yung Suk Yoo1; Jay Carroll1; John Emery2; Josh Kacher1; 1Georgia Institute of Technology; 2Sandia National Laboratories
Curricular Innovations and Continuous Improvement of Academic Programs (and Satisfying ABET along the Way): The Elizabeth Judson Memorial Symposium – Design in Materials Science and Engineering

Program Organizers: Devarajan Venugopalan, University of Wisconsin-Milwaukee; Jeffrey Fergus, Auburn University; Janet Callahan, Boise State University; Thomas Bieler, Michigan State University; Ronald Gibala, University of Michigan; Tonya Stone, Mississippi State University

Monday PM Room: 306
October 9, 2017 Location: DLL Convention Center

Session Chair: Gregg Janowski, Univ of Alabama - Birmingham

2:00 PM
Preparing Students for Open-ended Projects through Hands-on Tools and Techniques Demonstrations: Christopher Levey1; Kevin Baron1; 1Dartmouth

2:20 PM
One Approach for Improving the Senior Design Experience for Students and Faculty: Ben Church1; Nidal Abu-Zahra1; 1University of Wisconsin-Milwaukee

2:40 PM
Failure Analysis as a Capstone Experience in the Undergraduate Materials Science and Engineering Program at Wright State University: Raghavan Srinivasan1; 1Wright State University

3:00 PM
Incorporating Design into the Senior Thesis Capstone in MATSE at Penn State University: Robert Kimel1; 1Penn State University

3:20 PM
Approaches to Design in Materials Science and Engineering and Related Programs: Panel Discussion: Chet Tan Tyne1; Gregg Janowski1; Raghav Srinivasan1; Devarajan Venugopalan1; 1Colorado School of Mines; 1University of Alabama at Birmingham; 1Wright State University; 1University of Wisconsin-Milwaukee

Data and Tools for Materials Discovery and Design – Combinatorial First Principles and High Throughput Methods for Screening: Challenges and Opportunities

Program Organizers: Zi-Kui Liu, The Pennsylvania State University; David McDowell, Georgia Institute of Technology; Carolyn Campbell, National Institute of Standards and Technology; Laura Bartolo, Northwestern University; Bryce Meredig, Citrine Informatics; Mark Tschopp, Army Research Laboratory; Dane Morgan, University of Wisconsin - Madison; Afina Lupulescu, ASM International

Monday PM Room: 323
October 9, 2017 Location: DLL Convention Center

Session Chairs: Dane Morgan, University of Wisconsin - Madison; James Warren, National Institute of Standards and Technology

2:00 PM Keynote
Data and Tools for Materials Discovery and Design: The Materials Innovation Infrastructure: James Warren1; 1National Institute of Standards and Technology

2:40 PM Invited
High-throughput Materials Discovery and Development: Computational Tools for Data Generation and Advanced Characterization: Marco Buongiorno Nardelli1; 1University of North Texas

3:00 PM Invited
Materials Discovery and Design at Finite Temperatures: Jan Janssen1; Albert Giersk1; Blazej Grabowski1; Tilman Hickel1; 1Jülich Neugebauer1; 1Max-Planck-Institut für Eisenforschung GmbH

3:20 PM Invited
High-throughput and Machine-learning Diffusion Modeling with the Materials Simulation Toolkit (MAST): Dane Morgan1; Tam Mayeshiba1; Henry Wu1; 1University of Wisconsin - Madison

4:00 PM
Combining Hi Throughput Computations and Hi Throughput Experiments to Accelerate Discovery and Development of Structural Alloys: Dan Miracle1; Bhaskar Majumdar1; Katelin Wertz1; Stephane Gorsse1; 1AF Research Laboratory; 1New Mexico Institute of Mining and Technology; 1CNRS, ICMCB, UPR 9048, 33600 Pessac

4:20 PM
High-throughput Identification and Characterization of Two-dimensional Materials Using Density Functional Theory: Kamal Choudhary1; Ryan Beams1; Irina Kalish1; Francesca Tavazza1; 1National Institute of Standards and Technology

4:40 PM
Estimating Thermal Expansion with Intrinsic Quantum Thermodynamics: Ryo Yamada1; Michael von Spakovsky1; William Reynolds1; 1Virginia Polytechnic Institute and State University

Design, Processing, and Development of Structural Materials – Complex and Multicomponent Alloys

Program Organizers: Tomoko Sano, U.S. Army Research Laboratory; Mitra Taheri, Drexel University

Monday PM Room: 328
October 9, 2017 Location: DLL Convention Center

Session Chairs: Anit Giri, US Army Research Laboratory; Tomoko Sano, U.S. Army Research Laboratory

2:00 PM Invited
Experimental and Computational Investigation of Microstructures and Mechanical Behavior of High-entropy Alloys (HEAs): Peter Liu1; Haoyan Diao1; Tingkun Liu1; Yanfei Gao1; Jonathan Poplawsky1; Wei Guo1; Karin Dahmen1; 1University of Tennessee; 1Oak Ridge National Laboratory; 1University of Illinois at Urbana-Champaign

2:20 PM Invited
Design and Development of Lightweight Corrosion Resistant Compositionally Complex Alloys: Nick Birbilis1; 1Monash University

2:40 PM
Microstructure and Mechanical Properties of a Nanostructured High Entropy Alloy Processed via Heavy Rolling: Xiaojun Liu1; Feng Wang1; Zhigang Yan1; Fei Chen1; Enrique Lavernia1; 1Wuhan University of Technology; 1Yanshan University; 1University of California, Irvine
3:00 PM Invited
Compositional Modeling of High-Entropy Alloys: Thermodynamics, Elasticity, and Solid Solution Strengthening: Michael Gao1; Mike Widom2; Jeffrey Hawk3; 1National Energy Technology Lab; 2Carnegie Mellon University

3:20 PM
Microhardness and Microstructure of Nanocrystalline Nb25Mo55Ta3W25 High Entropy Alloys: AntT Giril1; Anthony Roberts1; Chad Hornbuckle2; Thomas Luckenbaug3; Vincent Hammond3; Kris Darling3; 1US Army Research Laboratory

3:40 PM
Designing Novel Cermet Materials in the Ti-B-Fe-Mo System: Alexander Lark1; Vikas Jindal1; Ahmed Degnah1; K.S. Ravi Chandran1; 1University of Utah

4:00 PM
Deformation Processing and Recrystallization of Single Crystal Ni-base Superalloys: Sarah Frith1; Kyle Ventura1; Gerhard Fuchs1; 1University of Florida

Emerging Multifunctional Materials for Bio, EO, RF and Radiation Sensors – Emerging Multifunctional Materials for Bio, EO, RF and Radiation Sensors II Program Organizers: Narsingh Singh, University of Maryland, Baltimore County; Dimitra Stratis-Cullum, Army Research Laboratory; Ravindra Nuggehalli, NJIT

Monday PM Room: 331
October 9, 2017 Location: DLL Convention Center

Session Chairs: Dimitra Stratis-Cullum, Army Research Laboratory; Liliana Braescu, Université du Québec; Dev Mahato, National Institute of Technology

2:00 PM Invited
Magnetic Composites for Stretchable Wireless Power Systems: Nathan Lazarus1; 1US Army Research Laboratory

2:20 PM Invited
Spin-orbit Coupling Effects on Multiferroic Properties of the Multifunctional Oxides: Liliana Braescu1; Francois Vidal1; Alain Pignon1; 1INRS Canada & Alfasial University KSA; 2Institut National de la Recherche Scientifique

2:40 PM Invited
Multicontrolable Metasurfaces: Akhlesh Lakhtakia1; 1Penn State University

3:00 PM Invited
Display of Gold-binding Peptides by Living Bacteria for Bioelectrochemical Systems: Justin Jahnke1; Deborah Sarkes1; Jessica Terrell2; Bryn Adams2; Margaret Hurley1; James Sumner1; Dimitra Stratis-Cullum1; 1US Army Research Laboratory

3:20 PM Invited
Magnetically Augmented Rotational System - Properties and Performance: Shuang Du1; Ruolei Liu1; Yan Liu1; Tiansee Chow1; Nuggehalli Ravindra1; 1New Jersey Institute of Technology; 2Energy Technology Development Inc.

3:40 PM Invited
Multifunctional Hydroxyapatites: Design of Materials for Laser Host and Bone Applications: Stacey Sova1; Jayati Bhavsar1; Puja Gautam1; Bradley Arnold1; Lisa Kelly1; Paul Smith1; Kamdeo Mandal1; Narasimha Prasad1; Narsingh Singh1; 1University of Maryland, Baltimore County

4:00 PM Invited
Advancement in the Synthesis Techniques for Energy Storage Materials and Their Characterizations: Laxman Singh1; Youngil Lee1; Minsoo J1; 1University of Ulsan

4:20 PM Invited
Visible Light Sensitive Photo-catalytic Semi-conducting Metal Oxides in Abating Water Pollution: Koyar Rane1; Rajesh Joshi2; Sunil Jalalpure2; Sunee Dodamuni3; 1Rani Channamma University (State University); 2Regional Medical Research Centre (Indian Council of Medical Research); 3KLE University’s College of Pharmacy

Failure Analysis and Prevention – additive Manufacturing, Processing & Corrosion Failures Program Organizers: Andrew Havics, pH2, LLC; Pierre Dupont, Schaeffler Belgium Srl/Bvba; Burak Akyuz, ATS, Inc.

Monday PM Room: 407
October 9, 2017 Location: DLL Convention Center

Session Chairs: Amber Dalley, RJ Lee Group; Charles White, IME Dept,Kettering University; Thomas Ackerson, Curtiss Wright - IMR Test Labs; Richard McSwain, McSwain Engineering Incorporated; Andrew Havics, pH2, LLC

2:00 PM Invited
Crack Reduction in NiCr-alloys When Processed by additive Manufacturing Using the Laser Powder Bed Process: William Jarosinski1; Larry Somrack2; 1Praxair Surface Technologies, Inc.; 2NSL Analytical

2:20 PM Invited
Additive Manufacturing Process Inherent Failure Mechanisms: Joy Gockel1; Luke Sheridan1; Bo Whip1; Eric Tatman1; Sonya Sokhey1; 1Wright State University

2:40 PM Invited
Failure Analysis and Engineering Challenges of additive Manufacturing Processes: Daniel Dennies1; 1DMS, Inc

3:00 PM Invited
Characterization of Ancient Steel Tie-rods for Structural Integrity Assessment of Historic Masonry Buildings: Donato Ferraudo1; Paolo Matteis1; Giorgio Scavino1; Giuseppe Ferro1; 1Politecnico di Torino - DISAT; 2Politecnico di Torino - DISEG

3:20 PM Invited
Acid Dew Point Corrosion Induced Failure in Boiler Economizer Tubes: Urbi Pal1; Sandip Bhattacharya1; Goutam Mukhopadhyay1; 1Tata Steel

3:40 PM Invited
Analysis of Corrosion Damage to a Zinc Die-cast Plumbing Fitting: Tim Jur1; Richard Edwards1; Ron Windam1; 1Engineering Design & Testing Corp

4:00 PM Invited
Impact of Corrosion on Coal Mining Equipment: J.V. Pellegrino Jr.1; 1RJ Lee Group

4:20 PM Invited
Failure Analysis of Cracked Rotor Wedges of a Generator: Mehdi Taheri1; Erhan Ulvan1; 1-30- Forensic Engineering ; 2Acuren Group Inc
Glass, Amorphous, and Optical Materials: Common Issues within Science & Technology – Structure-property Relations II
Program Organizers: Gang Chen, Ohio University; Steve Martin, Iowa State University

Monday PM Room: 310 Location: DLL Convention Center
Session Chair: John Kieffer, University Of Michigan

2:00 PM Invited
Extreme Entropy Mixed Anion Mixed Cation Mixed Glass Former Glasses:
Steve W. Martin; Steven Kmiec; Melinda Hoy; Peter Enz; Alison Whale; 1Iowa State University

2:20 PM
Elastic Properties and Ionic Migration Mechanisms in Mixed-network
Former Glasses: Weimin Wang; Randil Lynn Christensen; Brittany Curtis; Steve Martin; John Kieffer; 1University of Michigan; 1Iowa State University

2:40 PM
Stretched Exponential Relaxation of Glasses: Origin of the Mixed Alkali Effect: Yingtian Yu; John Mauro; Mathieu Bauchy; 1University of California, Los Angeles; 2Corning Inc.

3:00 PM
Indentation and Scratch of Mixed-Alkali Glasses: Jared Seaman; Peter Lezzi; Timothy Gross; 2Corning Incorporated

3:20 PM
Indentation Deformation Mechanisms in Ternary Alkali Aluminosilicate Glasses: Timothy Gross; 2Corning Inc.

3:40 PM
Understanding Cracking Behavior of Glass from Its Elastic and Plastic Response to Hydrostatic Compression: Siva Priya Jaccani; Liping Huang; 1Rensselaer Polytechnic Institute

4:00 PM
A Surface Science Perspective of the Usable Strength of Glass: Nisha Sheehy; Jiawei Luo; Joy Banerjee; Carlo Pantano; Seong Kim; 1Penn State University; 2Corning

4:20 PM
The Effect of Stress on the Kinetics of Surface Stress Relaxation in Glass:
Emily M. Aaldenberg; Thierry Blanchet; Minoru Tomozawa; 1Rensselaer Polytechnic Institute

4:40 PM
Dissolution Behavior of MoO3-Fe2O3-P2O5 Glasses: Jincheng Bai; Daniel Drury; Jenhisen Hsu; Richard Brow; Cheol-Woon Kim; Joe Szabo; Adam Zervos; 1Missouri University of Science and Technology; 2MOSCI Corporation

5:00 PM
Investigating Alteration of Pre-viking Hillfort Glasses from the Brobrog Hillfort Site, Sweden: Carolyn Pearce; Jamie Weaver; Edward Vicenzi; Thomas Lam; Tamas Varga; Micah Miller; Bruce Arey; Michele Conroy; John McClay; Rolf Sjoholm; Michael Schweiger; David Peeler; Albert Kruger; Pacific Northwest National Laboratory; 1National Institute of Standards and Technology; 3Smithsonian Institution; 4Washington University; 5Lulea University of Technology; 6Department of Energy

Hybrid Organic-Inorganic Materials for Alternative Energy – Photovoltaics and Electrochemistry
Program Organizers: Andrei Jitianu, Lehman College, City University of New York; Lisa Klein, Rutgers University; Lia Staniciu, Purdue University; Mihaela Jitianu, William Paterson University

Monday PM Room: 402 Location: DLL Convention Center
Session Chair: Ekaterina Pomerantseva, Drexel University

2:00 PM Invited
Optical-scale Microarrays for Enhanced Light Emitting Diode and Dye Sensitized Solar Cell Performance: James Gilchrist; Nelson Tansu; Mark Snyder; 1Lehigh University

2:30 PM Invited
Design of Solar Active Metal-oxide/Carbon-nanotube Aerogel Photocatalysts and Nano-photoelectrochemical Cell Arrays: Paul Salvador; Hang-Ah Park; Siyuang Liu; Youngseok Oh; Gregory Rohrer; Mohammad Islam; 1Carnegie Mellon University

3:00 PM Invited
P-type Dye-Sensitized Solar Cells and Fuels: Challenges and Opportunities: Yixiong Wu; 1Ohio State University

3:30 PM Invited
Oxide Nano-sheet Based Hybrid Structures: Kevin Pachuta; Emily Pentzer; Alp Sehirlioglu; 1Case Western Reserve University

4:00 PM
Hybrid Supercapacitors Fabricated from Commercial Organic Wastes and Metal Oxides: Engin Ciftyurek; Kaushlendra Singh; Latha Sirivanandan; Katarzyna Sabolskaya; Tugrul Yumak; Ed Sabolsky; 1WVU

4:20 PM
DFT and TD-DFT of Electronic and Optical Properties for Novel Cyclometalated Ruthenium Complexes for Dye-sensitized Solar Cells (DSSCs): Nambury Babu; Said Vua; John Makangara; Isaac Onoka; 1The University of Dodoma

Innovations in Materials and Processes for Solar PV Applications – Innovations in Materials and Processes for Solar PV Applications
Program Organizers: Sheela Ramasesha, Divecha Center for Climate Change, Indian Institute of Science; Nicholas Ekma-Daoukas, Imperial College

Monday PM Room: 408 Location: DLL Convention Center
Session Chair: To Be Announced

2:00 PM Introductory Comments

2:10 PM
Dewetted Gold Coatings as Templates for Uniform Cadmium Selenide Films: Warren Rucker; Tianxing Ma; Jonathan Singer; Dunbar Birnie; 1Rutgers University
I. Effects of Recycled Slag on Boron Removal from Metallurgical-grade Silicon with Active Component Addition: Xuetao Luo; Chenghao Lu; 'Xiamen University

2:50 PM
Interface Study Of Passivated Silicon Wafers For High Efficiency Photovoltaics By Transmission Electron Microscopy: Haider Ali; Winston Schoenfeld; Kristopher Davis; 'University of Central Florida

3:10 PM
Probing Charge Transport Behavior in PbS Quantum Solar Cells Using Multiple Illumination Directions: Matthew Duff; 'University of Pittsburgh

3:30 PM
Tunnel Layer Dielectrics for High Barrier Height Contacts in Photovoltaics Using Indium Tin Oxide: Nicholas Strandwitz; 'Lehigh University

II. Interfaces, Grain Boundaries and Surfaces from Atomistic and Macroscopic Approaches – Interface Thermodynamics

Program Organizers: Dominique Chatain, CNRS, Aix-Marseille University; John Blendell, Purdue University; Wayne Kaplan, Technion - Israel Institute of Technology

Monday PM
Room: 410
Location: DLL Convention Center

Session Chairs: Paul Wynblatt, Carnegie Mellon University; Dominique Chatain, CNRS, Aix-Marseille University

2:00 PM
Recent Progress in Atomistic Modeling of Materials Interfaces: Yuri Mishin; 'George Mason University

2:40 PM
Continuum Modelling of Grain Boundary Wetting: Robert Spatschek; Clas Hütter; 'Forschungszentrum Juelich

3:20 PM Invited
Predicting Phase Behavior of Interfaces with Evolutionary Algorithms: Qiang Zhu; Amit Samanta; Bingxi Li; Robert Rudd; Timofey Frolov; 'University of Nevada Las Vegas; 'Lawrence Livermore National Laboratory; 'University of California Davis

3:40 PM Invited
Defect Interactions in Multilayer Graphene: Rachel Zucker; Mark Asta; 'University of California, Berkeley

4:00 PM
An Effective Phase-field Model for Anisotropic Interfaces: A Phase-field Crystal Approach: Nana Ofori-Opoku; James Warren; Peter Voorhees; 'Northwestern University; 'National Institute of Standards and Technology

4:20 PM
Grain Boundary Phase Transition Kinetics in Ionic Ceramics: Suryanarayana Karra; Wolfgang Rhe inheimer; Michael Hoffmann; R. Edwin Garcia; 'Purdue University; 'Karlsruhe Institute of Technology

III. International Symposium on Defects, Transport and Related Phenomena – Proton Conductors

Program Organizers: Tatsuya Kawada, Tohoku University; Manfred Martin, RWTH Aachen University; Sangtae Kim, University of California, Davis

Monday PM
Room: 409
Location: DLL Convention Center

Session Chair: Roger De Souza, RWTH Aachen University

2:00 PM
High Performance, Fuel-flexible Protonic Ceramic Fuel Cells via In-situ Exsolution of Ni Nanoparticles: Chuancheng Duan; Neal Sullivan; Robert Braun; Robert Kee; Huayang Zhu; Ryan O’Hayre; 'Colorado School of Mines

2:20 PM Invited
Proton Conduction in Zeolite and Application to Water Electrolysis: Yuki Terayama; Naohiro Shimoda; Shigeo Sato kawa; Yoshitsugu Sone; Hiroshi Matsumoto; 'Kyushu University; 'Seikei University; 'Japan Aerospace Exploration Agency

3:00 PM Invited
Triple Conducting Oxides for Electrochemical Applications: Meagan Papac; Chuancheng Duan; Ann Derr; Andriy Zakutayev; Vladan Stefanovic; Michael Sanders; Ryan O’Hayre; 'Colorado School of Mines; 'National Renewable Energy Laboratory

3:40 PM Invited
Cation Diffusion in A\(_2\)B\(_4\)O\(_3\) Perovskites: Tor Grande; Rokas Sažinas; 'Norwegian University of Science and Technology

IV. Joining of Advanced and Specialty Materials (JASM XIX) – Brazing

Program Organizers: Boian Alexandrov, The Ohio State University; Mathieu Brochu, McGill University; Anming Hu, University of Tennessee; Darren Barborak, AZZ WSI; Akio Hirose, Osaka University; Peng He, Harbin Institute of Technology; Zhiyong Gu, University of Massachusetts Lowell; Vikas Patel, ArcelorMittal USA

Monday PM
Room: 326
Location: DLL Convention Center

Session Chairs: Michael Halbig, NASA Glenn Research Center; Zhenzhen Yu, Colorado School of Mines

2:00 PM
Brazing of Inconel 600 by a Newly Designed Multi-Principal-Component Alloy Filler Foil: Zhenzhen Yu; Minrui Gao; Stephen Liu; 'Colorado School of Mines

2:20 PM
Brazing of Nickel Superalloys Using High Entropy Alloy Bulk Material and Nanopaste: Denzel Bridges; Suhong Zhang; Samantha Lang; Zhenzhen Yu; Zhili Feng; Anming Hu; Minrui Gao; 'University of Tennessee, Knoxville; 'Colorado School of Mines; 'Oak Ridge National Laboratory
2:40 PM
Brazing of Steel 304 and Inconel 718 Using Ni Nanoparticle Paste: Siuhong Zhang1; Denzel Bridges1; Zhili Feng1; Anming Hu1; 1University of Tennessee, Knoxville; 2Oak Ridge National Laboratory

3:00 PM
Transient Liquid Phase Bonding of Ni-based-alloy-H230 for Compact Heat Exchangers for Application in Supercritical CO2 Power Cycles: Monica Kapoor1; Omer Dogan1; Jeffrey Hawk1; 1National Energy Technology Lab

3:20 PM
Understanding Chloride-induced Stress Corrosion Cracking Behavior of SS304 for Dry Storage Canisters for Spent Nuclear Fuels Storage: Nilesh Kumar1; KL Murti2; 2NC State University

3:40 PM
Oxidation and Corrosion Resistance of ZrC4AlCn MAX Phases for Future Lead-cooled Fast Reactors: Alan Carter1; Jie Song2; Kip Findley2; Michael Kaufman3; 3Colorado School of Mines

4:00 PM
Frettig Wear Behaviors of Surface-Modified Zr Cladding Supported by Pre-oxidized Spacer Grid: Young-Ho Lee1; Jung-Hwan Park1; Dong-Jun Park2; Hyun-Gil Kim2; Jae-Ho Yang2; 1Korea Atomic Energy Research Institute; 2Korea Atomic Energy Research Institute

Materials for Nuclear Energy Applications – Corrosion of Materials in Nuclear Energy Systems

Program Organizers: Kumar Sridharan, University of Wisconsin; Jake Amoroso, Savannah River National Laboratory; Aladar Csontos, Nuclear Regulatory Commission; Kevin Fox, Savannah River National Laboratory; Yutai Katoh, Oak Ridge National Laboratory; Bill Lee, Imperial College of London; Josef Matyas, Pacific Northwest National Laboratory; Raul Rebak, GE Global Research; Cory Trivelpiece, Savannah River National Laboratory

Monday PM
Room: 401
Location: DLL Convention Center

Session Chairs: Stuart Maloy, Los Alamos National Laboratory; Yutai Katoh, Oak Ridge National Laboratory

2:00 PM Invited
Corrosion Mechanism of Incoloy 800H Alloy in High Temperature Thermal Energy Storage MgCl2-KCl Salts: Xiaxiang Peng1; Ramana Reddy1; 1The University of Alabama

2:20 PM
Bulk and Surface Grain Boundary Engineering for Improved Resistance to Corrosion and Stress Corrosion Cracking of Nuclear Alloys: Abhishek Telang1; Amrinder Gill1; Mukul Kumar1; Sebastien Teyssere1; Seetha Mannava2; Dong Qian3; Vijay Vasudevan4; 1Integer Holdings Corp; 2AK Steel; 3Lawrence Livermore National Laboratory; 2Idaho National Laboratory; 4University of Cincinnati; University of Texas at Dallas

2:40 PM
Corrosion Resistance of Pure SiC and SiC-NFA Composite under High Temperature Water Vapor Conditions: Kaijie Ning1; Kathy Lu1; 1Virginia Tech

3:00 PM
High Temperature Oxidation of SPS Sintered CrC2-coated SiC-NFA Composites in Water Vapor Containing Environment: Kaustubbh Bawane1; Kathy Lu1; 1Virginia Polytechnic Institute and State University

3:20 PM
Understanding Chloride-induced Stress Corrosion Cracking Behavior of SS304 for Dry Storage Canisters for Spent Nuclear Fuels Storage: Nilesh Kumar1; KL Murti2; 2NC State University

3:40 PM
Assessment of Aging Degradation Mechanisms of Alloy 709 for Sodium Fast Reactors: Alan Carter1; Jie Song2; Kip Findley2; Michael Kaufman3; 3Colorado School of Mines

Materials Property Understanding through Characterization – Novel Tech II

Program Organizers: Indrajit Dutta, Corning Incorporated; Nicholas Smith, Corning Incorporated

Monday PM
Room: 412
Location: DLL Convention Center

Session Chair: Christian Kiesielowski, Lawrence Berkeley National Laboratory

2:00 PM
Characterizing Novel Transducers for High Temperature Thermal Measurements Using Time Domain Thermoreflectance: Christina Rost1; Kevin Ferri2; Charlotte Dawes1; Trent Borman2; Jon-Paul Maria1; Patrick Hopkins1; 1University of Virginia; 2North Carolina State University; University of New South Wales

2:20 PM Invited
In Situ Raman Mapping Of Mechanically Stressed Materials: A Combination for Simultaneous Raman Spectroscopy and Nanoindentation: Yvonne Gerbig1; Chris Michaels1; Robert Cook1; 1National Institute of Standards and Technology (NIST)

3:00 PM Invited
Visualization of Ferroelastic Domain Switching in (K,Na,Li)(Nb,Ta)O3: Yonnie Gerbig1; Chris Michaels1; Robert Cook1; 1National Institute of Standards and Technology (NIST)

3:20 PM
Surface Frenkel Defects in MnO Nanoparticles: Quantification Enabled by X-ray Spectroscopy and Total Scattering: Scott Misture1; Peter Metz1; Peng Guo1; 1Alfred University

3:40 PM Invited

Session Chair: Monica Kapoor1; Omer Dogan1; Jeffrey Hawk1; 1National Energy Technology Lab
Multifunctional Oxides – Synthesis, Characterization, and Modeling of Metal Oxides

Program Organizers: Xiaojing Pan, University of California, Irvine; Chonglin Chen, University of Texas at San Antonio; Quanxi Jia, University at Buffalo – The State University of New York; Judith Driscoll, University of Cambridge

Monday PM Room: 312 Location: DLL Convention Center

Session Chairs: Rafal Dunin-Borkowski, Forschungszentrum Jülich; Ping Lu, Sandia National Laboratories

2:00 PM Invited
Atomatic Interface Structures and Properties In Self-assembled Vertically Aligned Nanocomposite Thin Films by Advanced Scanning Transmission Electron Microscopy: Ping Lu; Lin Zhou; Jon Ihlefeld; Wei Pan; Sandia National Laboratories; Ames Laboratory

2:20 PM Invited
First-principles Design of Two-dimensional Electron Gas in the Perovskite-Oxide-Based Interface Materials: Chengshuo Cui; Junjie Song; Hengzhong Fan; Yunfeng Su; Litian Hu; State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics of the Chinese Academy of Sciences

2:40 PM Invited
Selective Heat Treatment of Spray-formed Composite Tool Steels: Chengsong Cui; Alwin Schulz; Dawid Nadolski; IWT Bremen

3:00 PM Invited
The Influence of Nano TiN Additions on Mechanical Properties and Fracture Behaviour of Spark Plasma Sintered SAF 2205: Samuel Oke; Mahlatse Mphahlele; Oladeji Ige; Oluwasegun Falodun; Babatunde Obadele; Peter Olubambi; University of Johannesburg

3:20 PM Invited
Tribological Design of Ceramics—formulating New Composites: Yongsheng Zhang; Junjie Song; Hengzhong Fan; Yunfeng Su; Litian Hu; State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics of the Chinese Academy of Sciences

3:40 PM Invited
Thermal and Electrical Properties of Bilayer Al/B4C/Rice Husk Ash Composite: Amin Bahrami; Niloofar Soltani; Shaghayegh Soltani; Martin Pech-Canul; Carlos Gutiérrez; Luis Gonzalez; Angela Möller; Jashoua Tapp; Aleksandr Gurlo; University Nacional Autónoma de México; Technical University of Berlin;Technical University Berlin; Johannes Gutenberg-University Mainz; Technische Universität Berlin

3:40 PM Invited
Nanoscale Tailoring of Oxygen Vacancy Distribution by Mechanical-loaded Scanning Probe: Bo Wang; Saikat Das; Ye Cao; Sergei Kalinin; Tae Won Noh; Long-Qing Chen; The Pennsylvania State University; Seoul National University; Oak Ridge National Laboratory

2:00 PM
Localized Thin Film Damage Sourced and Monitored via Pump-probe Modulated Thermoreflectance: Brian Donovan; John Tomko; Ashutosh Giri; David Olson; John Gaskins; Patrick Hopkins; United States Naval Academy; University of Virginia

2:20 PM
Multifunctional Ceramic- and Metal-matrix Composites: Processing, Properties and Performance – General Processing and Characterization of CMCs and MMCs/Miscellaneous topics on MMCS and CMCs:

Program Organizers: Martin Pech-Canul, Cinvestav IPN- Unidad Saltillo; Golam Newaz, Wayne State University

Monday PM Room: 329 Location: DLL Convention Center

Session Chair: Martin Pech-Canul, Cinvestav Saltillo
Next Generation Biomaterials – Next Generation Biomaterials I
Program Organizers: Roger Narayan, UNC/NCSU Joint Department of Biomedical Engineering; Jie Huang, University College London; Vinul Davé, Johnson & Johnson; Sanjiv Lalwani, Lymtech, Inc.; Marc in het Panhuis, University of Wollongong; Mohan Edirisinghe, University College London

Monday PM
October 9, 2017
Room: 334
Location: DLL Convention Center

Session Chairs: Bikramjit Basu, Indian Institute of Science; Masahiro Yoshimura, National Cheng Kung University

2:00 PM Invited
Development of Multifunctional Bioceramics and External Field Stimulated Cell Functionality Modulation: A New Paradigm: Bikramjit Basu1; B. Sunil Kumar1; Greeshma Thrivikraman1; 1Indian Institute of Science

2:20 PM Invited
The New Biomaterials Frontier: Bubbles-Vesicles-Particles-Capsules-Fibres: Mohan Edirisinghe1; 1University College London

2:40 PM Invited
Cancer Cell Targeting and Photothermal Therapy of Theranostics from Multifunctional Tissue Engineering Scaffolds: Lin Guo1; Min Wang1; 1The University of Hong Kong

3:00 PM
Multicomponent and Multifunctional Tissue Engineering Scaffolds: Min Wang1; 1The University of Hong Kong

3:20 PM Invited

3:40 PM Invited
Permanent and Resorbable Patient-specific Implants Made by Additive Manufacturing: Johannes Homa1; Franz Weber2; Martin Schwentenwein3; 1Lithoz GmbH; 2University Hospital and University of Zurich

4:00 PM Invited
3D Printing of Microneedles: Roger Narayan1; 1UNC/NCSU Joint Department of Biomedical Engineering

Perspectives for Emerging Materials Professionals – Perspectives for Emerging Materials Professionals, Session II
Program Organizers: Dharma Maddala, Arconic Technology Center; Rachel Bethancourt, Cherry Aerospace, a SPS Technologies Company; Jesse Angle, Exponent, Failure Analysis Associates; K Shugart, UES, Inc

Monday PM
October 9, 2017
Room: 414
Location: DLL Convention Center

Session Chairs: Dharma Maddala, Arconic Technology Center; Rachel Bethancourt, Fitbit; Jesse Angle, Exponent, Failure Analysis Associates; K Shugart, UES, Inc

2:00 PM Invited
Can You Spell Entrepreneur?: Larry Hanke1; 1Materials Evaluation and Engineering, Inc

2:20 PM
From Gator to Investigator: How I Became a Failure Analyst and How You Can Too: Erik Mueller1; 1National Transportation Safety Board

2:40 PM Invited
Leadership Development: A 15 Minute Crash Course: Robert Schwartz1; 1University of Missouri System

3:00 PM Invited
From Undergraduate to Journal Editor: A Professional Development Story: William Fahrenholz1; 1Missouri University of Science and Technology

3:20 PM
Mentoring 101: Laura Jean Weidman1; 1Department of Defense

3:40 PM

4:00 PM
Measuring Up My Career (So Far) at NIST: Adam Creuziger1; 1National Institute of Standards and Technology

4:20 PM
The Value of Networking: Jaret Frafjord1; 1IMR Test Labs - Portland

Phase Stability, Diffusion Kinetics, and Their Applications (PSDK-XII) – Session II: Thermodynamics, Modeling and Databases
Program Organizers: Wei Xiong, University of Pittsburgh; Raymundo Arroyave, Texas A & M University; Ji-Cheng Zhao, The Ohio State University; Arthur Pelton, Ecole Polytechnique

Monday PM
October 9, 2017
Room: 413
Location: DLL Convention Center

Session Chairs: Greta Lindwall, National Institute of Standards and Technology; Nagraj Kulkarni, Knoxville TN

2:00 PM
A Regular Solution Model for a Single-phase High Entropy and Enthalpy Alloy: Shuanglin Chen1; J. Morral2; 1CompuTherm, LLC; 2Ohio State University
2:20 PM
Thermodynamic Database for the Co-Al-W-Ni-Ti-Ta-Cr-based Superalloys: Peisheng Wang1; Wei Xiong2; Ursula Kattner3; Carelyn Campbell4; Eric Lass4; Greg Olson4; 1Northwestern University and NIST; 2University of Pittsburgh; 3National Institute of Standards and Technology; 4Northwestern University

3:00 PM
Effect of Convection on Phase Selection and Interface Stability in Directional Solidification of Peritectic Alloys: Peiman Shahbeigi Roadposhti1; Ryan Dibiase1; Harold Brody3; 1University of Connecticut

3:20 PM
CALPHAD Assessment of the Carbon-Hafnium-Zirconium System: Theresa Davey3; Thomas Mellon4; Suzana Fries1; Michael Finnis1; 1Imperial College London

3:40 PM
Re-assessment of the ZrO2-Y2O3 (YSZ) System Thermodynamic Database: Mohammad AsadiKhiyavi1; Ya Zhong1; 1Florida International University

4:00 PM
Thermodynamics and Kinetics Studies of the Zr-O System from First-principles Calculations: Brian Puchala1; Min-Hua Chen2; Anton Van der Ven3; 1University of Michigan, Ann Arbor; 2University of California, Santa Barbara

Rare Earth Metals, Compounds, and Alloys: Synthesis, Processing, Emerging Applications, Recent Advances, Future Challenges – Emerging/Novel REM/REE Applications II
Program Organizers: Yellapu Murty, MC Technologies LLC; Eric Klier, U.S.Amy Research Laboratory; Jack Lifton, Jack Lifton LLC

Monday PM Room: 325
Location: DLL Convention Center

Session Chair: Eric Klier, Army Research Laboratories

2:00 PM Invited
Microwave Joining Process of an AluminoSilicate Ceramic Material for Radioactive Waste Containers: Greg Kalfayan1; Dominique Geocurio2; Sébastien Saunier3; Christophe Menunier2; Nathalie Texier-Mandoki1; 1CNRS UMR 5307 Laboratoire Georges Friedel and Andra; 2CNRS UMR 5307 Laboratoire Georges Friedel; 3Andra

2:20 PM Invited
Microwave-augmented Crystallization and Decrystallization in Ceramic Processing – A Phenomenology-Based Commentary: Boon Wong1

3:00 PM Invited
Effect of Density and Crystallization on the Hardness of Spark Plasma Sintered Fe – based Bulk Amorphous Alloy: Tanagi Paul1; Sandip Harimkar2; 1Oklahoma State University; 2Rutgers University

3:20 PM Invited
Understanding the Mechanism of Flash Sintering with In Situ EDXRD Experiments: Shikhar Jha3; Harry Charalambous1; Thomas Tsakalakos1; 1Alfred University

3:40 PM Invited
Understanding the Mechanism of Flash Sintering with In Situ EDXRD Experiments: Dibiase1; Harold Brody1; 1University of Connecticut

4:00 PM Invited
Microwave Technology for Commercial Scale Processing of Ceramic Materials: Prasad Apte1; 1Harper International

Program Organizers: Morsi Mahmoud, King Fahd University of Petroleum and Minerals (KFUPM) & City for Scientific Research and Technological Applications (SRTA City); Dinesh Agrawal, Pennsylvania State University; Guide Link, Karlsruhe Institute of Technology; Motoyasu Sato, Chubu University; Rishi Raj, University of Colorado at Boulder

Monday PM Room: 318
Location: DLL Convention Center

Session Chairs: Daudi Waryoba, Penn State University; Noboru Yoshikawa, Tohoku University

2:00 PM Invited
Ultrafast Laser Processing of Ceramics and Glasses: S. Sandaram1; 1Alfred University

2:20 PM Invited
Monika Willert-Porada Memorial Lecture: Microwave Processing from Fundamentals to Application: Thorsten Gerdes1; 1University of Bayreuth

2:40 PM Invited
Characterization and Modeling of Epoxy Resin Reaction Kinetics by Use of In-situ Dielectric Measurements: Dhidik Prastiyanto1; Guido Link2; John Jelonnek2; Manfred Thumm2; 1State University of Semarang; 2Karlsruhe Institute of Technology

2:00 PM Keynote
Partial Substitution of Scandium with Rare-Earth Elements in Dilute Al-Sc-RE Alloys with Nanometric, Coherent Tri aluminate Precipitates: David Dunand1; David Seidman1; 1Northwestern University

3:00 PM Invited
The Aging Response of a Sc-free Al0.045Er0.08Hf0.08Zr (at.%) Alloy: Richard Michl3; David Dunand1; David Seidman1; 1Northwestern University

3:10 PM Invited
Supply Chain Requirements for New Ocean Resource: John Halkyard1; Nhon Vo2; Troy Tack3; Jack Lifton4; 1Ocean Minerals, LLC; 2NanoAL, LLC; 3Tactical Alloys; 4Technology Metals Research, LLC

3:40 PM Invited
An Aluminum Alloy Containing Rare Earth Elements for Elevated Temperature Applications: Gregory Hildeman1; 1Performance Power Materials,Inc.

4:10 PM Invited
Replacing Scandium by Heavy Rare-earth Metals in High-performance Aluminum Alloys: Nhon Vo1; Davaadorj Bayansan1; David Dunand3; David Seidman1; 1NanoAl LLC; 2Northwestern University
New Aluminum Alloys Based on Common Rare Earth Additives: David Weiss; Orlando Rios; ‘Eck Industries, Inc.; ‘Oak Ridge National Laboratory

Responsive Functional Nanomaterials – Session II
Program Organizers: Ziqi Sun, Queensland University of Technology; Jiahua Zhu, The University of Akron; Wenxian Li, Shanghai University; Dawei Wang, University of New South Wales; Wenping Sun, University of Wollongong; Liangzhi Kou, Queensland University of Technology; Wenzhuo Wu, Purdue University

Monday PM Room: 320 Location: DLL Convention Center
Session Chairs: Liangzhi Kou, Queensland University of Technology; Ji Liang, Institute for Superconducting & Electronic Materials

2:00 PM Invited
Domain Walls and Phase Boundaries - New Nanoscale Functional Elements in Complex Oxides: Jan Seidel1; ‘UNSW Sydney

2:20 PM Invited
Physical Stimuli-dependent Response in Oxide-based Nanoscale Electronic Memories: Taimur Ahmed1; Sumeet Walia1; Madhu Bhaskaran1; Sharath Sriram1; ‘RMIT University

2:40 PM Invited
Transparent Stretchable Oxide Electronics: Philipp Gutruf1; Sharath Sriram1; Madhu Bhaskaran1; ‘RMIT University

3:00 PM Invited
Paving Thermal Highway with Self-organized Nanocrystals in Transparent Polymer Composites: Liwen Mu1; Tao Ji1; Nitin Mehra1; Jiahua Zhu1; ‘The University of Akron

3:20 PM Invited
Strain-effected Ultrafast Spin Dynamics on Endohedral Fullerenes: Chun Li1; Jing Liu1; Rui Huang1; ‘Northwestern Polytechnical University

3:40 PM Invited
Room Temperature Ferromagnetism of Fe and Ni co-doped ZnO Diluted Magnetic Semiconductor Prepared under High Magnetic Field: Ying Li1; Muhammad Tariq1; Wenxian Li1; Zhongrui Yu1; Yemin Hu1; Mingyuan Zhu1; Hongming Jin1; Kang Deng1; ‘Shanghai University

4:00 PM Invited
Crystal Facet Engineering Modification of the Nanomagnetism of Transition Metal Oxides: Wenxian Li1; Ziqi Sun1; Ying Li1; Yemin Hu1; ‘Shanghai University; ‘Queensland University of Technology

4:20 PM Invited
How to Publish Articles Rapidly in Journal of Materials Science & Technology?: Dong Luo1; ‘Institute of Metal Research, CAS
Surface Protection for Enhanced Materials Performance: Science, Technology, and Application – Oxidation and Corrosion
Program Organizers: Kang Lee, NASA Glenn Research Center; Yutaka Kagawa, University of Tokyo; Dongming Zhu, NASA Glenn Research Center; Rodney Trice, Purdue University; Daniel Mumm, University of California, Irvine; Mitch Dorfman, Oerlikon Metco (US); Christian Moreau, Concordia University; Emmanuel Boakye, UES Inc.

Monday PM Room: 333
October 9, 2017 Location: DLL Convention Center

Session Chairs: Dongming Zhu, NASA Glenn Research Center; Rodney Trice, Purdue University

2:00 PM Invited
Residual Stresses in a NiCrY Coating on a Powder Metal Disk Superalloy: Tim Gabb1; Rick Rogers1; James Nesbitt1; Robert Miller1; Susan Draper1; Jack Telesman1; 1NASA Glenn Research Center

2:40 PM
Growth of Al2O3 Scales on Hf, Y, and Si-modified Ni-20Al-5Cr Bond Coat Alloys: Wei-Ting Chen1; Brian Gleeson2; Arthur Heuer1; 1Case Western Reserve University; 2University of Pittsburgh

3:00 PM
Hot Corrosion and Oxidation Behavior of Optimized NiCoCrAl-based Coatings Deposited via Directed Vapor Deposition: Patrick Brennan1; Brian Gleeson1; 1University of Pittsburgh

3:20 PM
Burner Rig Studies of Type II Hot Corrosion of Superalloys for Shipboard Turbine Applications: Kevin Meisner1; Valentina Angelici Avincola1; Elizabeth Oplta1; 1University of Virginia

3:40 PM
Observation of Al2O3 Microstructure Changes during Isothermal Thermogravimetric Oxidation of Grain Refined NiAl: Rachel White1; Mark Weaver1; 1University of Alabama

4:00 PM
The Effect of Oxygen Partial Pressure on Grain Boundary Transport Kinetics in Alumina: Yan Wang1; Helen Chan1; Jeffrey Rickman1; Martin Harmer1; 1Lehigh University

4:20 PM
Evaluation of Protective Coatings for High-temperature Steam Oxidation in Coal-fired Power Plants: Eugene Medvedovski1; Tomasz Dudziak1; Konrad Jura1; 1Endurance Technologies Inc.; 2Foundry Research Institute; 3EDF Poland

The 9th International Symposium on Green and Sustainable Technologies for Materials Manufacturing and Processing – Novel Green Design of Ceramics II
Program Organizers: Surojit Gupta, University of North Dakota; Jun-ichi Tatami, Yokohama National University; Tatsuki Ohji, National Institute of Advanced Industrial Science and Technology (AIST); Mritunjay Singh, Ohio Aerospace Institute, NASA Glenn Research Center; Marsha Bischof, Armstrong World Industries, Inc., PA; Makio Naito, Osaka University, Japan; Hisayuki Suematsu, Nagaoka University of Technology, Japan; Yiquan Wu, Alfred University, NY

Monday PM Room: 317
October 9, 2017 Location: DLL Convention Center

Session Chairs: Yiquan Wu, Alfred University; Amit Pandey, LG Fuel Cell Systems Inc.

2:00 PM Invited
Flash Sintering of Multiphase Ceramics: Martha Mecartney1; 1University of California, Irvine

2:40 PM
Corrosion and Mechanical Properties of Y2SiO5 Environmental Barrier Coatings: Byung-Koog Jang1; Nobuo Nagashima1; Shunkichi Ueno2; Hyung-Tae Kim3; 1National Institute for Materials Science; 2Nihon University; 3Korea Institute of Ceramic Engineering and Technology

3:00 PM
Optimization of the Test Condition for 3-pt and 4-pt Flexural Tests Using Thin Ceramic Plate: Hiroyuki Miyazaki1; Hideki Hyuga1; Kiyoshi Hirao1; Tatsuki Ohji1; 1National Institute of Advanced Industrial Science and Technology

3:20 PM
Syntheses of Calcium Lanthanum Sulfide with and without a Sulfurization Process: Yiyu Li1; Yiquan Wu1; 1Alfred University

Theory, Manufacturing and Applications of Ceramic/Metal (CerMet) Nano-laminates – Ceramic/Metal (CerMet) Nano-laminates II
Program Organizers: Iman Salehnia, Northern Illinois University; Jian Wang, University of Nebraska-Lincoln; Ioannis Mastorakos, Clarkson University; Siddhartha Pathak, University of Nevada, Reno; Bilal Mansoor, Texas A&M University at Qatar; Georges Ayoub, American University of Beirut; Shuai Shao, Louisiana State University

Monday PM Room: 319
October 9, 2017 Location: DLL Convention Center

Session Chairs: Iman Salehnia, Northern Illinois University; Georges Ayoub, University of Michigan Dearborn; Bilal Mansoor, Texas A&M University at Qatar

2:00 PM Invited
Insights from Variable Temperature and Ultra-High Strain Rate Testing of Model Nanolaminate and Nanocomposite Films Realized by Alternating Atomic Layer Deposition, Sputtering and Inert Gas Condensation of Nanoparticles: Johann Michler1; 1EMPA—Swiss Federal Laboratories for Materials Science and Technology
2:30 PM Invited
Understanding Mechanical Integrity of Metal/Ceramic Interfaces through In-situ Microscale Mechanical Testing and Multiscale Modeling and Simulations: Shuai Shao1; Xiaoma Zhang2; Bin Zhang2; Yang Mu3; Collin Wick2; Ramu Ramachandran2; Wenjin Meng2; 1Louisiana State University; 2Louisiana Tech University

2:50 PM Invited
Mechanical and Physical Characterization of Ti/TiN Nano-laminate Structures: David Field1; Tarang Munigole1; 1Washington State University

3:20 PM Invited
Two Approaches for Novel Nuclear Reactor Fuel Cladding with Silicon Nitride and Nanoporous Tungsten Layers on Zircaloy-4: Mechanical Properties and Corrosion Resistance: Ryan Gautier1; Thuong Bui1; Kevin Addamo2; Kristian Hernandez2; Erika Coker1; Tanih Okan1; Bilal Mansoor2; 1Texas A&M University; 2Texas A&M University at Qatar

3:40 PM Invited
Synthesis and Characterization of Metallic Nanoparticles in a Ceramic Matrix: Weilin Jiang1; Michele Conroy1; Ram Devanathan1; 1Pacific Northwest National Laboratory

4:10 PM Invited
Multiaxial Tension/Compression Asymmetry of Ti/TiN Nano Laminates: MD Investigation: Wei Yang1; Georges Ayoub2; Iman Salehinia2; Bilal Mansoor2; Hussein Zbib2; 1Texas A&M University in Qatar; 2University of Michigan Dearborn; 3Northern Illinois University; 4Washington State University

4:30 PM Invited
Geometric Relation of Equilibrium Phase in Multi-Component System Phase Diagram: Chengjun Liu1; Jiyu Qiu1; Lifeng Sun1; Maofa Jiang1; Qing Zhao1; 1Northeastern University China

Ultra High Performance Metals, Metal Alloys, Intermetallics, and Metal Matrix Composites for Aerospace, Defense, and Automotive Applications – Bulk Metallic Glass / High Entropy Alloys
Program Organizers: Ali Yousefian, Boeing Research and Technology; Troy Topping, California State University, Sacramento; Robert Dillon, Jet Propulsion Laboratory

Monday PM
Room: 307
Location: DLL Convention Center

Session Chair: Robert Dillon, NASA Jet Propulsion Laboratory

2:00 PM Invited
Developments in Ultra-low Temperature Mechanisms Enabled by Bulk Metallic Glass Alloys: Robert Dillon1; John Paul Borgonia1; Scott Roberts1; Douglas Hofmann1; Andrew Kennett1; Stephen Hales1; J. Smith1; Jason Schuler1; Bryan McEnerney1; Andrew Shapiro1; 1Jet Propulsion Laboratory; 2NASA Langley Research Center; 3NASA Kennedy Space Center

2:40 PM Invited
Thermal Cycling of Bulk Metallic Glass Gears for Enhanced Performance: Scott Roberts1; Douglas Hofmann1; Peter Dillon1; 1JPL/NASA

3:20 PM Invited
Effect of Interstitial Atoms on the Magnetic and Mechanical Properties of Equiatomic FeCoNiCrMn High-entropy Alloys: Suok-Min Na1; Alison Flatau1; Nicholas Jones2; 1University of Maryland; 2Naval Surface Warfare Center

3:40 PM
Microstructure, Phase Equilibria and Properties of Chromium Containing Refractory-based Concentrated Complex Alloys: Francisco Cuay1; Kevin Chaput2; Todd Butler2; Christopher Woodward2; Paul Mason2; John Foltz2; Elyorjon Jumaev2; Amy Clarke2; Michael Kaufman2; Colorado School of Mines; 1Air Force Research Laboratory; 2Thermo-Calc Software Inc; 3ATI Metals

4:00 PM Invited
Effects of Elemental Interaction on Microstructure and Mechanical Property of Multicomponent TiZrHfNiCuM (M=Co, Fe) High Entropy Alloy System: Hae Jin Park1; Young Seok Kim1; Ki Buem Kim1; 1Sejong University

4:20 PM Invited
Microstructure and Mechanical Properties of AlCoCrNi High Entropy Alloy: Elyorjon Jumaev1; Ki Buem Kim1; 1Sejong University

TMS/ASM Joint Distinguished Lectureship in Materials and Society Award: What Do We Need and How Will We Get It?: Alexander King1; 1U.S. Department of Energy (DOE) Energy Innovation Hub at Ames Laboratory

9:40 AM Invited
ACerS Edward Orton Jr. Memorial Lecture: What’s New in Nuclear Reactors?: Steven Zinkle1; 1UTK/ORNL Governor’s Chair, Department of Nuclear Engineering and Department of Materials Science and Engineering; University of Tennessee, Knoxville

10:30 AM Invited
ACerS Frontiers of Science and Society - Rustum Roy Lecture

71
Additive Manufacturing of Composites and Complex Materials II – Metals and Metallic Composites
Program Organizers: Dirk Lehnhus, ISIS Sensorial Materials Scientific Centre; Jonathan Spowart, Air Force Research Laboratory; Nikhil Gupta, New York University

Tuesday PM Room: 304
October 10, 2017 Location: DLL Convention Center

Session Chairs: Adam Hehr, Fabrisonic LLC; Florian Hengsbach, Paderborn University

2:00 PM Development of High-performance 316L Stainless Steel Nanocomposites by Selective Laser Melting: Processing-microstructure-property Relation: Bandar AlMangour1; Dariusz Grzesiak2; Jenn-Ming Yang1; 1Harvard University; 2West Pomeranian University of Technology; 1University of California, Los Angeles

2:20 PM Functionally Grading Aluminum Alloy to Titanium Aluminide (TiAl) by Laser Based Directed Energy Deposition: Bandar AlMangour1; Jessica Pehr1; Abdalla Nassar1; Wesley Mitchell1; Todd Palmer1; Ted Reutzel1; 1Applied Research Laboratory at Penn State; 2Sandia National Laboratories

2:40 PM Invited
Laser Additive Manufacturing of In Situ Metal Matrix Composites: Tushar Borkar1; Rajarshi Banerjee2; 1Cleveland State University; 2University of North Texas

3:00 PM Microstructural Origins of Spatially Tailored Functional Response in NiTi SMAs: Ji Ma1; Brian Franco1; Kubra Karayagiz1; Luke Johnson1; Jun Liu1; Gustavo Tapia1; Alaa Elwany3; Raymundo Arroyave1; Ibrahim Karaman1; 1Texas A&M University

3:20 PM Phase Field Simulation of Dendritic Solidification during Additive Manufacturing: Linnin Wu1; Yi Zhang2; Jing Zhang3; 1Indiana University - Purdue University Indianapolis

3:40 PM Invited
Selective Laser Melting of Tungsten Heavy Alloys: Aljaz Ivekovic1; Kim Vanmeensel2; Jef Vleugels2; Jean-Pierre Kruth1; 1KU Leuven

Additive Manufacturing of Metals: Microstructure and Material Properties – Porosity and Microstructural Effects
Program Organizers: Andrzej Wojcieszynski, ATI Powder Metals; Ulf Ackelid, Freemelt AB; Ola Harrysson, North Carolina State University; Sudarsanam Babu, The University of Tennessee, Knoxville

Tuesday PM Room: 302
October 10, 2017 Location: DLL Convention Center

Session Chair: Tim Horn, North Carolina State University

2:00 PM Origins of Anisotropic Mechanical Behavior in Additively Manufactured Ti-6Al-4V by Directed Energy Deposition: Jay Keist1; Daudi Waryoba2; Todd Palmer1; 1Applied Research Laboratory at Penn State; 2Penn State DuBois

2:20 PM Mechanical and Corrosion Properties of CoCrFeNiTi-based High-entropy Alloy Additive Manufactured Using Selective Laser Beam Melting: Tadashi Fujieda1; Hiroshi Shiratori2; Kosuke Kuwabara1; Kenta Yamanaka2; Yuichiro Koizumi1; Akihiko Chiba1; Seiichi Watanabe1; 1Hitachi, Ltd.; 2Tohoku University; 3Hokkaido University

2:40 PM Thermal Ratcheting and Its Effects on Microstructure and Anisotropic Material Properties in Metal Melting Laser Powder Bed Fusion Based Additive Manufacturing: Deepankar Pal1; Javed Akram1; Pradeep Chalavadi1; Abdul Khan1; Brent Stucker1; 13DSIM

3:00 PM Porosity Analysis via 3D Serial Sectioning for Additively Manufactured Alloy Samples: Veeraragavan Sundar2; Satya Ganti1; Bryan Turner1; 1UES Inc.

3:20 PM Characterization of 316L Lattice Structures Fabricated via Electron Beam Melting: Stefan Roos1; Lars-Erik Rännar2; Andrey Koptyug1; Jonas Danvind1; 1Mid Sweden University

3:40 PM Microstructure Gradient Development in A356 AM Parts: Melissa Trask1; Shih Chou1; Mathieu Brochu1; 1McGill University

4:00 PM Invited
Additive Manufacturing of 316L Stainless Steel Using Electron Beam Melting Technology: Runju Samant1; 1EWI

4:20 PM The Influence of Post-build Microstructure on the Corrosion of Additively-manufactured 17-4 Stainless Steel: Mark Stout1; Eric Lass1; Maureen Williams1; Richard Ricker1; Carolyn Campbell1; Lyle Levine1; 1National Institute of Standards and Technology

Additive Manufacturing of Metals: Microstructure and Material Properties – Properties of AM Manufactured Alloys
Program Organizers: Andrzej Wojcieszynski, ATI Powder Metals; Ulf Ackelid, Freemelt AB; Ola Harrysson, North Carolina State University; Sudarsanam Babu, The University of Tennessee, Knoxville

Tuesday PM Room: 302
October 10, 2017 Location: DLL Convention Center

Session Chair: Tim Horn, North Carolina State University

2:00 PM Porosity Analysis via 3D Serial Sectioning for Additively Manufactured Alloy Samples: Veeraragavan Sundar2; Satya Ganti1; Bryan Turner1; 1UES Inc.

3:00 PM Porosity Analysis of AM Powder Based on Machine Learning Approach and In-situ Annealing Technique for Observation of Property Evolution of AM Material: He Liu1; Rachel Lim1; Christopher Kantzos Kantzos1; A. D. Rollett1; R. M. Suter1; 1Carnegie Mellon University

3:20 PM Characterization of 316L Lattice Structures Fabricated via Electron Beam Melting: Stefan Roos1; Lars-Erik Rännar2; Andrey Koptyug1; Jonas Danvind1; 1Mid Sweden University

3:40 PM Microstructure Gradient Development in A356 AM Parts: Melissa Trask1; Shih Chou1; Mathieu Brochu1; 1McGill University

4:00 PM Additive Manufacturing of 316L Stainless Steel Using Electron Beam Melting Technology: Runju Samant1; 1EWI

4:20 PM The Influence of Post-build Microstructure on the Corrosion of Additively-manufactured 17-4 Stainless Steel: Mark Stout1; Eric Lass1; Maureen Williams1; Richard Ricker1; Carolyn Campbell1; Lyle Levine1; 1National Institute of Standards and Technology
3:20 PM
Characterization of Deformation-induced Phase Transformation and Mechanical Properties of Additively Manufactured Stainless Steel: Zhuqing Wang2; Allison Beese1; 1Pennsylvania State University

3:40 PM
Microstructures of Low-C and Medium-C Steel Hybrid Layers Additively Deposited on Cast Iron Using Directed Energy Deposition (DED) Technique: Seul Bi Lee1; Yoon Suk Choi2; Jae Hyun Yu1; Sang-Hu Park1; Do-Sik Shim2; Dae-Geun Nam3; 1Pusan National University; 2Korea Maritime and Ocean University; 3Korea Institute of Industrial Technology

4:00 PM
Additive Manufacturing of CoFe-based Magnetostrictive Materials Using the LENS System: Nicholas Jones1; Jin-Hyeong Yoo1; Tomoko Sano2; Ryan Ott3; 1Naval Surface Warfare Center, Carderock Division; 2Army Research Laboratory; 3Ames Laboratory

4:20 PM
Fabrication of Fe-based Bulk Metallic Glass via Direct Metal Laser Sintering: Zaynah Mahbooba1; Lena Thorsson2; Mattias Unosson2; Timothy Horn1; Ola Harrysson1; 1North Carolina State University; 2Sindre Metals

4:40 PM
Effect of Post-built Heat Treatment on Microstructure-creep Relationship of Nickel Base Superalloy Fabricated by Powder Bed Additive Manufacturing: Hyeun Song1; Wei Zhang1; Tom McLaughy2; Alber Sadeck2; 1The Ohio State University; 2EWI

4:40 PM
High Temperature Deformation and Oxidation Behavior of Inconel 718 Alloy Manufactured with Selective Laser Melting: Yeon-ji Kang1; Yong-jin Kim2; Ji-hun Yu2; Kee-Ahn Lee3; 1Inha University; 2Korea Institute of Materials Science

Additive Manufacturing of Metals: Post Processing – Thermal Processes II
Program Organizers: Ola Harrysson, North Carolina State University; Andrzej Wojcieszynski, ATI Powder Metals; Ulf Ackelid, Freemelt AB; Sudarsanam Babu, The University of Tennessee, Knoxville

Tuesday PM Room: 303 Location: DLL Convention Center

Session Chair: Anthony Rollett, Carnegie Mellon University

2:00 PM
Reducing the Uncertainty in Mechanical Properties of Electron Beam Melted Ti-6Al-4V via Hot Isostatic Pressing: Peeyush Nandwana1; Sean Yoder3; Ryan Dehoff1; 1Oak Ridge National Laboratory

2:20 PM
Effect of Heat Treatment on Type 316L SS Microstructure and Tensile Properties: Paul Korinko1; Ken Imrich1; Dean Thompson2; Alexander Hollingshead3; Timothy Krents1; Dale Hitchcock1; 1Savannah River National Laboratory

2:40 PM
Effect of Hot Isostatic Pressing on Hastelloy X Produced by Selective Laser Melting: Maria Montero-Sistiaga1; Kopila Gurung1; Miguel Godino-Martinez1; Steve Nardone1; Sai Krishna Enbothula1; Shadi Darvish3; 1Oak Ridge National Laboratory; 2Quintus Technologies AB

3:00 PM
Effect of Tetraethoxysilane(TEOS) Oligomer on the Cathodic Disbondment of Epoxy-polyamine Coating: Haoran Wang1; Qixin Zhou1; 1The University of Akron

3:20 PM
Electroplating of Aluminum from Aqueous Solutions: John Watkins1; Xu Zhou1; Dave Luebke1; Hunaid Nulwala1; 1LumiShield Technologies

3:40 PM
Electrodeposited Ni-W and Ni-P Coatings with and without TiO2 Nanoparticles: Devesh Duddhich Shreeram1; Sai Krishna Enbothula1; Shengxi Li1; Hongbo Cong1; Gary Doll1; 1University of Akron

4:00 PM
Evaluation of the Effect of Electroless Ni-P Coating Thickness on the Corrosion Resistance of Ck45 Steel Substrate: Amin Babii Baboukani1; Ahmad Saatchi2; Shadi Darvish1; Mohammad Assadiyoun3; 1Department of Mechanical and Materials Engineering, Florida International University; 2Materials Science & Engineering, University of Wisconsin Madison; 3Florida International University

Advanced Coatings for Wear and Corrosion Protection – Advanced Coatings for Wear and Corrosion Protection I
Program Organizers: Evelina Vogli, LiquidMetal Group Holdings, Inc.; Fei Tang, DNV GL; Emad Omrani, University of Wisconsin - Milwaukee; Afsaneh Dorri Moghadam, University of Wisconsin-Milwaukee; Pradeep Menezes, University of Nevada Reno; Pradeep Rohatgi, University of Wisconsin-Milwaukee

Tuesday PM Room: 338 Location: DLL Convention Center

Session Chairs: Emad Omrani, University of Wisconsin - Milwaukee; Afsaneh Moghadam, University of Wisconsin-Milwaukee

2:00 PM
Linear, Hydrophobic, Antioxidant Copolymers for Enhanced Performance of Anticorrosion Coatings: Hanna Hlushko1; Yenny Cubides1; Raman Hlushko1; Homero Castaneda-Lopez2; Svetlana Sukhishvili3; 1Texas A&M University

2:20 PM
Environmentally Friendly Corrosion Inhibiting Primers to Resist Cosmetic Corrosion: Arif Mubarok1; Beth Furar1; Ryan Mayo3; 1PPG Industries

2:40 PM
Effect of Tetraethoxysilane(TEOS) Oligomer on the Cathodic Disbondment of Epoxy-polyamine Coating: Haoran Wang1; Qixin Zhou1; 1The University of Akron

3:00 PM
Electroplating of Aluminum from Aqueous Solutions: John Watkins1; Xu Zhou1; Dave Luebke1; Hunaid Nulwala1; 1LumiShield Technologies

3:20 PM
Electrodeposited Ni-W and Ni-P Coatings with and without TiO2 Nanoparticles: Devesh Duddhich Shreeram1; Sai Krishna Enbothula1; Shengxi Li1; Hongbo Cong1; Gary Doll1; 1University of Akron

3:40 PM
Influence of W Content on the Mechanical Wear and Corrosion Behaviour of Ped Ni-W Alloy Coatings: Sundararajan Govindan1; Mvn Vamsi2; Nitin Wasekar3; 1Indian Institute of Technology Madras; 2McGill University; 3ARCI

4:00 PM
Effect of Hot Isostatic Pressing for Effective Pore Closure: Shuai Shao1; Scott Thompson2; Nima Shamsaei2; 1Louisiana State University; 2Auburn University

4:20 PM
Effect of Electroless Ni-P Coating Thickness on the Corrosion Resistance of Ck45 Steel Substrate: Amin Babii Baboukani1; Ahmad Saatchi2; Shadi Darvish1; Mohammad Assadiyoun3; 1Department of Mechanical and Materials Engineering, Florida International University; 2Materials Science & Engineering, University of Wisconsin Madison; 3Florida International University
Advanced Steel Metallurgy: Products and Processing – Session III

Program Organizers: Emmanuel De Moor, Colorado School of Mines; Amar De, ArcelorMittal Global R&D; Kester Clarke, Colorado School of Mines; Alla Sergueeva, The NanoSteel Company; Charles Enloe, General Motors; Daniel Branagan, The NanoSteel Company; Matthew Kiser, Caterpillar Inc

Tuesday PM
October 10, 2017
Location: DLL Convention Center

Session Chairs: Amar De, ArcelorMittal Global R&D; Justin Raines, SSAB Americas

2:00 PM
A Medium-carbon, Bainitic, Air-hardening Steel for Heat Treat Reduction: Matthew Kiser1; Tianjun Liu 1; Mohammed Maniruzzaman 1; Robert Pickerill 1; 1Caterpillar Inc

2:20 PM
Alloy Design and Heat Treatment of High Strength Forged Steel for Large Crankshaft: Chul Bong Park 1; Hyunjoon Park 1; Jong-Hyun Hwang 1; YoungCheol Yoon 1; 1Hyundai Heavy Industry

2:40 PM
Effect of Intercritical Deformation on Final Microstructure in Low Carbon Grades: Unai Mayo 1; Nerea Iasisti 1; Jose Rodriguez-Ibabé 1; Pello Uranga 1; 1CEIT and Tecnun (University of Navarra)

3:00 PM
New Generation Structural Steel Metallurgy: Steven Jansto 1; 1CBMM-North America, Inc.

3:20 PM
Nucleation of Graphite Particles Formed in Medium Carbon Steel after Graphitising Anneal: Aqil Inam 1; David Edmonds 2; Rik Brydson 2; 1University of the Punjab; 2University of Leeds

3:40 PM
The Effect of Vanadium and Other Microalloying Elements on the Microstructure of Bainitic HSLA Steels: Julian Benz 1; Steven Thompson 1; 1Colorado School of Mines

4:00 PM
The Effects of Ausaging Heat Treatment on Mechanical Properties of a Medium Carbon Secondary Hardening Steel: Ziheng Wu 1; Yu Lin 1; Justin Kim 1; Warren Garrison 1; 1Carnegie Mellon University

Advancements in In-situ Electron Microscopy Characterization II – Novel Instrumental Designs

Program Organizers: Yue Liu, Shanghai Jiao Tong University; Nan Li, Los Alamos National Laboratory; Khalid Hattar, Sandia National Laboratories; T. John Balk, University of Kentucky; Josh Kacher, Georgia Tech

Tuesday PM
Room: 411
October 10, 2017
Location: DLL Convention Center

Session Chairs: John Balk, University of Kentucky; Josh Kacher, Georgia Tech

2:00 PM Invited
Insights into Strain-induced Local Chemical Ordering and Structural Polarization from Scanning Electron Nanodiffraction: Jim Ciston 1; Rachel Traylor 1; Thomas Pekin 2; Yifei Meng 1; Roberto dos Reis 1; Colin Oplus 1; Andrew Minor 1; 1Lawrence Berkeley National Laboratory; 2University of California, Berkeley

2:30 PM Invited
Investigating Local Corrosion Processes in Real and Diffraction Space by In Situ TEM Liquid Cell Experiments: Jordan Key 1; Shixian Zhu 1; Christopher Rouleau 1; Raymond Unocie 1; Yao Xie 1; Josh Kacher 1; 1Georgia Tech; 2Oak Ridge National Laboratory

3:00 PM
Scale Effects Examined by In Situ Tribology: Douglas Stauffer 1; Eric Hintsala 1; SA Syed Asif 1; 1Bruker Nano Surfaces

3:20 PM
Defect Image Simulations: Progress towards Incorporating Atomistics and Dislocation Dynamics for SEM and TEM: Marc De Graef 1; 1Carnegie Mellon University

3:40 PM
The Nanolab: Current and Emerging Techniques for Advanced Analytical Microscopy in Modern Materials Science: Andrew Holwell 1; 1Carl Zeiss Microscopy

4:00 PM
In-situ Meso-scale Mechanical Testing in the SEM: Charles Spellman 1; Alex Arzoumanidis 1; 1Psylotech

4:20 PM
A New Structure Optimizer Using Genetic Algorithms for a Wide Range of Material Types: Jason Maldonis 1; Zhongnan Xu 1; Zhewen Song 1; Dane Morgan 1; Paul Voyles 1; 1University of Madison, Wisconsin
Alumina at the Forefront of Technology II – Sapphire, Nano and High Purity Alumina

Program Organizers: William Walker, Federal-Mogul Corporation; Marina Pascucci, CeraNova Corporation; Charles Compson, Almatis; William Carty, Alfred University

Tuesday PM
October 10, 2017
Room: 316
Location: DLL Convention Center

Session Chair: Marina Pascucci, CeraNova Corporation

2:00 PM
High Purity Alumina for Hierarchical Porous Ceramics: Justin Otto1; Lionel Bonneau1; Philippe Auroy1; 1Baikowski International

2:20 PM
Modified Hydrothermal Synthesis of α-Alumina Nanoparticles below the Thermodynamic Size Limit: John Drazin1; James Wollnershauser2; Edward Gorzkowski1; 1ASEE Postdoc at US Naval Research Laboratory; 2NRL

2:40 PM
Reducing the Size of Alpha-alumina Nanocrystals below the Thermodynamic Size Limit and Related Sintering Phenomena: James Wollnershauser1; Boris Feigelson1; John Drazin1; Dana Kazeroon1; Edward Gorzkowski1; 1Naval Research Laboratory; 2ASEE at U.S. Naval Research Laboratory; 3Virginia Polytechnic Institute and State University

3:00 PM
Synthesis of Continuous Zirconia Modified Alumina Fibers: Jingyu Li1; Tong Zhao1; Zihai Yang1; Yuanchao Li1; 1Tunable Materials

3:20 PM
CVD Alumina-based Nanocomposite Coatings: Zhenyu Liu1; Chen Chen1; Peter Leicht1; Rodrigo Cooper1; Dev Banerjee1; 1Kennametal Inc

ASM Edward DeMille Campbell Memorial Lecture

Tuesday PM
October 10, 2017
Room: 407
Location: DLL Convention Center

12:45 PM Invited
Magnetic Transformations and Phase Diagrams: David LAughlin1; 1Carnegie Mellon University

Boron, Boron Coatings, Boron Compounds and Boron Nanomaterials: Structure, Properties, Processing, and Applications – Theory of Bulk Systems

Program Organizers: Jens Kunstmann, TU Dresden; Roumiana Petrova, New Jersey Institute of Tech; Scott Beckman, Washington State University

Tuesday PM
October 10, 2017
Room: 330
Location: DLL Convention Center

Session Chair: Nevill Gonzalez Szwacki, University of Warsaw

2:00 PM Invited
Boron Carbide at High Temperature: Michael Widom1; 1Carnegie Mellon University

2:40 PM Invited
Using First-principles Calculations with Materials Informatics Methods to Understand the Structure Property Relationships in the XYB14 Crystal Family: Irmak Sargin1; Bo Xu1; Scott Beckman1; 1Washington State University

3:20 PM Question and Answer Period

Ceramic-based Optical Materials and Advanced Processing – Session I

Program Organizers: Yiquan Wu, Alfred University; Jas Sanghera, Naval Research Laboratory; Michael Squillante, RMD, Inc; Akio Ikesue, World-Lab. Co., Ltd

Tuesday PM
October 10, 2017
Room: 311
Location: DLL Convention Center

Session Chair: Yiquan Wu, Alfred University

2:00 PM Invited

2:20 PM Invited
Effect of Minor Impurities on the Fabrication of Transparent Ceramics: Koji Morita1; Byung-Nam Kim1; Hidehiro Yoshida1; Keijiro Hiraga1; Yoshio Sakka1; 1National Institute for Materials Science

2:40 PM Invited
IR Optical Materials: Woohong (Rick) Kim1; Colin Baker1; Guillermo Villalobos1; Jesse Frantz1; Brandon Shaw1; Bryan Sadowski1; Shyam Bayya1; Jason Myers1; Darryl Boyd1; Lynda Busse1; Ishwar Aggarwal1; Jasbinder Sanghera1; Vihn Nguyen1; 1Naval Research Laboratory

3:00 PM Invited
Spark Plasma Sintering of Transparent YAG Ceramics: Takashi Goto1; Ying Li1; Hirokazu Katsui1; 1Tohoku University

3:20 PM
Observations in Fracture Toughness Testing of Glasses and Optical Ceramics: Jonathan Salem1; 1NASA
Correlation between Cr3+ Luminescence and Oxygen Vacancy Disorder in SrTiO3 under MeV Ion Irradiation: Miguel Crespillo Almenara; J. Graham; Fernando Aguilló-López; Yanwen Zhang; William Weber; 1The University of Tennessee; 2Missouri University of Science and Technology; 3Centro de Microanálisis de Materiales; 4Oak Ridge National Laboratory

Current Progress on Solid-state Single Crystal Growth in Sr5(PO4)3F: Yin Liu; Yiquan Wu; 1Alfred University

Effect of Dopants on the Microstructure Evolution and Sintering Kinetics of PMN-PT Ceramics: Xuan Chen; Shi Chen; Romain Gaume; 1University of Central Florida

Controlled Synthesis, Processing, and Applications of Structural and Functional Nanomaterials – Controlled Synthesis, Processing, and Applications of Structural and Functional Nanomaterials-I
Program Organizers: Gurpreet Singh, Kansas State University; Kathy Lu, Virginia Tech; Sanjay Mathur, University of Cologne; Edward Gorzkowski, Naval Research Laboratory; Haitao Zhang, UNC Charlotte; Kejie Zhao, Purdue University; Hidehiro Kamiya, Tokyo University of Agriculture and Technology

Funding support provided by: MilliporeSigma

Session Chairs: Gurpreet Singh, Kansas State University; Kathy Lu, Virginia Tech

2:00 PM Invited
Ultrathin Nanosheets of Functional Oxide Materials: Xudong Wang; 1University of Wisconsin - Madison
Data and Tools for Materials Discovery and Design – Uncertainty in Materials Design and Development
Program Organizers: Zi-Kui Liu, The Pennsylvania State University; David McDowell, Georgia Institute of Technology; Carenlyn Campbell, National Institute of Standards and Technology; Laura Bartolo, Northwestern University; Bryce Meredig, Citrine Informatics; Mark Tschopp, Army Research Laboratory; Dane Morgan, University of Wisconsin - Madison; Afina Lupulescu, ASM International

Tuesday PM Room: 323
October 10, 2017 Location: DLL Convention Center

Session Chairs: Marius Stan, ANL; Richard Otis, JPL

2:00 PM Keynote
Optimal Experimental Design Using Uncertainties: Turab Lookman1; 1Los Alamos National Laboratory

2:40 PM Invited
A Data-driven Stochastic Multiscale Analysis Framework for Design of Microstructural Material Systems: Wei Chen1; Ramin Bostanabad2; 1Northwestern University

3:00 PM Invited
Thermodynamic Modeling with Uncertainty Quantification and Its Implications for Additive Manufacturing: Richard Otis1; Zi-Kui Liu2; 1Jet Propulsion Laboratory; 2Pennsylvania State University

3:20 PM Invited
Design Optimization of Fractal Metamaterials with Distributed Gaussian Process: Anh Tran1; Yan Wang2; 1Georgia Institute of Technology

3:40 PM Invited
Quality of Material Property Models: Marius Stan1; 1Argonne National Laboratory

4:00 PM Invited
Microstructural Variability Constrained Uncertainty Propagation in the Hierarchical Multiscale Modeling of Cartridge Brass: Aaron Tallman1; Joseph Bishop2; Laura Swiler3; Yan Wang4; David McDowell5; 1Georgia Institute of Technology; 2Sandia National Laboratories

4:20 PM
Comparison of Single-sensor Differential Thermal Analysis (SSDTA) and Dilatometry in CCT Development in Grade 22 Steel: Jeffrey Stewart1; Boian Alexandrov2; 1The Ohio State University

Design, Processing, and Development of Structural Materials – Mesoscale Microstructure: Simulations and Experiments
Program Organizers: Tomoko Sano, U.S. Army Research Laboratory; Mitra Taheri, Drexel University

Tuesday PM Room: 328
October 10, 2017 Location: DLL Convention Center

Session Chairs: Jeffrey Lloyd, U.S. Army Research Laboratory; Jonathan Ligda, U.S. Army Research Laboratory

2:00 PM Invited
Using Mesoscale Simulation to Help Design and Interpret Experimental Investigations of Material Behavior: Michael Tonks1; Mitra Taheri2; Melissa Teague3; 1Pennsylvania State University; 2Drexel University; 3Sandia National Laboratory

2:40 PM
Two- and Three-dimensional Analysis of Pore Evolution Kinetics during Final Stage Sintering Using a Diffusion-controlled Monte Carlo Potts Model: Hyesoo Chung1; Gaeun Son1; Minji Kim1; Sukbin Lee1; 1Ulsan National Institute of Science and Technology

3:00 PM
In-situ SEM Serial Sectioning by Femtosecond Laser Machining: Jonathan Ligda1; Philip Goins1; Tomoko Sano1; Brian Schuster1; 1Army Research Laboratory

3:20 PM
Dislocation-based Model for Twin Propagation within and across Grain Boundaries: Jeffrey Lloyd1; 1US Army Research Laboratory

3:40 PM
The Micromechanical Response of the Two-phase System Using a Fast Fourier Transform Based Viscoplasticity: Youngkyun Son1; Sihwa Sung1; Myeongjin Lee1; Sukbin Lee1; 1Ulsan National Institute of Science and Technology (UNIST)

4:00 PM
Austenite Grain Coarsening Behavior in V-Ti Microalloyed Steels during Reheating Process: The Zhou1; Hatem Zurob2; Mike Fox1; 1Stelco Inc.; 2McMaster University; 3Gerdau Long Steel North America

4:20 PM
Dynamic Recrystallization Behavior of a 0.04 pct Nb-microalloyed Steel during Austenite Hot Compression: Mei Zhang1; 1Shanghai University
Diversity in STEM and Best Practices to Improve It
Program Organizers: Kinga Unocic, Oak Ridge National Laboratory; Megan Cordill, Erich Schmid Institute of Materials Science; Amy Clarke, Colorado School of Mines; Somayeh Pasebani, Oregon State University

Tuesday PM Room: 403
October 10, 2017 Location: DLL Convention Center

Session Chairs: Kinga Unocic, Oak Ridge National Laboratory; Amy Clarke, Colorado School of Mines; Megan Cordill, Erich Schmid Institute of Materials Science; Somayeh Pasebani, Oregon State University

2:00 PM Invited
Building Research Leaders: A Pathway to Equity: Mary Juhas1; Nicole Nieto1; 1The Ohio State University

2:20 PM Invited
Sustainability of Best Practices for STEM Education and Research: Viola Acoff1; 1The University of Alabama

2:40 PM Invited
Diversity and Mentoring in the Academy: Ernest Brothers1; 1University of Tennessee, Knoxville

3:00 PM Invited
Diversity and Inclusion: One Perspective from a National Laboratory: Ellen Cerreta1; 1Los Alamos National Laboratory

3:20 PM Invited
Diversity in STEM: Measures, Means and a Path Forward: Jonathan Madison1; 1Sandia National Laboratories

3:40 PM Invited
Leadership Training and Group Mentoring in the E-LEAD project at Alfred University: Doreen Edwards1; Emilie Carney2; Steven Tidrow2; 1Rochester Institute of Technology; 2Alfred University

4:00 PM Invited
To be Announced: Mitra Taheri1; 1Drexel University

Emerging Multifunctional Materials for Bio, EO, RF and Radiation Sensors – Emerging Multifunctional Materials for Bio, EO, RF and Radiation Sensors III
Program Organizers: Narsingh Singh, University of Maryland, Baltimore County; Dimitra Stratis-Cullum, Army Research Laboratory; Ravindra Nuggehalli, NJIT

Tuesday PM Room: 331
October 10, 2017 Location: DLL Convention Center

Session Chairs: Walter Duval, NASA Glenn Research Center; Kamdeo Mandal, IIT, Banaras Hindu University; Francesca Deganello, Consiglio Nazionale delle Ricerche(CNR)

2:00 PM Invited
Tungsten/Molybdenum Thin Films as Electrodes for High Temperature SAW Sensors: Gayatri Rane1; Wenjing Ren1; Marietta Seifert1; Siegfried Menzel1; Thomas Gemming2; 1Leibniz Institute for Solid State and Materials Research (IFW)

2:20 PM Invited
Solidification and Morphological Evolution of Al-Si Eutectics in Convecto-diffusive Conditions: Narsingh Singh1; Ching Hua Su1; Walter Duval1; Fow-Sen Choa1; Bradley Arnold1; Narayan Singh1; Kamdeo Mandal1; 1University of Maryland, Baltimore County

2:40 PM
Manipulation of the Electrical and Structural Transitions in the VOx Thin Films through Strain Engineering: Adele Moatti1; Jagdish Narayan1; John Prater1; Ritesh Sachan1; 1NCSU

3:00 PM
Morphological Breakdown in a Wide Bandgap Dielectric Material: Jayati Bhave1; Christopher Cooper1; Stacey Sova1; Bradley Arnold1; Fow-Sen Choa1; Narayan Singh1; Kamdeo Mandal1; Lisa Kelly1; Narsingh Singh1; 1University of Maryland, Baltimore County

3:20 PM
p-Si Based Microbolometer - Optical Properties: Asahel Banobre1; Sita Rajyalaxmi Marthi1; Nuggehalli Ravindra1; 1New Jersey Institute of Technology

3:40 PM Invited
Synthesis And Optical Studies on Binary Organic Materials of Citric Acid with o-phenylenediamine and 4-Methyl-o-phenylenediamine: Ramanand Rai1; 1Banaras Hindu University

4:00 PM Invited
Growth of Organic Crystals: Solidification Behavior of Anisotropic Dendritic Materials: Uma Rai1; Om Singh1; Kamdeo Mandal1; Narsingh Singh1; 1University of Maryland, Baltimore County

Failure Analysis and Prevention – Composites & Non-Metallics
Program Organizers: Andrew Havics, pH2, LLC; Pierre Dupont, Schaeffler Belgium Sprt/Bvba; Burak Akyuz, ATS, Inc.

Tuesday PM Room: 407
October 10, 2017 Location: DLL Convention Center

Session Chairs: Ronald Parrington, ESI; Tim Jur, Engineering Design & Testing Corporation; Thomas Kozina, NTN Bearing Co.; Dennis McGarry, SEA Limited

2:00 PM
Nylon Distributor Gear Failures in Two Magnetos from the Same Engine: Matthew Fox1; 1National Transportation Safety Board

2:20 PM
Examination of a Helicopter Tail Rotor Blade with a Translaminar Crack in the Composite Skin: Aaron Slager1; 1Bell Helicopter

2:40 PM
Fractography of HDPE Fusion Joints with Incomplete Fusion in Natural Gas Distribution Pipe: Michael Budinski1; Frank Zakar1; 1National Transportation Safety Board

3:00 PM
ESC Failure of Amorphous Polymer Materials: Chris Lyons1; Fazzana Ansari1; Suresh Donthu1; Steven MacLean1; 1Exponent
3:20 PM
Investigative Failure Analysis of Rope: Tanzim Nasir1; Erhan Ulvan1; 1Acuren Group Inc.

3:40 PM
Tire Analysis Tools and Techniques: William Carden1; Amy Meyers-Wells1; 1McSwain Engineering, Inc.

4:00 PM
A Case of Waterproofing Failure: Andrew Havics1; ‘pH2, LLC

4:20 PM
Failure Analysis of Sapphire Solar Concentrators: Jonathan Salem1; George Quinn2; 1NASA; 2NIST

Failure Analysis and Prevention – Petrochemical & Piping
Program Organizers: Andrew Havics, pH2, LLC; Pierre Dupont, Schaeffler Belgium Sprl/Bvba; Burak Akyuz, ATS, Inc.

Tuesday PM Room: 408
Location: DLL Convention Center

Session Chairs: Thomas Traubert, EDT Engineering; Erhan Ulvan, Acuren Group Inc.; Francisco Rumiche, Pontificia Universidad Catolica Del Peru; Courtney Pape, DNV GL; Greg Morris, Kiefner & Associates

2:00 PM
Root Cause Failure Analysis of Low Carbon Steel (P110): Muhammad Hassan1; Danish Hussain1; 1Dawood University of Engineering & Technology, Karachi

2:20 PM
Failure Analysis of Reformer Inlet Manifold: Abdulmohsen Al-Sabli1; Gys Van Zyl1; Abdulaziz Al-Meshari1; 1SABIC

2:40 PM
Failure Investigation of UNS N07718 (Inconel 718) Bolts under Cathodic Protection for Subsea Oil & Gas Operations: Adam Dyer1; Herman Amaya2; 1OneSubsea, A Schlumberger Company; 2Schlumberger

3:00 PM
Implosion of Large Diameter Ductwork: Thomas Traubert1; 1Engineering Design & Testing

3:20 PM
Case Study: When Stable Defects Ultimately Leak: Courtney Pape1; 1DNV GL

3:40 PM
Alkaline Carbonate SCC Failures at a Refinery: Ryan Haase1; Larry Hanke1; 1Materials Evaluation and Engineering

4:00 PM
Frozen? Mothballs on Ice: Porter Ritchie1; 1DNV GL

4:20 PM
Investigations and Recommendations on Dented Petroleum Pipelines: Erik Mueller1; 1National Transportation Safety Board

Fifty Years of Metallography and Materials Characterization – Fifty Years of Metallography and Materials Characterization I
Program Organizers: Ryan Deacon, United Technologies Research Center; Daniel Dennies, Consulting Metallurgical Engineer; George Vander Voort, Consultant - Struers Inc

Tuesday PM Room: 409
Location: DLL Convention Center

Session Chair: To Be Announced

2:00 PM Invited
How Microscopy Can Help to Save Energy, Save Lives, Create Jobs and Improve Our Health: Colin Humphreys1; 1University of Cambridge

3:00 PM
Advanced Analytical Microscopy: Metallographic Characterization for the Next Fifty Years: Andrew Holwell1; 1Carl Zeiss Microscopy

3:20 PM
Characterization of Transition-iron-carbide Precipitates: Steven Thompson1; 1Colorado School of Mines

3:40 PM
Applying In Situ S/TEM Microscopy to Structural Materials Using MEMS-based Closed-cell Gas-reactions – Challenges and Prospects: Kinga Unocic1; Harry Meyer III1; Dale Hensley1; Wilbur Bigelow1; Lawrence Allard1; 1Oak Ridge National Laboratory

4:00 PM
Delving into the World of Grain Boundaries with Electron Microscopy: Christopher Marvel1; 1Lehigh University

4:20 PM
Quantitative Microstructure Analysis by TriBeam Tomography: William Lenthe1; McLean Echlin1; Jean Charles Stinville1; Andrew Polonsky1; Tresa Pollock1; 1University of California Santa Barbara

Glass, Amorphous, and Optical Materials: Common Issues within Science & Technology – ACerS Alfred R. Cooper Scholar Lecture and Award Presentation
Program Organizers: Gang Chen, Ohio University; Steve Martin, Iowa State University

Tuesday PM Room: 310
Location: DLL Convention Center

Session Chairs: Steve Martin, Iowa State University; Martin Wilding, University College London

2:00 PM Invited
The Ultimate Fate of Glass: Edgar Zanotto1; 1Federal University of Sao Carlos

2:40 PM Invited
Glass Relaxation is Controlled by the Topology of the Atomic Network: Yishu Hu1; Tobias Bechgaard1; Morten Smidskaar1; Mathieu Bauchy1; 1University of California, Los Angeles; 1Aalborg University
Hybrid Organic-Inorganic Materials for Alternative Energy – Electrochemistry II
Program Organizers: Andrei Jitianu, Lehman College, City University of New York; Lisa Klein, Rutgers University; Lia Stanciu, Purdue University; Mihaela Jitianu, William Paterson University
Tuesday PM Room: 402 Location: DLL Convention Center
Session Chairs: Quentin Picard, Lehman College - City University of New York; Andrei Jitianu, Lehman College - City University of New York

2:00 PM Invited
Nanomembrane Assembly and Printing Processes: Kevin Turner1; 1University of Pennsylvania

2:30 PM Invited
Macroscopic Photoinduced Bending of Polymer Nanofibrous Mats: Jeffrey Rack1; 1University of New Mexico

3:00 PM Invited
Photo-Electrochemical CO Reduction to Acetate on Iron–copper Oxide Catalysts: Robert Baker1; 1The Ohio State University

3:30 PM Invited
Seeking Hybrid Organic/Inorganic Materials with Improved Optical Characteristics for Chemical Sensor Applications: Yi Pang1; 1The University of Akron

4:00 PM Invited
Two-dimensional Metal-organic Framework Nanosheets for Electrochemical and Photoelectrochemical Water Oxidation: Zhenmeng Peng1; 1University of Akron

4:30 PM
Electrodeposition of Hybrid Sol-gel Glass Coatings on 304 Stainless Steel for Corrosion Protection: Quentin Picard1; Grant Akalonu2; Jaida Mosa2; Mario Aparicio2; Lisa Klein2; Andrei Jitianu1; 1Lehman College; 2Instituto de Cerámica y Vidrio, Consejo Superior de Investigaciones Científicas (CSIC); 3Department of Materials Science and Engineering, Rutgers University

Interfaces, Grain Boundaries and Surfaces from Atomistic and Macroscopic Approaches – Surface Phenomena
Program Organizers: Dominique Chatain, CNRS, Aix-Marseille University; John Blendell, Purdue University; Wayne Kaplan, Technion - Israel Institute of Technology
Tuesday PM Room: 410 Location: DLL Convention Center
Session Chairs: John Blendell, Purdue University; Klaus van Benthem, University of California

2:00 PM Keynote
Nanostructure Stabilization by Grain Boundary Segregation: Challenges and Opportunities in Theory and Experiment: Christopher Schuh1; 1MIT

2:40 PM Keynote
Nanoporous Metals: Tailor-made Nanostructures with Bulk Properties Controlled by Interfaces: Nadiia Mameka1; 1Helmholtz-Zentrum Geesthacht

3:20 PM Invited
Spontaneous Nano-patterning of Zirconia Surfaces: Suliman Dregia1; Haris Ansari2; Zhiyuan Niu1; Sheikh Akbar1; 1Ohio State University; 2National University of Sciences and Technologies (NUST)

3:40 PM Invited
Wetting and Spreading at the Nanoscale: Emily Brooke1; Anna Regoutz1; Catriona McGilvery1; Eduardo Saiz1; David Payne1; 1Imperial College

4:00 PM Invited
Nanoscale Functional Properties for Piezoelectrics, Ferroelectrics, and Multiferroics at Surfaces and Buried Interfaces: James Steffes1; Zachary Thatcher1; Ryan Cordier1; Thomas Moran1; Justin Luria1; Bryan Huey1; 1University of Connecticut

4:20 PM
The Effect of Crystallographic Orientation on the Jump to Contact Behavior: A Molecular Dynamics Study: Mihad Khajehvand1; Panthea Sepehrband1; 1Santa Clara University

Joining of Advanced and Specialty Materials (JASM XIX) – Friction Stir Welding
Program Organizers: Bolian Alexandrov, The Ohio State University; Mathieu Brochu, McGill University; Anning Hu, University of Tennessee; Darren Barborak, A2Z WSI; Akio Hirose, Osaka University; PENG He, Harbin Institute of Technology; Zhiyong Gu, University of Massachusetts Lowell; Vikas Patel, ArcelorMittal USA
Tuesday PM Room: 326 Location: DLL Convention Center
Session Chair: Judy Schneider, University of Alabama at Huntsville

2:00 PM
Joining of Dissimilar Materials by Friction Bit Joining and Friction Self-pierce Riveting: Yong Chae Lim1; Michael Miles1; Xun Liu1; Yongbing Li1; Zhiyi Feng1; 1Oak Ridge National Laboratory; 2Brigham Young University; 3University of Michigan; 4Shanghai Jiao Tong University
Light Metals Alliance: Light Metals Technology 2017 – Light Metals Technology: Invited

Program Organizers: Diran Apelian, Worcester Polytechnic Institute; Kumar Sadayappan, Canmet MATERIALS; Frank Czerwinski, CanmetMATERIALS; Brajendra Mishra, CanmetMATERIALS; Michael Bermingham, The University of Queensland; Wenjiang Ding, Shanghai Jiao Tong University; Zongyuan Fan, Brunel University; Gonasagren Govender, The Council for Scientific and Industrial Research (CSIR); Karl Kainer, Helmholtz-Zentrum Geesthacht; Andreas Kraly, LKR Leichtmetallkompetenzzentrum Ranshofen GmbH; Salem Seifeddin, Jönköping University; Jinyoung Sun, Korea Institute of Materials Science.

Tuesday PM
Room: 414
Location: DLL Convention Center

Session Chairs: Kumar Sadayappan, Canmet MATERIALS; Diran Apelian, Worcester Polytechnic Institute

Aluminum Intensive Ultra-lightweight Automotive Door Structure: Randy Beals; Tim Skszek; Miguel Merino; Tim Reaburn; Marc Hellman; Magna International

Materials for Nuclear Energy Applications – Accident Tolerant Fuels

Program Organizers: Kumar Sridharan, University of Wisconsin; Jake Amoroso, Savannah River National Laboratory; Aladar Csongos, Nuclear Regulatory Commission; Kevin Fox, Savannah River National Laboratory; Yutai Katoh, Oak Ridge National Laboratory; Bill Lee, Imperial College of London; Josef Matyas, Pacific Northwest National Laboratory; Raul Rebak, GE Global Research; Cory Trivelpiece, Savannah River National Laboratory.

Tuesday PM
Room: 401
Location: DLL Convention Center

Session Chairs: Kumar Sridharan, University of Wisconsin; Meimei Li, Argonne National Lab

2:00 PM Invited
Westinghouse Accident Tolerant Fuel Materials: Frank Boylan; Peng Xu; Javier Romero; Ed Lahoda; Westinghouse Electric Company.

2:20 PM Invited
Increasing Nuclear Power Plant Safety with FeCrAl Cladding in Advanced Technology Fuel: Raul Rebak; Kurt Terrani; Nick Satterlee; William Gassmann; GE Global Research; Oak Ridge National Laboratory; Global Nuclear Fuels; Southern Nuclear; Exelon Generation

2:40 PM Invited
Dislocation Loop Dynamics in Irradiated FeCrAl Alloys: Kevin Field; Jack Haley; Samuel Briggs; Kumar Sridharan; Sergio Lozano-Perez; Steve Roberts; Oak Ridge National Laboratory; University of Oxford; University of Wisconsin - Madison.
3:00 PM Invited
Properties of Small Diameter SiC/SiC Composite Tubes for ATF Cladding Modeling and Design: Tiatat Kotob1; Takaaki Koyanagi1; Gyanender Singh1; Caen Ang1; Kurt Terrani1; Oak Ridge National Laboratory

3:20 PM
Thermochemical Modeling of Candidate Accident Tolerant Fuel Systems: Emily Moore1; Mallikharjuna Bogala1; Tashiema Wilson1; Theodore Besmann1; University of South Carolina

3:40 PM
Radiation Effects on SiC/SiC Composites for Advanced Accident Tolerant Fuel Cladding Tubes: Shradha Agarwal1; William Weber1; University of Tennessee

4:00 PM
Advanced ODS FeCrAlYZr Alloys for Accident-tolerant Fuel Cladding: Sebastien Dryepondt1; Caleb Massey1; Philip Edmondson1; Oak Ridge National Laboratory

4:20 PM
Effects of Increasing Neutron Dose on Stability of MAX Phase Ti3SiC2: Chunghao Shih1; Philip Edmondson1; Yutai Katoh1; Oak Ridge National Laboratory; University of Tennessee, Knoxville; General Atomics, San Diego

Materials Property Understanding through Characterization – Novel Tech III
Program Organizers: Indrajit Dutta, Corning Incorporated; Nicholas Smith, Corning Incorporated

Tuesday PM Room: 412 Location: DLL Convention Center

Session Chair: Chongmin Wang, Pacific Northwest National Laboratory

2:00 PM

2:20 PM
Glow Discharge Spectrometry and Metallographic Measurements: Complementary Techniques for Surface Characterization: Andrew Storey1; Diane Goodman1; Kim Marshall1; David Coulston1; Gregory Schilling1; LECO Corporation

2:40 PM
An Information System for Human-directed Material Property Understanding by Supporting the Characterization of Data: John Parker1; Najib Baig1; Stephen Warde1; John Twerdok1; Will Marsden1; Granta Design Limited

3:00 PM
Facile Experimental Measurements of Elastic Constants as a Function of Composition without Using Single Crystals: Xinpeng Du1; Ji-Cheng Zhao1; Ohio State University

3:20 PM
Pahted Surface Two-Liquid-Phase Contact Angle Method for Orientation-dependent Surface Energy Characterization: Michael Van Order1; Alison Flatau1; University of Maryland

3:40 PM
Extraction of Demagnetization Field of Magnetic Nanoparticles Using a Model Based Iterative Reconstruction Technique from TEM Images: KC Prabhav1; Marc De Graef1; Charles Bouman1; K. Aditya Mohan1; Carnegie Mellon University; Purdue University

4:00 PM
Characterization of Inclusions in Nickel Titanium Using Synchrotron X-ray Computed Microtomography: Shivram Kashyap Sridhar1; Anthony Rollett1; Carnegie Mellon University

4:20 PM
Rapid Characterization of Local Shape Memory Properties through Indentation: Peizhen Li1; Haluk Karaca1; Yang-Tse Cheng1; University of Kentucky

4:40 PM
Fast Characterization of NM Thin to Thick Coatings Using Pulsed-Rf Glow Discharge Optical Emission Spectrometry: Philippe Hunault1; Matthieu Chausseau1; Kayvon Savadkouei1; Patrick Chapon1; Sofia Gaiaschi1; HORIBA Instruments; HORIBA France

Materials Selection and Surface Analyses for Corrosion Prevention and Detection – Steels and Advanced Materials
Program Organizers: Matthew Asmussen, Pacific Northwest National Laboratory; Ajit Mishra, Haynes International; Sudhakar Mahajanam, PinnacleART; Eric Schindelholz, Sandia National Laboratory; Xueyuan Zhang, Gamry Instruments; Guang-Ling Song, Xiamen University; Luis Garfrais, Wood Group Kenny; Raul Rebak, General Electric

Tuesday PM Room: 405 Location: DLL Convention Center

Session Chair: Matthew Asmussen, Pacific Northwest National Laboratory

2:00 PM
Corrosion Properties of Powder Bed Fusion Additively Manufactured Stainless Steels: Rebecca Schaller1; Jason Taylor1; Jeffrey Rodelas1; Ajit Mishra2; Eric Schindelholz2; Sandia National Laboratories; Haynes International

2:20 PM
Environmental Effects on Stress Corrosion Cracking of Austenitic Stainless Steels: David Sapiro1; Bryan Webler1; Carnegie Mellon University

2:40 PM
Dynamic Strain Aging in Oil and Gas Production: Sudhakar Mahajanam1; Michael Joosten1; Pinnacle Advanced Reliability Technologies; Corrosion Integrity Solutions

3:00 PM
Corrosion Performance of High Strength Low Alloy Steels in Aerated and CO2 Saturated Lyman and Fleming Solutions: Lawrence Onyeji1; Girish Kale1; University of Leeds

3:20 PM
Electrochemical Corrosion of Stainless Steel in CO2-saturated Brine Solutions: Ruishu Feng1; David Sapiro1; Bryan Webler1; Margaret Ziomek-Moro2; Paul Ohodnicki1; National Energy Technology Laboratory; Carnegie Mellon University
3:40 PM Invited
Corrosion Behavior of Nickel-based Alloys in High pH Aqueous Media: Ajit Mishra; Haynes International

Mechanochemical Synthesis and Reactions in Materials Science II – Session I
Program Organizers: Antonio Fuentes, Cinvestav del IPN; Laszlo Takacs, University of Maryland Baltimore County; Challapalli Suryanarayana, University of Central Florida; Jacques Huot, Universite du Quebec a Trois-Rivieres

Tuesday PM Room: 327
October 10, 2017 Location: DLL Convention Center

Session Chair: Laszlo Takacs, University of Baltimore Maryland County

2:00 PM Invited
Phase Selection in Mechanical Alloying: Challapalli Suryanarayana; University of Central Florida

2:40 PM Invited
Synthesis and Photoluminescence of Single-crystal Silicon Nitride Nanowires via Nitriding of Cryomilled Nanocrystalline Silicon Powder: Fei Chen; Zhifeng Huang; Qiang Shen; Linnamm Zhang; Enrique Lavernia; Wuhan University of Technology; University of California at Irvine

3:20 PM Invited
Real-time Observations of Impact-induced Melting and Adhesion: Mostafa Hassani-Gangaraj; David Veyset; Keith Nelson; Christopher Schuh; Massachusetts Institute of Technology

4:00 PM
Surface Mechanical Alloying for Specialized Heterogeneity (SMASH): Heather Murdoch; Joseph Labukas; Chad Hornbuckle; Army Research Lab

4:20 PM
A Study on High Energy Ball Milling and Spark Plasma Sintering of Fe-9Cr Model Alloys: Arnab Kunda; Indrjit Charit; University of Idaho

Metal and Polymer Matrix Composites III – Composites: Imaging and Characterization
Program Organizers: Nikhil Gupta, New York University; Tomoko Sano, U.S. Army Research Laboratory

Tuesday PM Room: 319
October 10, 2017 Location: DLL Convention Center

Session Chairs: Nikhil Gupta, New York University; Nikhilash Chawla, Arizona State University

2:00 PM Invited
Anisotropy and Thermal History Effects on the Tensile Behavior of a 3D Printed Polymer Matrix Composite via In Situ Synchrotron X-ray Tomography: Nikhilash Chawla; Arizona State University

2:40 PM Invited
Recent Developments in Self-healing Metallic Materials and Mechanics of Self-healing Composites: Nathan Salovitz; Volkan Kilicli; Xiaojun Yan; Pradeep Rohatgi; University of Wisconsin-Milwaukee; University of Wisconsin-Milwaukee; Gazi University; University of Wisconsin-Milwaukee; Dalian University

3:20 PM Invited
Quantitative Evaluation of Composite Materials Using In Situ Microscopy: Mitra Taheri; Drexel University

4:00 PM
Composite Fiber Orientation Analysis Utilizing X-ray Micro-Computed Tomography: Jennifer Sietins; Army Research Laboratory

4:40 PM
Prediction of Modulus of Polymers and Composites at Different Strain Rates by Integral Transform of DMA Data: Steven Zeltmann; Keerthana Prakash; Nikhil Gupta; New York University

4:20 PM
Instrumented Depth-sensing Nanoidentation of a Magnesium Metal-matrix Nanocomposite (AZ31-0.33wt% CNT): Meysam Haghshenas; Robert Klassen; Sathish Kannan; Amin Ismail; Manoj Gupta; University of North Dakota; Western University; American University of Sharjah; National University of Singapore

Multifunctional Oxides – Multifunctional Metal Oxide Thin Films
Program Organizers: Xiaoqing Pan, University of California, Irvine; Chonglin Chen, University of Texas at San Antonio; Quanxi Jia, The State University of New York; Judith Driscoll, University of Cambridge

Tuesday PM Room: 312
October 10, 2017 Location: DLL Convention Center

Session Chairs: Aiping Chen, Los Alamos National Laboratory; Thomas Ward, Oak Ridge National Laboratory

2:00 PM Invited
Emergent Structures and Properties in Ferroelectric Thin Films: Lane Martin; University of California, Berkeley

2:20 PM Invited
Exchange Coupling in Oxide Heterostructures Driven by Hidden Interface: Aiping Chen; Qiang Wang; Michael Fitzsimmons; Erik Enriquez; Marcus Weigand; Zach Harrell; Brian McFarland; Xujie Li; Paul Dowden; Judith MacManus-Driscoll; Dmitry Yarotski; Quanxi Jia; Los Alamos National Laboratory; Argonne National Laboratory & West Virginia University; Oak Ridge National Laboratory & University of Tennessee; University of Cambridge; University of Buffalo - The State University of New York

2:40 PM Invited
Polar Surface Domains on Non-polar Surfaces: Paul Salvador; Gregory Rohrer; Carnegie Mellon University

3:20 PM
Chemical Solution Deposition of Ferroelectric Oxide Thin Films and Nanocomposites: Mads Christiansen; Trygve Ræder; Mari-Ann Einarsrud; Tor Grande; Norwegian University of Science and Technology
TUESDAY PM

3:40 PM Invited
Strain Doping in Multifunctional Oxides: Thomas Ward¹; ¹Oak Ridge National Laboratory

4:00 PM
Black Titania by pp-MOCVD: Nanostructured Carbon-sensitised Titania; Films with Visible Light Activity: Catherine Bishop²; Aleksandra Gardecka³; Andreas Kafizas²; Raphael Boichot³; Susan Krumdieck³; ¹University of Canterbury; ²Imperial College London; ³Institut Polytechnique de Grenoble

Next Generation Biomaterials – Metallic Biomaterials
Program Organizers: Roger Narayan, UNC/NCSU Joint Department of Biomedical Engineering; Jie Huang, University College London; Vipul Davé, Johnson & Johnson; Sanjiv Lalwani, Lynntech, Inc.; Marc in het Panhuis, University of Wollongong; Mohan Edirisinghe, University College London

Tuesday PM
October 10, 2017
Location: DLL Convention Center
Session Chairs: Celaletdin Ergun, Istanbul Technical University; Rajarshi Banerjee, University of North Texas

2:00 PM Invited
Additive Manufacturing of Low Modulus Titanium Alloys for Biomedical Devices: Srinivas Aditya Mantri¹; Trina Majumder¹; Vishal Soni¹; Calvin Mikler¹; Tyler Torgerson¹; Eugene Ivanov¹; Nick Birbilis¹; Thomas Scharf¹; Rajarshi Banerjee¹; ¹University of North Texas; ²Monash University; ³Tosoh SMD Inc.

2:20 PM
Adhesion and Entry of Gold Nano Particles into Breast Cancer Cells: Vanessa Uzonwanne¹; John Obayemi¹; Jingjie Hu¹; Stella Dozie-Nwachukwu¹; Karen Malatesta¹; Nicolas Anuku¹; Winston Soboyejo¹; ¹Worcester Polytechnic Institute; ²Princeton University; ³Australian University of Science and Engineering; ⁴Bronx Community College

2:40 PM
LHRH-conjugated PEG-coated Magnetic Nanoparticles for Specific Targeting of Triple Negative Breast Cancer Cells: The Role of Receptor-mediated Endocytosis: Jingjie Hu¹; John Obayemi¹; Karen Malatesta¹; Andrej Košmajl¹; Winston Soboyejo¹; ¹Princeton University; ²Worcester Polytechnic Institute (WPI)

3:00 PM Invited
Investigation of the Corrosion Behaviour of AZ31, AZ 91 and ZK 60 Magnesium Alloys: Waseem Haider¹; Usman Riaz¹; Umair Shah¹; Hassnain Asgar¹; ¹Central Michigan University

3:20 PM
Design for Advanced Biomaterial of Mg Alloy: Duc Hyun Cho¹; Ik Min Park¹; Kyung Mox Cho¹; ¹Pusan National University

3:40 PM
Biodegradation and Biological Response of Magnesium-based Alloys for Orthopedic Applications: Process-Structure-Functional Property Relationship: Krishna Chattanya Nune¹; P Trivedi¹; S Patil¹; RDK Misra¹; ¹University of Texas at El Paso

4:00 PM The Effect of Rapid Solidification on Physical Properties of Advanced Biomaterial Co-Cr-Mo-C Alloy: Hamid-Reza Erfanian-Naziftoosi¹; Hugo López¹; ¹University of Wisconsin Milwaukee

4:20 PM Invited
The Effect of Core Size and Coating Layers on the Hyperthermia Performance of Iron Oxide, Manganese Ferrite, Magnesium Ferrite and Strontium Ferrite Superparamagnetic Nano Particles: Celaletdin Ergun¹; Esra Durucu¹; Mona Nejatpour¹; Elvan Aydin¹; ¹Istanbul Technical University

Phase Stability, Diffusion Kinetics, and Their Applications (PSDK-XII) – Session III: J. Willard Gibbs Phase Equilibria Award - Computational Thermodynamics
Program Organizers: Wei Xiong, University of Pittsburgh; Raymundo Arroyave, Texas A & M University; Ji-Cheng Zhao, The Ohio State University; Arthur Pelton, Ecole Polytechnique

Tuesday PM
October 10, 2017
Location: DLL Convention Center
Session Chairs: Arthur Pelton, Ecole Polytechnique; Stephan Petersen, GTT Technologies

2:00 PM Invited
Gibbs-energy Minimization in FactSage: Gunnar Eriksson¹; ¹GTT-Technologies

2:20 PM Invited
Australian Impact of SOLGASMIX: Michael Wadsley¹; ¹Consultant

2:40 PM Invited
FactSage and Phase Stability: Christopher Bale¹; Gunnar Eriksson²; Arthur Pelton³; ¹Ecole Polytechnique; ²GTT-Technologies

3:00 PM Invited
Thermochemical Modeling in the Development of Advanced Nuclear Fuels: Theodore Besmann¹; Mark Noordoosthoek¹; Tashiema Wilson¹; Emily Moore¹; Jacob McMurray¹; Elizabeth Wood¹; Andrew Nelson¹; Simon Middleburgh¹; Edward Lahoda¹; Peng Xu¹; ¹University of South Carolina; ²Oak Ridge National Laboratory; ³Los Alamos National Laboratory; ⁴Westinghouse Vasteras; ⁵Westinghouse Electric Company, LLC

3:20 PM Invited
Scheil-Gulliver Constituent Diagrams: Arthur Pelton¹; Gunnar Eriksson¹; Christopher Bale¹; ¹Ecole Polytechnique

3:40 PM Invited

4:00 PM Invited
Search for New Rare Earth-based Alloys: Patrice Turchi¹; Aurélien Perron¹; Vincenzo Lordi¹; Orlando Rios¹; ¹Lawrence Livermore National Laboratory; ²Oak Ridge National Laboratory
TUESDAY PM

Recent Advances in Computer-aided Materials Design – Emerging Approaches of Material Design
Program Organizers: Huan Tran, University of Connecticut; Ghanshyam Pilania, Los Alamos National Laboratory; Alexey Kolmogorov, Binghamton University, State University of New York; Mina Yoon, Oak Ridge National Laboratory; Son Hoang, University of Connecticut

Tuesday PM Room: 324
October 10, 2017 Location: DLL Convention Center

Session Chair: Huan Tran, University of Connecticut

3:00 PM Introductory Comments

2:45 PM Classification of Scientific Journal Articles to Support Automated Data Extraction and Curation: Amar Krishna1; Alden Dima2; Alok Choudhary; Akrit Agrawal; 1Institute of Standards and Technology;

2:40 PM Panel Discussion Panel II - Future of the REE Industry
Panelists include: Jack Lifton, Jack Lifton LLC (Panel Lead); Eric Nyrez, Neo Materials; Jinfang Liu, Electron Energy Corporation; and Steve Constantinides, Magnetics & Materials LLC

2:40 PM Panel Discussion Panel I - Current Status of the REE Industry
Panelists include: Gareth Hatch, Innovation Metals Corp.(Panel Lead); Michael McKittrick, U.S. Department of Energy; David Weiss, Eck Industries; and John P de Neufville, Eutectics, LLC

2:00 PM Keynote

Current Status and Future Challenges Facing Rare Earth Materials Industry: Jack Lifton1; 1Jack Lifton LLC

2:00 PM Keynote

The Materials Genome Initiative: The Centrality of Computation: James Warren1; 1National Institute of Standards and Technology

2:00 PM Invited

Grain Refinement of Ni-based Superalloy under Magnetic-thermal Coordinated Control: Yingjiu Li1; 1Institute of Metal Research, Chinese Academy of Sciences

2:20 PM Invited

Room Temperature Magnetic Processing of Advanced Ceramics: Victoria Blair1; Nicholas Ku1; Michael Kornecki1; Selva Raju1; Jennifer Elward2; Berend Rinderspacher3; Raymond Brennan1; 1Army Research Laboratory; 2ORISE; 3SURVICE Engineering; 3ORAU

2:40 PM Invited

Effects of Elastic Waves at Several Frequencies on Biofilm Formation in Circulating Laboratory Biofilm Reactors: Hideyuki Kanematsu1; Shogo Maeda2; Senshin Umekii1; Kazuyuki Tohii1; Nobumitsu Hira1; Akiko Ogawa2; Takeshi Kougo1; 1Suzuka National College of Technology; 2National Institute of Technology, Suzuka College; 3Tohoku University

3:00 PM

In Situ Study of Lattice Expansion during Flash Sintering: Harry Charalampos1; Shikhar Jha1; Thomas Tsakalakos1; 1Rutgers University

3:20 PM

Structure and Properties of Microwave-consolidated Magnesium Powders: R Sadangi1; D Kapoor1; R Rowland2; T Zahrab3; M Imam3; 1Armament Research Development Engineering Center; 2MATSYS, Inc; 3George Washington University

3:40 PM

Sinter-forging and Spark Plasma Sintering of WC-Co for Enhanced Mechanical Properties: Zhao Ding1; Weiliang Yao1; Leon Shaw1; Elisa Torresani1; Eugene Olevsky2; Claude Estournes1; 1Illinois Institute of Technology; 2San Diego State University; 3Carnot Institute

4:00 PM

Observations on the Effect of Electric Field on Mullite Formation in Porcelains: Wirat Lerdprom1; Eugenio Zapata-Solvas1; Doni Jayaseelan1; William Lee2; 1Imperial College London

4:20 PM

Influence of Applied Magnetic Fields on Rare-earth & Transition Metal Dopants in α-Al2O3: Selva Venkata Raju1; Michael Kornecki1; Raymond Brennan1; Victoria Blair1; Nicholas Ku1; 1USARL, WMRD

Rare Earth Metals, Compounds, and Alloys: Synthesis, Processing, Emerging Applications, Recent Advances, Future Challenges – REE Panel
Program Organizers: Yellali Murty, MC Technologies LLC; Eric Klier, U.S.Army Research Laboratory; Jack Lifton, Jack Lifton LLC

Tuesday PM Room: 325
October 10, 2017 Location: DLL Convention Center

Session Chair: Jack Lifton, Jack Lifton LLC

85
3:45 PM Invited
High Quality Data and Their Applications for Materials Design: Zi-Kui Liu;
1The Pennsylvania State University

4:15 PM Invited
Informatics Guided Multiscale Design of Materials: Krishna Rajan;
1University at Buffalo: SUNY

4:45 PM
Accelerated Discovery of High Entropy Alloys through Constraint Satisfaction Algorithms: Raymundo Arroyave; Anas Abu-Odeh; Tanner Kirk; Edgar Galvan; Richard Malak; 1Texas A & M University

Shaping & Forming of Advanced High Strength Steels II – Shaping & Forming of Advanced High Strength Steels: Performance

Tuesday PM Room: 320
Location: DLL Convention Center

Session Chair: Kester Clarke, Colorado School of Mines

2:00 PM Invited
Bridging the Gap between Advanced Sheet Steel Product Development and Successful Implementation of These Products in Automotive Body Structures: Sriram Sadagopan; 1ArcelorMittal/Global R&D

2:20 PM Invited
Periodic Gold Nanoparticle Array/Functional Hydrogel Composites and Their Strong Optical Response for Sensing Applications: Yue Li; 1Institute of Solid State Physics, Chinese Academy of Sciences

2:40 PM Invited

3:00 PM
Facile Synthesis of PdNi Hollow Nanocrystals with Enhanced Electrocatalytic Activities toward Ethanol Oxidation: Zelin Chen; Jinfeng Zhang; Yuan Zhang; Yunwei Liu; Xiaopeng Han; Cheng Zhong; Wenbin Hu; Yida Deng; 1Tianjin University

3:20 PM
Enhancing Energy Efficiency in Saccharide-HMF Conversion with Core/shell Structured Microwave Responsive Catalysts: Jiao Li; Liwen Mu; Jiahua Zhu; 1University of Akron

4:00 PM
Al Doping Induced Room Temperature Ferromagnetism in ZnO Synthesized under Pulsed Magnetic Field: Ying Li; Zhongyi Wu; Muhammad Tariq; Wenxian Li; Yemin Hu; Mingyuan Zhu; Hongming Jin; Kang Deng; 1Shanghai University

4:00 PM
Data-driven Approaches for Predicting Fatigue Strength of Steels: Ankit Agrawal; Alok Choudhary; 1Northwestern University

3:45 PM Invited
High Quality Data and Their Applications for Materials Design: Zi-Kui Liu;
1The Pennsylvania State University

4:15 PM Invited
Informatics Guided Multiscale Design of Materials: Krishna Rajan;
1University at Buffalo: SUNY

4:45 PM
Accelerated Discovery of High Entropy Alloys through Constraint Satisfaction Algorithms: Raymundo Arroyave; Anas Abu-Odeh; Tanner Kirk; Edgar Galvan; Richard Malak; 1Texas A & M University

Shaping & Forming of Advanced High Strength Steels II – Shaping & Forming of Advanced High Strength Steels: Performance

Tuesday PM Room: 320
Location: DLL Convention Center

Session Chair: Kester Clarke, Colorado School of Mines

2:00 PM Invited
Bridging the Gap between Advanced Sheet Steel Product Development and Successful Implementation of These Products in Automotive Body Structures: Sriram Sadagopan; 1ArcelorMittal/Global R&D

2:20 PM Invited
Periodic Gold Nanoparticle Array/Functional Hydrogel Composites and Their Strong Optical Response for Sensing Applications: Yue Li; 1Institute of Solid State Physics, Chinese Academy of Sciences

2:40 PM Invited

3:00 PM
Facile Synthesis of PdNi Hollow Nanocrystals with Enhanced Electrocatalytic Activities toward Ethanol Oxidation: Zelin Chen; Jinfeng Zhang; Yuan Zhang; Yunwei Liu; Xiaopeng Han; Cheng Zhong; Wenbin Hu; Yida Deng; 1Tianjin University

3:20 PM
Enhancing Energy Efficiency in Saccharide-HMF Conversion with Core/shell Structured Microwave Responsive Catalysts: Jiao Li; Liwen Mu; Jiahua Zhu; 1University of Akron

4:00 PM
Al Doping Induced Room Temperature Ferromagnetism in ZnO Synthesized under Pulsed Magnetic Field: Ying Li; Zhongyi Wu; Muhammad Tariq; Wenxian Li; Yemin Hu; Mingyuan Zhu; Hongming Jin; Kang Deng; 1Shanghai University

4:00 PM
Data-driven Approaches for Predicting Fatigue Strength of Steels: Ankit Agrawal; Alok Choudhary; 1Northwestern University
Special Session on Emerging Technologies to Develop and Commercially Adopt Innovative Materials – Special Session on Emerging Technologies to Develop and Commercially Adopt Innovative Materials

Program Organizers: Ron Radzilowski, AK Steel Corp.; Amber Black, PTR - Precision Technologies, Inc.; David Forrest, Department of Energy; Manish Mehta, M-TECH International LLC; Elizabeth Hoffman, Savannah River National Laboratory; Judith Schneider, University of Alabama at Huntsville

Tuesday PM October 10, 2017 Room: 329 Location: DLL Convention Center

Session Chair: David Forrest, U.S. Dept. of Energy

2:00 PM Introductory Comments: David R. Forrest and Amber Black

2:10 PM Invited
Advanced Manufacturing Research Activities in the Commercial Scaling of Additive, Battery, Carbon Fiber, and Composites Fabrication: William Peter1; 1Oak Ridge National Laboratory

2:30 PM Invited
Accelerated Design and Deployment of New Materials Using L.C.M.E. Strategies: Aziz Asphahani1; 1QuesTek Innovations LLC

2:50 PM Invited
Emerging Applications for Rare Earths: Josh Collins1; 1Intelligent Material Solutions, Inc.

3:10 PM Invited
Covetic Nanomaterials for Energy Applications: David Forrest1; 1Department of Energy

3:30 PM Panel Discussion Moderator: David R. Forrest, Panelists: William Hutchinson Peter, Aziz Asphahani, Josh Collins

4:10 PM Concluding Comments: David R. Forrest

Surface Properties of Biomaterials – Surface Properties of Biomaterials: Bearing Materials and Tribological Properties

Program Organizers: Jason Langhorn, DePuy Synthes Joint Reconstruction; Susmita Bose, Washington State University; Amit Bandopadhyay, Washington State University; Mangal Roy, Indian Institute of Technology; Venu Varanasi, Texas A & M Health Science Center

Tuesday PM October 10, 2017 Room: 335 Location: DLL Convention Center

Session Chairs: Venu Varanasi, Texas A&M University; Jason Langhorn, DePuy Synthes

2:00 PM Cost Effective Wet Blast Textured CoCrMo with Improved Polyethylene Wear in a Pin-on-Disc Test: Jason Langhorn1; Elizabeth Hippensteel1; Daniel Schmidt1; 1DePuy Synthes Joint Reconstruction

2:20 PM Improved Polyethylene Wear Performance with Laser Textured CoCrMo in a Pin-on-Disc Test: Jason Langhorn1; Elizabeth Hippensteel1; Daniel Schmidt1; Alireza Borjali1; Bart Raeymaekers1; 1DePuy Synthes Joint Reconstruction

2:40 PM Processes of Biomaterials: Bearing Materials and Tribological Properties

Program Organizers: Jason Langhorn, DePuy Synthes Joint Reconstruction; Susmita Bose, Washington State University; Amit Bandopadhyay, Washington State University; Mangal Roy, Indian Institute of Technology; Venu Varanasi, Texas A & M Health Science Center

Tuesday PM October 10, 2017 Room: 333 Location: DLL Convention Center

Session Chairs: Emmanuel Boakye, UES; Dongming Zhu, NASA Glenn Research Center

2:00 PM Powder-Suspension Hybrid Axial Plasma Spraying of Triballoy 400® Chromium Carbide Coatings: Processing, Characteristics and Wear Behaviour: G. Karthik Narayan1; Stefan Björklund1; Nicholas Curry2; Shrikant Joshi3; 1University West; 2Treibacher Industrie AG

2:40 PM Ultra High-temperature Ceramic Material Coatings for C-C Composites: Emmanuel Boakye4; Clifford Leslie5; David Olson5; 1UES Inc.; 2National Research Council; 3US Navy
3:00 PM
Tribological Performance and Characteristics of an Ultra-durable B4C/Cr Coating with Pre-UNSM Treatment: Zhencheng Ren1; Haifeng Qin1; Brandon Strahan1; Yalin Dong1; Chang Ye1; Gary Doll1; 1University of Akron

3:20 PM
Synthesis of Heat Resistant Cermet Coatings on Ti6Al4V Titanium Alloy Using Ultra High Temperature Ceramics: Gabriel Faustode1; Patricia Popoola1; Sisa Pityana1; 1Tshwane University of Technology, Pretoria, South Africa; 2Council of Scientific and Industrial Research Centre

3:40 PM
Characterization of Laser Cladded 200 µm Thin Sheets: Tobias Gabriel2; Florian Scherm1; Marek Gorywoda1; Uwe Glatzel1; 1University Bayreuth; 2University of Applied Sciences Hof

4:00 PM
The Sustaining Effect of Remaining Cementite and the Restraining Effect of Alloy Elements on Corrosion Acceleration of Ferrite-Pearlite Steel in an Acidic Chloride Solution: Junhua Dong1; Xuehui Hao1; Jie Wei1; Wei Ke1; 1Institute of Metal Research, CAS

The 9th International Symposium on Green and Sustainable Technologies for Materials Manufacturing and Processing – Next Generation Green Technologies 1
Program Organizers: Surojit Gupta, University of North Dakota; Jun-ichi Tatami, Yokohama National University; Tatsuki Ohji, National Institute of Advanced Industrial Science and Technology (AIST); Mrityunjay Singh, Ohio Aerospace Institute, NASA Glenn Research Center; Marsha Bischel, Armstrong World Industries, Inc., PA; Makio Naito, Osaka University, Japan; Hisayuki Suematsu, Nagaoaka University of Technology, Japan; Yiquan Wu, Alfred University, NY

Tuesday PM Room: 317
October 10, 2017 Location: DLL Convention Center

Session Chairs: Enrico Bernardo, University of Padova; Babak Anasori, Drexel University

2:00 PM Invited
2D Metal Carbides and Nitrides (MXenes) for Green Technologies: Babak Anasori1; Yury Gogotsi2; 1Drexel University

2:40 PM Invited
Understanding the Spark Plasma Sintering Behaviour of Ti-6Al-4V Reinforced with Nanosized TiN: Oluwasegun Falodun1; Mosima Maja1; Babatunde Obadele1; Samuel Oke1; Oladeji Ige1; Peter Olubam1; 1University of Johannesburg

3:20 PM
Understanding the Unique Microstructural Evolution and Mechanical Properties of Hydrogen Sintered/Processed Titanium Alloys: James Paramore1; Brady Butler1; Jonathan Ligda1; Z. Zak Fang2; Matt Dunstan2; 1United States Army Research Laboratory; 2University of Utah
Ultra High Performance Metals, Metal Alloys, Intermetallics, and Metal Matrix Composites for Aerospace, Defense, and Automotive Applications – High Temperature Materials / Composites / Hybrid / Graded Materials

Program Organizers: Ali Yousefiani, Boeing Research and Technology; Troy Topping, California State University, Sacramento; Robert Dillon, Jet Propulsion Laboratory

Tuesday PM Room: 307
October 10, 2017 Location: DLL Convention Center

Session Chair: Ali Yousefiani, Boeing Research & Technology

2:00 PM
Ni3Al-based Strips and Foils for Structural or Functional Applications: Pawel Jozwik1; Zbigniew Bojar1; Tomasz Durejko1; 1Military University of Technology

2:20 PM
Precipitation Characteristics of Gamma Prime Precipitate in Rene 65: Christina - Maria Katsari1; Hanqing Che1; Benjamin Turner1; Andrew Wessman2; Stephen Yue1; 1McGill University; 2GE Aviation,US

2:40 PM
Microstructural Analysis and High Temperature Creep Testing of Mo-9Si-8B-xAl-yGe Alloys: Peter Kellner1; Rainer Völkl1; Uwe Glatzel1; 1University Bayreuth

3:00 PM
Characteristic on Nanostructured Multicomponent Coating Layer Using Direct Current Sputtering: Young Seok Kim1; Hae Jin Park1; Young Hoon Lee1; Ki Buem Kim1; 1Sejong University

3:20 PM
Enhancement of Fracture Toughness Utilizing the Material Inhomogeneity Effect: Roland Kasberger1; Masoud Sistaninia2; Bruno Buchmayr3; Otmar Kolednik2; 1Eirich Schmid Institute of Materials Science; 2Materials Center Leoben Forschung GmbH; 3Chair of Metal Forming, Montanuniversität

3:40 PM
Oxidation Behavior of Laser Clad Ti-SiC-ZrB2 Cermet Coatings of Titanium Alloy: Gabriel Farotade1; Patricia Popoola2; 1Tshwane University of Technology, Pretoria, South Africa

ACerS Robert B. Sosman Award Symposium: Tailoring Ceramic Microstructures: Understanding and Tuning of Materials Performance – Robert B. Sosman Award Symposium I: Tailoring Ceramic Microstructures: Understanding and Tuning of Materials Performance

Program Organizer: Wolfgang Rheinheimer, Karlsruhe Institute of Technology

Wednesday AM Room: 315
October 11, 2017 Location: DLL Convention Center

Session Chair: Wolfgang Rheinheimer, Karlsruhe Institute of Technology

8:40 AM Invited
Anisotropic Grain Growth in Polycrystalline Ceramics: Accepted Concepts and New Paradigms: Carol Handwerker1; John Blendell1; Wolfgang Rheinheimer2; Jean Taylor3; 1Purdue University; 2Karlsruhe Institute of Technology; 3Courant Institute of Mathematics

9:20 AM Invited
Properties of Grain Boundaries in SrTiO3 and their Influence on Grain Growth: Madeleine Kelly1; Xiaoting Zhong1; Wolfgang Rheinheimer2; Michael Hoffmann1; Gregory Rohrer1; 1Carnegie Mellon University; 2Karlsruhe Institute of Technology

10:00 AM Break

10:20 AM Invited
Tenth Anniversary of Grain Boundary Complexions Research: Martin Harmer1; Andrea Harmer2; Amanda Krause1; Christopher Marvel1; 1Lehigh University; 2Kutztown University

11:00 AM Invited
Room Temperature Sintering of Alkali Halide Salts: Gary Messing1; Elizabeth Kupp1; Julie Anderson1; Nuerxida Pulati1; 1The Pennsylvania State University

Additive Manufacturing of Metals: Fatigue and Fracture – Session I

Program Organizers: Nikolas Hrabe, National Institute of Standards and Technology; Nicholas Barbosa, National Institute of Standards and Technology; Richard Ricker, National Institute of Standards and Technology; Steve Daniewicz, University of Alabama; Nima Shamsaei, Auburn University; Mohsen Seifi, Case Western Reserve University/ASTM International

Wednesday AM Room: 304
October 11, 2017 Location: DLL Convention Center

Session Chair: Nikolas Hrabe, National Institute of Standards and Technology

8:00 AM Invited
Issues in Mechanical Behavior of Additively Manufactured Metallic Alloys: John Lewandowski1; Mohsen Seifi2; 1Case Western Reserve University

8:40 AM
Investigating Defect Formation Mechanisms in Powder-bed Metal Additive Manufacturing Using Synchrotron-based High-Speed X-ray Radiography and Microtomography: Ross Cunningham1; Cang Zhao2; Tao Sun2; Anthony Rollett1; 1Carnegie Mellon University; 2Argonne National Laboratory
9:00 AM Assessing the Tensile and Fatigue Properties of Alloy 718 and Ti-6Al-4V Produced from Powder Bed Fusion Additive Manufacturing: Brian Hayes1; John Porter1; Mike Veler1; Tim Hal1; Ken Davis1; 1UES, Inc.; 2Faraday Technology, Inc.; 3CalRAM, Inc.

9:20 AM Microstructural Evolution around Pores in Additively Manufactured 316L SS under Cyclic Loading: Rachel Lim1; Christopher Kantzos1; Yufeng Shen1; He Liu1; Robert Suter1; Anthony Rollett1; 1Carnegie Mellon University

9:40 AM Size Effects on Fracture and Fatigue Behavior of Additively Manufactured Alloys: Mohsen Sefli1; Jan Dźugan1; John Lewandowski1; 1Case Western Reserve University; 2COMTES FHT

10:00 AM Break

11:00 AM Effects of Powder Oxidation on Impact Toughness of EBM Ti-6Al-4V Produced from Powder Bed Fusion Additive Manufacturing: Brian Hayes1; John Porter1; Mike Veler1; Tim Hal1; Ken Davis1; 1UES, Inc.; 2Faraday Technology, Inc.; 3CalRAM, Inc.

11:20 AM A Predictive Model for Competing Fatigue Crack Initiation Mechanisms in Porous Metals: Matt Dunstan1; James Paramore2; Z. Zak Fang1; 1University of Utah; 2United States Army Research Laboratory

11:40 AM Residual Stresses and Fatigue Behavior in Additive Repairs of AA7075 and AA2024 Produced by Cold Spray Deposition: Luke Brewer1; William Story1; Benjamin White1; James Jordan1; Jeffrey Bunn1; E. Payzant1; 1University of Alabama

10:00 AM Break

10:20 AM Effect of Build Parameters on Microstructure of Stainless Steel Laser Additive Manufactured Components: Penn Rawn1; Steven Keckler1; Ronda Coguill1; K.V. Sudhakar1; Bruce Madigan1; 1Montana Tech

11:00 AM Additively Manufactured Heat Exchanger: Paul Korinko1; Matthew Van Swol1; Alexander Hollingshad1; Haley McKee2; Frederick List1; Keith Carver2; 1Savannah River National Laboratory; 2Kansas City National Security Campus; 3Oak Ridge National Laboratory

8:00 AM Characterisation of Additively Manufactured 316L Stainless Steel Crystal Structure: Maija Nyström1; Jorma Roine1; Hannu Heikkinen1; Antti Pörhönen1; Olli Nyrhilä1; 1Electro Optical Systems Finland; 2University of Turku

8:20 AM Characterization of Additively Manufactured 316L Stainless Steel for Naval Applications: Lily Nguyen1; Richard Fonda2; David Rowenhurst1; 1National Research Council / Naval Research Laboratory; 2Naval Research Laboratory
9:20 AM
Compositional and Processing Effects in Ti-alloys for Additive Manufacturing Technologies: Michael Mendoza; Peyman Samimi; Matthew Rolchigo; Richard Lesar; Peter Collins; Iowa State University

9:40 AM
Optimized Isotropic Properties in Ti-6Al-4V Parts via Additive Manufacturing: John Barnes; Christopher Aldridge; Heath Walker; Arconic; 1Iowa State University

10:00 AM Break

10:20 AM

10:40 AM
Statistical Analysis of Correlation between Part and Test Sample Properties: Lisa Deibler; Jay Carroll; Heather Boldt; Clint Holtry; Sandia National Laboratories

11:00 AM
Ultimate Functionalities in 3D-cellular Mesh Structures: Optimization of Structure-mechanical Property Relationship via Unit Cell Design: Krishna Chattanya Nune; RDK Misra; SJ Li; YI Hao; University of Texas at El Paso

11:20 AM
Build Rate Improvement for Powder Bed Fusion: Ming Tang; Petrus Pistorius; Carnegie Mellon University

11:40 AM
Spatial and Temporal Laser Modulation for Microstructural Control during Laser Additive Manufacturing of Metals: Tien Roehling; Sheldon Wu; Saad Khairallah; John Roehling; Michael Crumb; Gabe Guss; Manyalibo Matthews; University of the Pacific; Lawrence Livermore National Laboratory

Advanced Coatings for Wear and Corrosion Protection – Advanced Coatings for Wear and Corrosion Protection II
Program Organizers: Evelina Vogli, LiquidMetal Group Holdings, Inc.; Fei Tang, DNV GL; Emad Omrani, University of Wisconsin - Milwaukee; Afsaneh Dorri Moghadam, University of Wisconsin-Milwaukee; Pradeep Menezes, University of Nevada Reno; Pradeep Rohatgi, University of Wisconsin-Milwaukee

Wednesday AM Room: 338 Location: DLL Convention Center

8:00 AM Invited
Status of In-situ Process Monitoring in the Electron Beam Melting Process: Michael Kirka; Ryan Dehoff; Jacob Raplee; Alex Plotlowski; Vincent Paquit; Sean Yoder; Peyush Nadwanna; Oak Ridge National Laboratory; University of Tennessee

8:40 AM
Titanium Powder Smoke during EB-PBF: Decoupling Charge and Heat Deposition at Different Beam Energies: Paul Carriere; Stephen Yue; McGill University

9:00 AM
Development and Deployment of a Wire Arc Additive Manufacturing Capability: Paul Korinke; Anthony Reynolds; Anna d’Entremont; Andrew Duncan; Poh-Sang Lam; John Bobbitt; Eric Kriikku; Derek Gobin; Matthew Folsom; Savannah River National Laboratory; University of South Carolina

9:20 AM
In Situ Real Time Defect Detection of 3D Printed Parts: Xiaodong Li; Oliver Hammond; University of Virginia

9:40 AM
Supersonic Impact for Additive Manufacturing: An In-situ Study: Mostafa Hassani-Gangaraj; David Veysset; Keith Nelson; Christopher Schuh; Massachusetts Institute of Technology

10:00 AM Break

10:20 AM
Exploring Deposition at Elevated Temperatures for Laser Powder Bed Ti64: Brian Fisher; Jack Beuth; Carnegie Mellon University

10:40 AM
In Process Monitoring in Metal Powder Bed Fusion Processes Using Optical Coherence Tomography: Philip DePond; Gabe Guss; Sonny Ly; David Deane; Manyalibo Matthews; Lawrence Livermore National Laboratory

11:00 AM
In Situ Quality Monitoring in AM Using Acoustic Emission: A Machine Learning Approach: Kilian Wasmer; Christoph Kenel; Christian Leinenbach; Sergey A. Shevchik; Empa - Swiss Federal Laboratories for Materials Science and Technology

Wednesday AM Room: 303 Location: DLL Convention Center

Session Chair: Ola Harrysson, North Carolina State University
8:40 AM
Coating Wear Performance of REACH Compliant Trivalent Chromium
Hard Chrome: Timothy Hall1; George Bokisa2; Maria Inman3; Rajeswaran Radhakrishnan4; Jing Xu4; E Taylor4; Stephen Snyder4; Mark Feathers4; Faraday Technology Inc.; Coventya; US Army Aviation and Missle Command
9:00 AM
Corrosion and Wear Resistance Amorphous Thermal Sprayed Coatings: Evelina Vogli5; John Kang5; Ricardo Salas5; LiquidMetal Group Holdings, Inc.
9:20 AM
Investigating Gas Foil Bearing Coating Behavior in Environments Relevant to S-CO2 Power System Turbo-machinery: Matthew Walker6; Alan Kruijzena7; Darryn Fleming7; Sandia National Laboratories (Livermore); Sandia National Laboratories (Albuquerque)
9:40 AM
Electrodeposited Inconel and Stellite like Coatings for Improved Corrosion Resistance in Biocombustors: Timothy Hall8; Santosh Vijaup9; E Taylor10; Maria Inman11; Michael Brady12; Faraday Technology Inc.; ORNL
10:00 AM Break
10:20 AM
Influence of Rapid Solidification on the Thermophysical Properties and Surface Analyses of Laser Deposited Al-Sn-Si Coatings on Ti-6Al-4V Alloy: Olawale Fatoba13; Elisabeth Makhattha14; Esther Akilab15; University of Johannesburg
10:40 AM
Life Extension of RA602CA by Aluminizing in a Gas Carburizing Furnace: Anbo Wang16; Haixuan Yu17; Richard Sisson, Jr.18; Worcester Polytechnic Institute
11:00 AM
Tribology of Nanostructured Metals: Connecting Transitions in Surface Structure and Wear Rate: Timothy Rapert19; University of California, Irvine
11:20 AM
Quantification of the Interaction between Metal Substrates and Protective Coatings Systems under Ambient and Exposed Conditions: Kevin Sylvester20; Mark McMullen21; Tianna Iba22; Kar Tean Tan23; Peter Votruba-Drzal24; Justin Martin25; PPG

Advanced Steel Metallurgy: Products and Processing – Session IV
Program Organizers: Emmanuel De Moor, Colorado School of Mines; Amar De, ArcelorMittal Global R&D; Kester Clarke, Colorado School of Mines; Alla Sergeeva, The NanoSteel Company; Charles Enloe, General Motors; Daniel Branagan, The NanoSteel Company; Matthew Kiser, Caterpillar Inc.
Wednesday AM Room: 406 Location: DLL Convention Center
Session Chairs: Whitney Poling, National Institute of Standards and Technology; Singon Kang, POSTECH
8:00 AM
Mechanical and Microstructural Characterization of Spiral Submerged Arc Welded X-80 Line Pipes: Ashish Singhi26; Pushpendra Mahida27; Welspun Tubular LLC
8:20 AM New FCAW Electrodes for Producing Ultra-clean Welds in High Strength Low Alloy Steel: Susan Fiore28; Hobart Brothers Company
8:40 AM Tempering Response of Isothermally Transformed Bainitic Microstructures: Igor Vieira29; Don Williamson30; Emmanuel De Moor31; Colorado School of Mines
9:00 AM The Effects of Cr and Ni Contents and Heat Treatment on Mechanical Properties of a Medium Carbon Secondary Hardening Steel: In Liu32; Zheng Wu33; Justin Kim34; Warren Garrison35; Carnegie Mellon University
9:20 AM Understanding Loss of High Strength Steel during Tempering: A Process of Recovery: Bij-Na Kim36; David San Martin37; Pedro Rivera-Diaz-del-Castillo38; TU Delft; CENIM-CSIC; University of Cambridge
9:40 AM The Effects of Heating Rates on the Tempering of 4140 Steel: Xiaoping Cai39; Richard Sisson40; Worcester Polytechnic Institute
10:00 AM Break
10:20 AM Development of Mechanistic Long-term Creep Models for P91 Steels: Jifeng Zhao41; Jiadong Gong42; Greg Olson43; Abhinav Saboo44; QuestTek Innovations LLC
10:40 AM Effect of TMCP Steel Microalloying on Weld Metal Toughness: Nate McFiver45; Badri Narayan46; Lincoln Electric
11:00 AM A Novel Gradient Temperature Rolling Technique for Heavy/Ultra Heavy Steel Plate with High Strength: Baosheng Xie47; Qingsu Cai48; Yang Yuan49; Xu Chen50; University of Science and Technology Beijing
11:20 AM Significant Influence of Carbon and Niobium on the Precipitation Behavior and Microstructural Evolution and their Consequent Impact on Mechanical Properties in Microalloyed Steels: YY Natarajan51; VSA Challa52; Devesh Misra53; DM Sidorenko54; MD Mullholland55; M Manohar56; JE Hartmann57; University of Texas at El Paso; ArcelorMittal Global R&D Center

Advancements in In-situ Electron Microscopy Characterization II – Composites and Simulations
Program Organizers: Yue Liu, Shanghai Jiao Tong University; Nan Li, Los Alamos National Laboratory; Khalid Hattar, Sandia National Laboratories; T. John Balk, University of Kentucky; Josh Kacher, Georgia Tech
Wednesday AM Room: 408 Location: DLL Convention Center
Session Chairs: Yue Liu, Shanghai Jiao Tong University; Jie Jian, Purdue University
8:00 AM Invited In Situ TEM Nanoindentation Studies on Plastic Behaviors of Ceramics: Jie Juan58; Joon Hwan Lee59; Yue Liu60; Amiya Mukherjee61; Xinhang Zhang62; Haiyan Wang63; Purdue University; Texas A&M University; Shanghai Jiao Tong University; University of California, Davis
8:30 AM Invited
Transformations of Dislocation Structures at Nodes in Semi-coherent Interfaces: Shuai Shao1; Firas Akashbeh1; Jan Wang1; 1Louisiana State University; 2Tuskegee University; 1University of Nebraska-Lincoln
9:00 AM
Lorentz TEM Simulation of Evolving Dzyaloshinskii Domain Wall Structure under In-Plane Magnetic Fields: Maxwell Li1; Marc De Graef1; Vincent Sokalski1; 1Carnegie Mellon University
9:20 AM
Analysis of Phase Identification and Strain Measurement of TRIP-aided Multiphase Steel Using In-Situ EBSD Tensile Test: Kyung Il Kim1; Yeonju Oh1; Joo-Hee Kang2; Sungil Kim2; Seok Jong Seo2; Kyuwhan Oh2; Heung Nam Han2; 1Seoul National University; 2Korea Institute of Material Science; 1POSCO
9:40 AM
Single and Cyclic Deformation Responses in Nano-laminate Crystalline/Glassy Metal Composites: Qiang Guo1; Christopher Barr2; Khalid Hattar2; Gregory Thompson2; 1The University of Alabama; 2Sandia National Laboratories

Advances in Dielectric Materials and Electronic Devices – Piezoelectrics/Ferroelectrics
Program Organizers: Amar Bhalla, The University of Texas at San Antonio; Ruyan Guo, University of Texas at San Antonio; K. M. Nair, E.I.duPont de Nemours & Co, Inc; Danilo Suvorov, Jožef Stefan Institute; Rick Ubic, Boise State University
Wednesday AM Room: 331
October 11, 2017 Location: DLL Convention Center
Session Chairs: Amar Bhalla, The University of Texas at San Antonio; Rick Ubic, Iowa State Univ

8:40 AM Invited
Topochemical Conversion under Hydrothermal Conditions as a Route for the Preparation of Anisotropic Perovskite Particles: Danilo Suvorov1; Marjeta Macek Krzmadec1; Alja Contala1; Hana Ursic1; 1Jožef Stefan Institute
9:00 AM
Relaxor Ferroelectric and Antiferroelectric Materials as Dielectric Coolants: Bouchra Ashani1; Brigita Rozic2; Hana Ursic2; Minouin El Marssi1; Rasa Pirc2; Jurij Koruza; Barbara Malic2; Zdravko Kutnjak2; 1University of Picardie Jules Verne; 2Jožef Stefan Institute
9:20 AM
Crystal Structure, Ferroelectricity and Polar Order in Ba4R2Zr4Nb6O30 (R=La, Nd, Sm) Tetragonal Tungsten Bronze New System: Xiaodai Zhu1; Wen Bin Feng1; Xiao Qiang Liu1; Xiang Ming Chen1; 1Zhejiang University
9:40 AM
Construction of Different Shaped Ferroelectric Filler and Its Effect on Dielectric Properties of Composite Materials: Jing Fu1; Yu dong Hou1; Mupeng Zheng1; 1College of Materials Science and Engineering, Beijing University of Technology
10:00 AM Break

Boron, Boron Coatings, Boron Compounds and Boron Nanomaterials: Structure, Properties, Processing, and Applications – Novel Synthesis & Coatings
Program Organizers: Jens Kunstmann, TU Dresden; Roumiana Petrova, New Jersey Institute of Tech; Scott Beckman, Washington State University
Wednesday AM Room: 330
October 11, 2017 Location: DLL Convention Center
Session Chair: Scott Beckman, Washington State University

8:00 AM Invited
Borohydrides as Fundamental Precursors for Boride Materials: Mark Roll1; Lillian Malloy1; 1University of Idaho
8:40 AM Invited
Understanding Crystal Growth in Lanthanum Hexaboride: Tracy Mattox1; Jeffrey Urban2; 1Lawrence Berkeley National Laboratory
9:20 AM Invited
Metal Hexaboride Restructuring via Lithiation Chemistry: Tina Salguero1; Roshini Ramachandran1; 1The University of Georgia
10:00 AM Break
10:20 AM
Boron Nitride – Based Coatings Obtained through Thermal Diffusion Process: Eugene Medvedovski1; 1Endurance Technologies Inc.
10:40 AM Invited
Plasma Electrolytic Boronitriding and Nitriding of Steel: Linxin Zhu1; Roumiana Petrova2; 1New Jersey Institute of Technology
11:00 AM
Establishment of the Relationship between the Microstructure Characteristics and the Heat Resistance of Silicate Coatings Obtained under SHS Conditions: Borys Sereda1; Dmytro Sereda1; 1DSTU; 2Zaporizhzhya State Engineering Academy

Ceramic-based Optical Materials and Advanced Processing – Session II
Program Organizers: Yiquan Wu, Alfred University; Jas Sanghera, Naval Research Laboratory; Michael Squillante, RMD, Inc; Akio Ikeseue, World-Lab. Co., Ltd
Wednesday AM Room: 311
October 11, 2017 Location: DLL Convention Center
Session Chairs: Jonathan Salem, NASA; Javier Garay, University of California, San Diego

8:00 AM Invited
Advanced Functional Fibers: Guang-Ming (Derek) Tao1; 1University of Central Florida
8:20 AM Invited
Advanced Nanocomposite Ceramics for IR Solid State Lasers: A Series of Unfortunate Trade-offs: Victoria Blair1; Zackery Fleischman1; Nicholas Ku2; 1Army Research Laboratory; 2ORISE
8:40 AM
Designing Transparent Ceramics for Electro-optic and Magneto-optic Light Manipulation: Javier Garay; 1University of California San Diego

9:00 AM
Effect of SiO2 and MgO on the Sintering of High Density Bulk YIG Ceramics: Matthew Julian; Clay French; Romain Gaume; 1University of Central Florida

9:20 AM
Microstructure Evolution of Europium Doped Magnesium Aluminate Spinel: Amanda Krause; Carlen Donahue; Animesh Kundu; Richard Vinci; Martin Harmer; 1Lehigh University

9:40 AM
High Transparency Cr, Nd:LuAG Ceramics Prepared with MgO Additive: Pande Zhang; Benxue Jiang; Long Zhang; 1Shanghai Institute of Optics and Fine Mechanics

10:00 AM Break

10:20 AM
Transparent Nanocomposite Ceramics for Eye-safe Lasers and Phosphor Hosts: Ho Jin Ma; Wook Ki Jung; Youngtae Park; Do Kyung Kim; 1Korea Advanced Institute of Science and Technology (KAIST)

10:40 AM Toward the Fabrication of Ba(Zr0.25Mg0.25Ta0.5)O3 Ceramics by Oxygen Controlled Sintering: Xianqiang Chen; Yin Liu; Yiqian Wu; 1Alfred University

11:00 AM Role of Atomic-level Defects and Electronic Energy Loss on Amorphization in LiNO3 Single Crystals: Neila Sellami; Miguel Crespiello; Haizhou Xue; Yanwen Zhang; William Weber; 1Materials Science and Technology Division, Oak Ridge National Laboratory; 2Department of Materials Science and Engineering, University of Tennessee

11:20 AM Microstructure, Optical, and Scintillation Properties of Ce:Gd2YAl2Ga3O12 Transparent Ceramics: Benxue Jiang; 1Shanghai Institute of Optics and Fine Mechanics

10:00 AM Break

10:20 AM Invited
Ferret: an Open-source Code for Simulating Thermodynamical Evolution and Phase Transformations in Complex Materials Systems at Mesoscale: Serge Nakhmanson; 1University of Connecticut

9:00 AM Activation Energy for Crystallization of Nanocrystalline Exchange Coupled Alloys: Jonathan Healy; Bowen Dong; Maria Daniil; Matthew Willard; 1Case Western Reserve University; 2Bard Early College High School

9:20 AM Centrifuge-aided Micromolding of Micron- and Submicron-sized Patterns: Hongfei Ju; Kaijie Ning; Kathy Lu; 1Virginia Tech

9:40 AM Invited
Integration of Dissimilar Nanophase Materials in 3D Nanocomposites: Applications in Magnetism: Javier Garay; 1University of California San Diego

10:20 AM Break

10:40 AM Imprint Lithography of ZnO-PMMA Hybrids: Kathy Lu; Michelle Gervasio; 1Virginia Tech

11:00 AM Magnetic and Structural Properties of Ball-milled Nanocrystalline Fe77Co5.5Ni5.5Zr7B4Cu1 Soft Magnetic Powders: Anthony Martone; Bowen Dong; Som Thomas; Donglu Shi; Matthew Willard; 1Case Western Reserve University; 2The University of Cincinnati

11:20 AM in-situ Synthesized CdS Nanowire Photosensor for Chemiluminescence Biosensors: Jae-Chul Pyun; Hong-Rae Kim; 1Yonsei University

11:40 AM Nanoporous Silicon Oxycarbide Fibers: Poroshat Taheri; Peter Kroll; 1University of Texas Arlington
Data and Tools for Materials Discovery and Design – Data Science Methods in Materials Discovery and Development

Program Organizers: Zi-Kui Liu, The Pennsylvania State University; David McDowell, Georgia Institute of Technology; Carelyn Campbell, National Institute of Standards and Technology; Laura Bartolo, Northwestern University; Bryce Meredig, Citrine Informatics; Mark Tschopp, Army Research Laboratory; Dane Morgan, University of Wisconsin - Madison; Afina Lupulescu, ASM International

Wednesday AM

<table>
<thead>
<tr>
<th>Time</th>
<th>Session Title</th>
<th>Speaker/Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:00 AM</td>
<td>Keynote</td>
<td>Bryce Meredig; Citrine Informatics</td>
</tr>
<tr>
<td>8:40 AM</td>
<td>Invited Bellerophon Environment for Analysis of Materials (BEAM), A High Performance Computing Link to Understanding Material Properties</td>
<td>Alex Bellaminov; Eric Lingerfelt; Stephen Jesse; Oak Ridge National Laboratory</td>
</tr>
<tr>
<td>9:00 AM</td>
<td>Invited Facilitating Discovery of Materials Resources with NIST’s Federated Registry System</td>
<td>Laura Bartolo; Chandler Becker; Benjamin Blaiszik; Northwestern University; National Institute of Standards and Technology; University of Chicago/Argonne National Laboratory; Argonne National Laboratory/University of Chicago</td>
</tr>
<tr>
<td>9:40 AM</td>
<td>Invited NIST Alloys Thermophysical Property Data Development</td>
<td>Erik Pfeif; Boris Willhan; Vladimir Diky; Scott Townsend; Andrei Kazakov; Kroenlein Kenneth; NIST</td>
</tr>
<tr>
<td>10:00 AM</td>
<td>Break</td>
<td>--</td>
</tr>
<tr>
<td>10:20 AM</td>
<td>Invited Data Analytics for Mining Process-Structure-property Linkages for Hierarchical Materials</td>
<td>Surya Kalidindi; Georgia Institute of Technology</td>
</tr>
<tr>
<td>10:40 AM</td>
<td>Efficient Protocols for Ranking the Transition Fatigue Performance of Polycrystalline Materials</td>
<td>Noah Paulson; Matthew Priddy; David McDowell; Surya Kalidindi; Georgia Institute of Technology; Mississippi State University</td>
</tr>
<tr>
<td>11:00 AM</td>
<td>An Analytical Micromechanical Model Solution for Twin Nucleation in Hexagonal Close-packed Metals</td>
<td>Yub Raj Paudel; Christopher Barrett; Mark Tschopp; Kaan Inal; Haitham El Kadiri; Mississippi State University; Army Research Laboratory; University of Waterloo</td>
</tr>
</tbody>
</table>

Design, Processing, and Development of Structural Materials – Alloys for Power and Energy

Program Organizers: Tomoko Sano, U.S. Army Research Laboratory; Mitra Taheri, Drexel University

Wednesday AM

<table>
<thead>
<tr>
<th>Time</th>
<th>Session Title</th>
<th>Speaker/Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:00 AM</td>
<td>Invited Achieving Superior Performance in the Oil and Gas Industry Using Innovative Materials Solutions</td>
<td>Neeraj Thirumalai; Srinivasan Rajagopalan; Howie Jin; ExxonMobil Research and Engineering Company</td>
</tr>
<tr>
<td>8:40 AM</td>
<td>Effect of Carbon Content in Cast IN740 for Advanced Power Generation Applications</td>
<td>Kyle Rozman; Martin Detrosi; Paul Jablonski; Jeffery Hawk; NETL</td>
</tr>
<tr>
<td>9:00 AM</td>
<td>The Impact of Dynamic Normal Grain Growth on Texture Development in an Interstitial-free Steel</td>
<td>Ryann Rupp; Eric Taleff; The University of Texas at Austin</td>
</tr>
<tr>
<td>9:20 AM</td>
<td>Some Effects of V/(V+Ti) in TRIP and BH Steels</td>
<td>Lin Li; Hu Jiang; Yan Lin; Mei Zhang; Shanghai University</td>
</tr>
<tr>
<td>9:40 AM</td>
<td>The Fundamental Thermodynamic Investigation on the Grade 91 Alloy</td>
<td>Andrew Smith; Wei Zhang; Yu Zhong; Florida International University</td>
</tr>
<tr>
<td>10:00 AM</td>
<td>Break</td>
<td>--</td>
</tr>
<tr>
<td>10:20 AM</td>
<td>Invited Decorating Defects with Segregating Dopants to Tailor Mechanical Properties</td>
<td>Timothy Rupert; University of California, Irvine</td>
</tr>
<tr>
<td>10:40 AM</td>
<td>Relating Sink Efficiency to Interface Properties in Irradiated Materials</td>
<td>Blas Uberuaga; Los Alamos National Laboratory</td>
</tr>
<tr>
<td>11:20 AM</td>
<td>A Comprehensive Study of Hydrogen Behaviors at Grain Boundaries of Al</td>
<td>William Yi Wang; Chengxiong Zou; Deye Lin; Liang Zhang; Jijun Ma; Quanmei Guan; Jing Sun; Jianying Hou; Ying Zhang; Bin Tang; Jun Wang; Hongchao Kou; Jinshen Li; Northwestern Polytechnical University; Institute of Applied Physics and Computational Mathematics; Shanghai Research Institute of Materials; CRRC Tangshan Co., Ltd.</td>
</tr>
<tr>
<td>11:40 AM</td>
<td>The Role of Pipe Diffusion in the Stability of Low Angle Grain Boundaries</td>
<td>Yejun Gu; Yang Xiang; David Srolovitz; Jaafar El-Awady; Johns Hopkins University</td>
</tr>
</tbody>
</table>
Emerging Interconnect and Pb-free Materials for Advanced Packaging Technology – Session I
Program Organizers: Albert T. Wu, National Central University; Carol Handwerker, Purdue University; Fiqiri Hodaj, Grenoble Institute of Technology

Wednesday AM Room: 336 Location: DLL Convention Center

Session Chairs: Albert T Wu, National Central University; Carol Handwerker, Purdue University

8:00 AM Invited Development of Pb-Free Solders and Other Joining Materials to Replace High-Pb Hierarchical Solders: Iver Anderson1; Stephanie Choquette2; Kathlene Reeves3; Carol Handwerker3; 1Ames Laboratory, Iowa State University; 2Iowa State University; 3Purdue University

8:40 AM Sintering Properties of Ag Pastes on Various Electroplated Au Substrates: Hao Zhang1; Taikun Fan2; Hao Zhang1; Caifu Li1; Jianxin Wang2; Shijo Nagao1; Katsuaki Suganuma1; 1The Institute of Scientific and Industrial Research (ISIR) Osaka University; 2Jiangsu University of Science and Technology

9:00 AM Model Construction for Predicting Effects of Microstructural Morphologies in Sintered Ag Layer on the Joint Strength: Kohei Nakanishi1; Adrian Lis1; TomokiMatsuda1; TomokazuSano1; AkioHirose2; HiroakiTatsumi2; YoshihiroKashiba2; ‘Osaka University; ‘Mitsubishi Electric Corporation

9:20 AM Enhancing Bonding Property of Cu Particles Paste by Adding Organic Acid: Yue Gao1; Jinting Jiu1; Chuantong Chen1; Toshiyuki Ishina1; Tohru Sugahara1; Shijo Nagao1; Katsuaki Suganuma1; ‘Osaka university Institute of Scientific and Industrial Research; ‘Senjia Metal Co., Ltd.

9:40 AM Phase separation of Cu(Ti) bonds for chip-level 3D IC packaging: Albert T. Wu; Po Chen Lin1; ‘National Central University

10:00 AM Mechanical Properties Of A Cu-Ni/Sn High Temperature Pb-Free Composite Solder Paste: Stephanie Choquette1; Iver Anderson1; ‘Ames Lab

Failure Analysis and Prevention – Tools & Techniques
Program Organizers: Andrew Havics, pH2, LLC; Pierre Dupont, Schaeffler Belgium Srl/Bvba; Burak Akyuz, ATS, Inc.

Wednesday AM Room: 407 Location: DLL Convention Center

Session Chairs: Aaron Tanzer, Exova; Jonathan Trenkle, Exponent Inc; Aaron Slager, Bell Helicopter Textron; Andrew Havics, pH2, LLC

8:00 AM Engineering Analysis of Failure: A Determination of Cause Method: Mark Russell2; Tim Jur1; ‘Engineering Design & Testing Corp

8:20 AM Lessons Learned in Engineering Design, Manufacturing, and Construction from 50 Years of Failure Experience: Bill O’Donnell2; ‘O’Donnell Consulting Engineers

8:40 AM From Products Development to Service—Failure Analysis at Parker Hannifin Corporation: Yindong Ge1; Jacob Napolitan1; Douglas Delean1; 1Parker Hannifin Corp.

9:00 AM It’s Elemental: Misuse and Pitfalls of EDS Analysis: Aaron Tanzer1; Jacek Zlamaniec1; ‘Exova

9:20 AM Three-dimensional Surface Imaging with a Dual Beam Microscope: David Schoen1; Nathan Bailey2; ‘Exponent, Inc.

9:40 AM Non-Traditional Techniques in Materials Failure Analysis: Michael Budinski1; ‘National Transportation Safety Board

10:00 AM Break

10:20 AM Failure Assessment of a Resistance Weld Electrode: Paul Korinko1; Anthony McWilliams1; Matthew Van Swol1; ‘Savannah River National Laboratory

10:40 AM In-situ Fatigue Life Analysis of Steel Using Modal Acoustic Emission and Electrical Resistivity Techniques: Sulochana Shrestha1; Manigandan Kannan1; Michael Presby1; Yogesh Singh1; Gregory Morscher1; 1The University of Akron

11:00 AM Remaining Life Assessment of Long Term Service Exposed Boiler Component: Dwarka Sat1; ‘O.P.Jindal Institute of Technology

11:20 AM Quantification of Optical Functionality Loss Due to Mechanical Damage: Simon Lockyer-Brattor1; David Schoen1; Erwin Lau1; Lucas Berla1; Evan Brown1; ‘Exponent

11:40 AM Materials For Advanced UltraSuperCritical Steam Turbine Applications: Philip Maziasz1; ‘Oak Ridge National Laboratory

Fifty Years of Metallography and Materials Characterization – Fifty Years of Metallography and Materials Characterization II
Program Organizers: Ryan Deacon, United Technologies Research Center; Daniel Dennies, Consulting Metallurgical Engineer; George Vander Voort, Consultant - Struers Inc

Wednesday AM Room: 409 Location: DLL Convention Center

Session Chair: To Be Announced

8:00 AM A Metallographic Study on the Diffusion Behavior and Microstructural Transformations in Silicon-containing Powder Metallurgy Steels: Thomas Murphy1; Christopher Schade2; ‘Hoeganaes Corporation
8:20 AM
Oxidation Behavior of Tungsten Carbide-6% Cobalt Cemented Carbide: Chris Bagnall1; Jerry Cape2; Walter Moorhead2; 1MCS Associates, Inc.; 2Product Evaluation Systems, Inc.

9:00 AM
Microanalysis of Microscopy Evaluation of Mechanical Property Changes due to Low Temperature Thermal Treatment of a Steel: Daniel Dennies1; 1DMS, Inc.

9:20 AM
Next Step in Complex Microstructure Classification – How to Replace Subjective Expert Bias by 3D Information and Autonomous Procedures?: Frank Muecklich1; Dominik Britz2; Jessica Pauly2; 1Saarland University; 2Materials Engineering Center Saarland

10:00 AM Break

10:20 AM
Proclamation, Publication and Progress: Mac Louthan1; 1Savannah River National Laboratories

11:00 AM
Failure of a Reformer Furnace by “Surge”: Iain Le May1; Mario Nascimento2; Luiz Henrique de Almeida3; Tito da Silveira4; 1Consultant; 2COOPE/UFRJ; 3UFRJ; 4UFRJ/TSEC

11:40 AM
Precipitation of Ti-C-N Particles in Austenite during Cooling Process of High-Ti Microalloyed Steel: Xueliang Zhang1; Shufeng Yang1; Weihua Zhang1; Jingshe Li1; Shuo Zhang1; 1University of Science and Technology Beijing

11:00 AM
Identification of the Important Material and Process Parameters that Control Distortion and Residual Stress in Heat Treatment: Haiyun Yu1; Yuan Lu1; Richard Sisson1; 1Worcester Polytechnic Institute

Gas/Metal Reactions, Diffusion and Phase Transformation during Heat Treatment of Steel – Session I

Program Organizers: Liang He, Air Products and Chemicals Inc.; Xuekun Li, Tsinghua University; Daniel Baker, General Motors

Wednesday AM Room: 310
October 11, 2017 Location: DLL Convention Center

Session Chair: Lei Zhang, Worcester Polytechnic Institute

8:00 AM Invited
High Performance of Ceramics and Manufacturing Process Innovation: Yoshio Sakka1; 1NIMS

8:40 AM Invited
Eutectic Ceramic Composite by Directional Solidification: Takashi Goto1; Kishin Morita1; Hirokazu Katsui1; 1Tohoku University

9:20 AM
Infiltration of Precursors into Fiber Beds for PIP-derived CMCs: Natalie Larson1; Frank Zok1; 1University of California, Santa Barbara

9:40 AM
In-situ XCT of Crack Evolution during Pyrolysis of PIP-derived CMCs: Natalie Larson1; Frank Zok1; 1University of California, Santa Barbara

10:00 AM Break

10:20 AM
Precipitation of Ti-C-N Particles in Austenite during Cooling Process of High-Ti Microalloyed Steel: Lintao Gui1; Dengfu Chen1; Peng Liu1; Hengsong Yu1; Tao Liu1; Mujun Long1; Huamei Duan1; Junsheng Cao1; 1Chongqing University

10:40 AM
Reaction between MnO-SiO2-FeO Inclusion and Steel Matrix Deoxidized by Si and Mn at Different Heat Treatment Temperatures: Junsheng Cao1; Shufeng Yang1; Weihua Zhang1; Jingshe Li1; Shuo Zhang1; 1University of Science and Technology Beijing

11:00 AM
Infiltration of Precursors into Fiber Beds for PIP-derived CMCs: Natalie Larson1; Frank Zok1; 1University of California, Santa Barbara

11:40 AM
Synthesis of and Size Effects in Dense Truly Nanocrystalline Ceramics with Grain Sizes Well Below 50nm: James Willmershauser1; Boris Feigelson1; Heonjune Ryu1; John Drazin1; Edward Gorzkowski1; Kathyrn Wahl1; 1U.S. Naval Research Laboratory; 2ASEE at U.S. Naval Research Laboratory

11:00 AM
Additive Manufacture of Ceramics Using Direct Coagulation: Tucker Hensen1; Troy Holland1; 1Colorado State University
Interfaces, Grain Boundaries and Surfaces from Atomistic and Macroscopic Approaches – Interfaces and Polycrystals; Interface Kinetics I
Program Organizers: Dominique Chatain, CNRS, Aix-Marseille University; John Blendell, Purdue University; Wayne Kaplan, Technion - Israel Institute of Technology

Wednesday AM Room: 410 Location: DLL Convention Center

Session Chairs: Douglas Medlin, Sandia National Laboratories; David McComb, Ohio State University; Yuri Mishin, George Mason University; Bryan Huey, University of Connecticut

8:00 AM Keynote
Evolution in Grain Shapes and Sizes in Polycrystalline Ni during Grain Growth: Aditi Bhattacharya1; Christopher Hefferan1; Shiu Fai Li1; Jonathan Lind1; Robert Suter1; Gregory Rohrer1; ‘Carnegie Mellon University

8:40 AM Invited
The Role of Surfaces and Interfaces in Yttrium-doped Barium Zirconate with Nickel: Ivar Reimanis1; ‘Colorado School of Mines

9:00 AM
3D Non-destructive Shape and Orientation Resolved Grain Mapping in Polycrystalline Silicon Using Laboratory Diffraction Contrast Tomography: Ashwin Shahani1; Hrishikesh Bale2; Nicolas Gueninchault2; Arno Merkle3; Erik Lauridsen3; ‘University of Michigan, Ann Arbor; ‘Carl Zeiss Microscopy Inc.; ‘Xnovo Technology ApS

9:20 AM Invited
Low Annealing Twin Fractions in 3D Printed Metals: Anthony Rollett1; Samiksha Subedi1; Shuehen Cong1; ‘Carnegie Mellon University

9:40 AM Invited
Grain Growth in Electric Field in Perovskites: Defects, Space Charge and Their Impact on Boundary Migration: Wolfgang Rheinheimer1; Jan Preusker1; Jana Karras2; Roger de Souza2; Michael Hoffmann2; ‘Karlsruhe Institute of Technology; ‘RWTH Aachen University

10:00 AM Break

10:20 AM Keynote
Atomistic Simulations on Grain Boundary Migration: Sherri Hadian1; Blazej Grabowski1; Christopher Race2; Jörg Neugebauer2; ‘Max-Planck-Institut für Eisenforschung; ‘University of Manchester

10:40 AM Invited
Kinetics of Phase Boundary Migration in Intercalation Compounds: Ming Tang1; ‘Rice University

11:00 AM
Trends in Grain Boundary Mobility with Varied Stress State: Derek Lontine1; Oliver Johnson2; ‘Brigham Young University, US Synthetic Corp; ‘Brigham Young University

11:20 AM
The Role of Disconnections at General Grain Boundaries in Grain Boundary Motion: Hadas Sternlicht1; Wolfgang Rheinheimer2; Alex Mehlmann2; Avner Rothchild1; Michael Hoffmann3; Wayne Kaplan1; ‘Technion; ‘Karlsruhe Institute of Technology

International Symposium on Ceramic Matrix Composites – CMC I
Program Organizers: Narottam Bansal, NASA Glenn Research Center; Jitendra Singh, Retired, U.S. Army Research Laboratory; Jacques Lamon, CNRS; Sung Choi, Naval Air Systems Command

Wednesday AM Room: 316 Location: DLL Convention Center

Session Chairs: Frank Zok, University of California, Santa Barbara; Marina Ruggles-Wrenn, Air Force Institute of Technology

8:00 AM Invited
Exploiting the Full Potential of SiC Fibers: Processing, Protection and Performance of CMCs: Frank Zok1; ‘University of California, Santa Barbara

8:40 AM Invited
Damage and Failure of SiC Fiber Tows during Environment Activated Slow Crack Growth: Residual Behavior and Strength-probability-time Diagrams: Jacques Lamon1; Mohamed R’Mili2; ‘CNRS; ‘University of Lyon

9:20 AM Invited
SiC Fiber Oxidation in Si(OH)4 Saturated Steam: Randall Hay1; ‘Air Force Research Laboratory

10:00 AM Break

10:20 AM Invited
Fatigue of Three Advanced SiC/SiC Ceramic Matrix Composites at 1200°C Air and in Steam: Marina Ruggles-Wrenn1; ‘Air Force Institute of Technology

11:00 AM
Life Limiting Behavior in Ceramic Matrix Composites (CMCs) Under Interlaminar Shear: Luis Sanchez1; Nesredin Kedir1; David Faucett1; Cajer Gong1; Sung Choi1; ‘NAVAIR

11:20 AM
High Temperature Creep of HfB2-based UHTCs: Eugenio Zapata-Solvas1; Diego Gomez-Garcia2; Arturo Dominguez-Rodriguez2; Bill Lee1; ‘Imperial College London; ‘Universidad de Sevilla
International Symposium on Defects, Transport and Related Phenomena – Anion Transport

Program Organizers: Tatsuya Kawada, Tohoku University; Manfred Martin, RWTH Aachen University; Sangtae Kim, University of California, Davis

Wednesday AM
October 11, 2017
Location: DLL Convention Center

Session Chairs: Han-Ill Yoo, Seoul National University; Hitoshi Takamura, Tohoku University

8:00 AM Invited
Defect Ordering Phenomena in Bi₁₋ₓSrₓFeO₃₋ₓ/₂: Yuto Tomura¹; Itaru Oikawa¹; Hitoshi Takamura¹; ¹Tohoku University

8:40 AM Invited
Five Decades of Research in Oxide Ion Conductors in Fluorite Structure: What Can We Conclude?: Thuy Linh Pham²; Tai-Joo Chung³; Martin Lerch³; Jong Kook Lee⁴; Ji-Won Son⁵; Jong-Ho Lee⁴; Ji Haeng Yu⁴; Jong-Soon Lee⁴; ²Chonnam National University; ³Technische Universität Berlin; ⁴Chosun University; ⁵Korea Institute of Science and Technology; ⁶Korea Institute of Energy Research

9:20 AM Invited
Limits to the Rate of Oxygen Transport in Mixed-conducting Oxides: Roger De Souza¹; ¹RWTH Aachen University

10:00 AM Break

10:20 AM Invited
A Novel Method to Measure the Chemical Diffusivity of a Mixed-conducting Compound: Han-Ill Yoo¹; ¹Seoul National University

11:00 AM
Nonstoichiometric BaBiO₃₋ₓ Ceramics: Phase Transition and Conduction Mechanism Revealed by AC Response: Dang Thanh Nguyen¹; Hung Tai Nguyen¹; Jong-Soon Lee¹; ¹Chonnam National University

11:20 AM
Redox Behavior of Acceptor-doped TiO₂ Thin Films Prepared by Pulsed Laser Deposition: Akihiro Ishii¹; Itaru Oikawa¹; Hitoshi Takamura¹; ¹Tohoku university

Joining of Advanced and Specialty Materials (JASM XIX) – Welding Metallurgy

Program Organizers: Boian Alexandrov, The Ohio State University; Mathieu Brochu, McGill University; Anming Hu, University of Tennessee; Darren Barborak, AZZ WSI; Akio Hirose, Osaka University; Peng He, Harbin Institute of Technology; Zhiyong Gu, University of Massachusetts Lowell; Vikas Patel, ArcelorMittal USA

Wednesday AM
October 11, 2017
Location: DLL Convention Center

Session Chairs: Carolin Fink, The Ohio State University; Doris Ivette Villalobos-Vera, Instituto Tecnológico de Veracruz

8:00 AM
Numerical Simulation of Hydrogen Distribution during Multi-pass Welding for Reduced Activation Ferritic/martensitic Steel F82H: Hiroaki Mori¹; Kohei Hatoya²; Kento Kawauchi³; Taichiro Kato³; Takamori Hirose²; Hiroyasu Tanigawa³; ¹Osaka University; ²National Institute for Quantum and Radiological Science and Technology

8:20 AM
Microstructure, Toughness and Cold Cracking Tendency of 1100 MPa Weld Metal: Jun Peng¹; Xingna Peng¹; Zhiling Tian¹; ¹China Iron & Steel Research Institute Group

8:40 AM
Liquid Metal Embrittlement of Zn Coated Advanced High Strength Steel Welds: Andrew Macwan¹; Elliot Biro²; Y. Norman Zhou¹; ¹University of Waterloo; ²Arcelor Mittal Dofasco

9:00 AM
Influence of Titanium on Microstructures and Toughness in Simulated Coarse Grain Heat Affected Zone for Titanium Micro-alloyed Steel with Different Heat Inputs: Jiansheng Cao¹; Majun Long¹; Wenjie He¹; Tao Liu¹; Lintao Gui¹; Dengfu Chen¹; Huamei Duan¹; Xinhong Du¹; ¹Chongqing University

9:20 AM
Femtosecond Laser Peening without a Sacrificial Overlay under Atmospheric Conditions for Improving Fatigue Properties of Laser-welded and FSWed 2024 Aluminum Alloys: Tomokazu Sano¹; Takayuki Oida¹; Akio Hirose¹; Seiichiho Tsutsumi¹; Yousuke Kawahito¹; Seiji Katayama¹; Kazuto Arawaka¹; Hisashi Hori¹; Kiyotaka Masaki¹; Ayumi Shiroy¹; Takahisa Shobu¹; ²Osaka University; ³Shimane University; ⁴Nippon Light Metal Company, Ltd.; ⁵National Institute of Technology, Okinawa College; ⁶QST; ⁷Japan Atomic Energy Agency

9:40 AM
Numerical Prediction of Penetration Shapes in MIG Welding of Aluminum Alloy Joints: Hisashi Serizawa¹; Shingo Sato¹; Fumikazu Miyakawa¹; ¹Osaka University

10:00 AM Break

10:20 AM
Characterization of Cracking in Nickel-based Alloy Overlays: Samuel Luther¹; Boian Alexandrov¹; ¹The Ohio State University

10:40 AM
Evaluation of Ductility-dip Cracking Susceptibility in Alloy 690 Laser Multipass Weld Metal by Cross-bead Longitudinal-Varestraint test: Tomo Ogura¹; Yusuoka Morikawa¹; Kazuyoshi Saida¹; ¹Osaka University
11:00 AM
Effect of Selective Element Vaporization on the Solidification and Cracking Response of 304L Stainless Steel Alloys with Controlled Levels of Manganese: Jason Berger1; Jeff Rodelas1; João Oliveira2; Antonio Ramirez2; Sandia National Laboratories; The Ohio State University

11:20 AM
Effect of Secondary Phases on the Corrosion Resistance of Hyperduplex Stainless Steel: Doris Ivette Villalobos Vera1; Instituto Tecnológico de Veracruz

11:40 AM
Effect of Alloying Elements on the Weldability of Austenitic Stainless Steel SA 240 Type 304L: Muhammad Kamran1; Ayyaze Asham1; Tahir Ahmad1; Muhammad Manzoor1; Fahad Riaz2; Faraz Hussain1; University of the Punjab

Light Metals Alliance: Light Metals Technology 2017 – Light Metals Technology: Aluminum - Product Development

Program Organizers: Diran Apelian, Worcester Polytechnic Institute; Kumar Sadayappan, Canmet MATERIALS; Frank Czerwinski, CanmetMATERIALS; Brajendra Mishra, Worcester Polytechnic Institute; Michael Bermingham, The University of Queensland; Wenjiang Ding, Shanghai Jiao Tong University; Zhongyun Fan, Brunel University; Gonasaagren Govender, The Council for Scientific and Industrial Research (CSIR); Frank Czerwinski, Diran Apelian, Worcester Polytechnic Institute; Program Organizers: Light Metals Technology: Titanium – Light Metals Technology: Aluminum

Wednesday AM Room: 415

Session Chairs: Karl Kainer, Helmholtz-Zentrum Geesthacht; Bong Sun You, Korea Institute of Materials Science

8:00 AM
Effect of Co and Ni-Additions on the Microstructure and Mechanical Properties at Room and Elevated Temperature of an Al-7%Si Alloy: Toni Bogdanoff1; Arne Dähle1; Salem Seifeddine1; Jönköpings University

8:20 AM
Effect of Titanium Levels on the Castability and Abnormal Grain Growth after Heat Treatment of Al-Zn-Mg-Cu Alloys: Xiaochun Zeng1; Kumar Sadayappan2; Cassandra Ferguson1; Sumanth Shankar1; LMCRC - McMaster University; CanmetMaterials - Natural Resources Canada

8:40 AM
Heat Treatment of Steel-Aluminum Hybrid Components: Sebastian Herbst1; Florian Nürnberg1; Institut für Werkstoffkunde, Leibniz Universität Hannover

9:00 AM
Joining Automotive Steel and Aluminum Alloys with Vaporizing Foil Actuator Welding: Anupam Vivek1; Bert Liu1; Yu Mao1; Glenn Daehn1; The Ohio State University

9:20 AM
Lightweight Aluminum Foams – Tailoring Compressive Property through Relative Density Variation: Prashant Chakravarthy Shunmugasamy1; Bilal Mansoor1; Texas A&M University at Qatar

9:40 AM
Process Model for Hardness Prediction in Friction Stir Aluminum Welds: Olga Gopkalo1; Brad Diak1; Michael Booth2; Adrian Gerlich2; Queen’s University; University of Waterloo

10:00 AM Break

10:20 AM
Manufacturing Challenges for Aluminum Sheet in the Automotive Industry: Susan Hartfield-Wunsch1; General Motors

10:40 AM
Warm Temperature (170-280°C) Uniaxial Compression of SiC Reinforced 2124-Al MMCs: Zizo Gxowa1; Lesley Chown1; Gonasaagren Govender1; Council for Scientific and Industrial Research (CSIR); University of the Witwatersrand

11:00 AM
Understanding Grain Refinement of Aluminum: Xiaoming Wang1; Purdue University

11:20 AM
Ultrathin-Nano-laminated Structure Improving Mechanical Properties in an Al-Mg Alloy: Yaojun Liu1; Zhibo Liu1; Zhigang Yan1; Wuhan University of Technology; Yanshan University

Light Metals Alliance: Light Metals Technology 2017 – Light Metals Technology: Titanium

Program Organizers: Diran Apelian, Worcester Polytechnic Institute; Kumar Sadayappan, Canmet MATERIALS; Frank Czerwinski, CanmetMATERIALS; Brajendra Mishra, Worcester Polytechnic Institute; Michael Bermingham, The University of Queensland; Wenjiang Ding, Shanghai Jiao Tong University; Zhongyun Fan, Brunel University; Gonasaagren Govender, The Council for Scientific and Industrial Research (CSIR); Frank Czerwinski, Diran Apelian, Worcester Polytechnic Institute; Program Organizers: Light Metals Technology: Aluminum

Wednesday AM Room: 414

Session Chairs: Michael Bermingham, The University of Queensland; Wenjiang Ding, Shanghai Jiao Tong University

8:00 AM
Alloying Effects on the Microstructure and Mechanical Properties of Ti-Fe-Al Based Lower Cost Cast Titanium Alloys: Jiashi Miao1; Zhi Liang1; Anil K. Sachdev1; Alan A. Luo1; James C. Williams1; The Ohio State University; General Motors

8:20 AM
Boon for the Injured and Elderly: Optimization of Laser Processing Parameters to Improve Bio-Wettability of Ti-6Al-4V Alloys: Ashwin Kumar1; University of North Texas

8:40 AM
Constitutive Response of a Near-alpha Titanium Alloy as a Function of Temperature and Strain Rate: Brian Gockel1; Anthony Rollett1; AFRL; Carnegie Mellon University

9:00 AM
Metal Injection Moulding of Ti6Al7Nb Using a CSIR Custom Feedstock: Ronald Machaka1; Council for Scientific and Industrial Research
9:20 AM
Solid Silver Embrittlement of Ti-6Al-2Sn-4Zr-2Mo Alloy: Jingjing Qing1; Mario Buchely2; David Van Aken1; Michael Walker2; Royle Juusola1; John Goethe2; 1Missouri University of Science and Technology; 2Spirit Aerosystems

9:40 AM
Strain Hardening in Beta Annealed Ti-6Al-4V Alloy: Stephen Masete1; Kalenda Mutombo1; Roelf Mostert1; Charles Siyasiya1; 1CSIR

10:00 AM Break

10:20 AM
Tensile Behavior and Microstructural Characteristics of Friction Stir Welded Butt Joints of Titanium Alloys: Laxminarayana Pappula1; Kapil Gangwara1; Ashok Kumar Uppari2; Ramulu M3; 1Osmania University

10:40 AM
Effects of Heat-Treatment on the Microstructure of TiAl-Nb Produced with Laser Metal Deposition Technique: Monnamme Tlotleng1; Thabo Lengopeng1; Mandy Seerane1; Sisa Pityana1; 1Council for Scientific and Industrial Research

11:00 AM
Microstructural and Physical Properties of Laser Cladding of Ti-Al Coatings on Ti6Al4V: Kehinde Sobiyi1; Esther Akinlabi1; 1University of Johannesburg

Materials for Nuclear Energy Applications – Characterization Methods and Reactor Fuels

Program Organizers: Kumar Sridharan, University of Wisconsin; Jake Amoroso, Savannah River National Laboratory; Aladar Csontos, Nuclear Regulatory Commission; Kevin Fox, Savannah River National Laboratory; Yutai Katoh, Oak Ridge National Laboratory; Bill Lee, Imperial College of London; Josef Matyas, Pacific Northwest National Laboratory; Raul Rebak, GE Global Research; Cory Trivelpiece, Savannah River National Laboratory

Wednesday AM Room: 401 Location: DLL Convention Center

Session Chairs: James Cole, Idaho National Laboratory; Andrew Nelson, Los Alamos National Laboratory

8:00 AM Invited
In-situ High-Energy X-ray Characterization of Nuclear Reactor Materials: Mee Me Li1; Xuan Zhang1; Chi Xu1; Jonathan Almer2; Jun-Sang Park2; Peter Kessa2; Don Brown3; 1Argonne National Laboratory; 2University of Florida; 3LANL

8:20 AM Invited
Advanced Characterization of Highly Irradiated Nuclear Fuel from a Commercial LWR: Philip Edmondson1; Chad Parish1; Tyler Gerczak1; Kurt Terrani1; 1Oak Ridge National Laboratory

8:40 AM
Atom Probe Tomography and Transmission Electron Microscopy Investigations of Nano-precipitate Nucleation in ODS FeCrAl Alloys: Caleb Massey1; Philip Edmondson1; Sebastien Dryepondt1; Kurt Terrani1; Steven Zinkle1; 1University of Tennessee; 1Oak Ridge National Laboratory

9:00 AM
Effect of Cascade Mixing on a’ Precipitation in Irradiated Fe-Cr Alloys: Jiahong Ke1; Mukesh Bachhuv1; Elaina Anderson2; Emmanuelle A. Marquis2; G. Robert Odette2; Dane Morgan2; 1University of Wisconsin-Madison; 2University of Michigan, Ann Arbor; 2University of California, Santa Barbara

9:20 AM
Determination of Phase Transformations and Microstructure Evolution of Zr-based Alloys during Thermal Processing: Clinique L. Brundidge1; John Seidensticker1; Tyler Tenku1; Linda Rishel1; Richard Smith1; 1Naval Nuclear Laboratory

9:40 AM Invited
Development and Qualification of a New Plate-type Low-enriched Uranium-molybdenum Fuel for High Power Research Reactors: James Cole1; Mitchell Meyer2; Barry Rabin2; Irina Gigolenko2; Warren Jones2; Jan-Fong Jue2; Dennis Keiser2; Carla Miller2; Glenn Moore2; Hakan Ozaltun2; Francine Rice2; Adam Robinson2; James Smith2; Daniel Wachs2; Walter Williams2; Nicholas Woolstenhulme2; 1Idaho National Laboratory

10:00 AM Break

10:20 AM
U3Si2 Instability in Both Oxidizing and Reducing Atmospheres: Elizabeth Sooey Wood1; Joshua White1; Sarah Hernandez1; Andrew Nelson1; 1Los Alamos National Laboratory

10:40 AM
Review of Technologies for Ocean Mining of Uranium: Allen Apblett1; Cory Perkins1; 1Oklahoma State University; 1Oregon State University

11:00 AM
Powder Ageing and Sintering Of High Uranium Density Nuclear Fuels for Light Water Reactor Applications: Josh White1; Scott Parker1; Andrew Nelson1; 1Los Alamos National Laboratory

11:20 AM
Microstructure Studies of U3Si2 Fuel Pellets Sintered in Argon vs. Vacuum Environment: Rita Hoggan1; Jason Harp1; Lingfeng He1; 1Idaho National Laboratory

Materials Issues in Nuclear Waste Management – Nuclear Waste Management Strategies

Program Organizers: Jake Amoroso, Savannah River National Laboratory; Aladar Csontos, Nuclear Regulatory Commission; Kevin Fox, Savannah River National Laboratory; Tongan Jin, Pacific Northwest National Laboratory; Cory Trivelpiece, Savannah River National Laboratory; Yutai Katoh, Oak Ridge National Laboratory; Bill Lee, Imperial College of London; Josef Matyas, Pacific Northwest National Laboratory; Nathan Mellot, Michigan State University; Kumar Sridharan, University of Wisconsin Madison; S.K. Sundaram, Alfred University

Wednesday AM Room: 402 Location: DLL Convention Center

Session Chair: Cory Trivelpiece, Savannah River National Laboratory

8:00 AM Invited
A Brief History of the Contributions of D.T. Rankin and the D.T. Rankin Award Winners: Alex Cozzi1; 1Savannah River National Laboratory
8:20 AM Efforts to Address Species of Concern in Nuclear Waste Management: Elizabeth Hoffman; Bill Wilmarth; Savannah River National Laboratory

8:40 AM Effect of Reducing Agents on Rhenium Retention and Feed Reactions during Melting of Low-activity Waste Glasses: Jaime George; Dongsang Kim; Michael Schweiger; Albert Kruger; Pacific Northwest National Laboratory; Department of Energy Office of Nuclear Protection

9:00 AM Invited Enhanced Waste Glass Effort: Producing Desired Properties from a Broader Spectrum of Compositions: Albert Kruger; David Peeler; US Department of Energy; Pacific Northwest National Laboratory

9:40 AM Sulfur Incorporation into Sodium Borosilicate Glasses: Jason Lonergan; John McCloy; Washington State University

10:00 AM Break

10:20 AM Invited Vitrification HLW Containing A High Concentration of Molybdenum: Nick Gribble; UK National Nuclear Laboratory

11:00 AM Invited Stabilization and Solidification of Low Activity Waste and Secondary Wastes Arising from Treatment of Nuclear Fuel Reprocessing Wastes: David Swanberg; WRPS Chief Technology Office

Materials Property Understanding through Characterization – Non-metals
Program Organizers: Indrajit Dutta, Corning Incorporated; Nicholas Smith, Corning Incorporated

Wednesday AM Room: 412 Location: DLL Convention Center
Session Chair: Nicholas Smith, Corning Incorporated

8:00 AM Nanostructure as a Paradigm for Describing Carbon Structure, Interpreting Its Reactivity and Quantifying Its Transformations: Randy Vander Wal; Joseph Abrahamson; Penn State University

8:20 AM Invited Comprehensive Characterization of Silicate Glass Surfaces Using XPS, SR-IR, ATR-IR and SFG Spectroscopies: Seong Kim; Pennsylvania State University

9:00 AM Invited Spectroscopic Studies of Borate and Phosphate Glasses: The Effects of Structure on Aqueous Durability: Richard Brow; Missouri S&T

9:40 AM Structural and Thermal Characterization of the MgxCosCuxNi2O3-SiO2 Ternary: Entropy Stabilized Oxide: Christina Root; Jeffrey Braun; Ashutosh Giri; Jon-Paul Maria; Patrick Hopkins; University of Virginia; North Carolina State University

10:00 AM Break

10:20 AM Influence of Stress States during Amorphization of Single Crystal Boron Carbide: Jonathan Lidga; Kris Behler; Vladislav Domnich; Jerry LaSalvia; Brian Schuster; Army Research Laboratory; Rutgers University

10:40 AM Relationships between Elastic Properties and Reaction Kinetics of an Epoxy Resin Polymer during Cure Relaxation: Manon Heili; Andrew Bielawski; John Kieffer; University of Michigan; University of Michigan

11:00 AM Quantitative Analysis of Multi-Scale Heterogeneities in SOFC Electrode Microstructures: Rubayyat Mahbub; Tim Hsu; Mingzhen Feng; William K Eppling; Ross Cunningham; Gregory A Hackett; Harry Abernathy; Anthony D Rollett; Shawn Lister; Paul A Salvador; DOE National Energy Technology Laboratory, Carnegie Mellon University; U.S. DOE National Energy Technology Laboratory, Carnegie Mellon University; U.S. DOE National Energy Technology Laboratory; Oak Ridge Institute for Science and Education; U.S. DOE National Energy Technology Laboratory; U.S. DOE National Energy Technology Laboratory; AECOM

11:20 AM XRD and SEM Analysis on Reduction Behavior of CaO-Fe2O3-SiO2 Ternary System: Chengyi Ding; Xuewei Lv; Gang Li; Senwei Xuan; Kai Tang; Wei Lv; Chongqing University

11:40 AM Mechanical Properties of Aluminum Titanate Doped Solid Oxide Fuel Cell Anodes through Multi-dimensional Characterization: Madisen Mccleary; Roberta Amendola; Montana State University

Materials Selection and Surface Analyses for Corrosion Prevention and Detection – Lightweight Materials
Program Organizers: Matthew Asmussen, Pacific Northwest National Laboratory; Aijit Mishra, Haynes International; Sudhaker Mahajanam, PinnacleART; Eric Schindelholz, Sandia National Laboratory; Xuexuan Zhang, Gamry Instruments; Guang-Ling Song, Xiamen University; Luis Garfrais, Wood Group Kenny; Raul Rebak, General Electric

Wednesday AM Room: 405 Location: DLL Convention Center
Session Chair: Matthew Asmussen, Pacific Northwest National Laboratory

8:00 AM Invited Localized Filament Corrosion Behavior of Mg Alloys: Joseph Kish; Joseph McDermid; Geraint Williams; Michael Brady; McMaster University; Swansea University; Oak Ridge National Laboratory

8:40 AM Suppression of Samson Phase Formation in Al-Mg Alloys by Boron Addition: Ramasai Goswami; S Qadir; Naval Research Laboratory

9:00 AM Microscale Corrosion Investigation of Strained Al-Li Alloys by In-situ Atomic Force Microscopy: Ellen Wright; Michael Kaufman; Gary Weber; ESI; Colorado School of Mines; Boeing
9:20 AM
Development of Corrosion Resistant Aluminum Alloys: Rajeev Gupta; The University of Akron

9:40 AM
Corrosion of High Strength Nanostructure Al 6061 Investigated by Local Electrochemical Techniques and Surface Characterizations: Ramatou Ly; Ivan Karayan; Homero Castaneda-Lopez; Karl T. Hartwig; Texas A&M University

10:00 AM
Corrosion Behavior of DP590 Steel Joined with Carbon Fiber Reinforced Polymer: Chi Zhang; Dajiang Zheng; Guang-Ling Song; Yang Guo; Ming Liu; Hamid Kia; Xiamen University; GM R&D Shanghai; GM R&D Warren

Mechanochemical Synthesis and Reactions in Materials Science II – Session II

Program Organizers: Antonio Fuentes, Cinvestav del IPN; Laszlo Takacs, University of Maryland Baltimore County; Challapalli Suryanarayana, University of Central Florida; Jacques Huot, Universite du Quebec a Trois-Rivieres

Wednesday AM

Room: 327
Location: DLL Convention Center

Session Chairs: Challapalli Suryanarayana, University of Central Florida; Jacques Huot, Universite du Quebec a Trois-Rivieres

8:00 AM Invited
Developing a Better Understanding of Mechanochemical Reactions: James Mack; Kendra Leaby; Rebecca Haley; Joel Andersen; University of Cincinnati

8:40 AM Invited
Mechanochemical Approaches to Lignocellulosic Biomass and Its Isolated Polymers: Michael Wolcost; Jinwan Zhang; Jinwu Wang; Mohammadali Azadfar; Jinxue Jiang; Yalan Liu; Washington State University; US Forest Products Laboratory

9:20 AM Invited
From Molecules to Hybrid Materials by Ball-milling: Andrea Porcheddu; Delogu Francesco; Clarence Charnay; Evelina Colacino; Università degli Studi di Cagliari; Université de Montpellier

9:40 AM
Mechanochemical Nitration of Toluene: Oleg Lagoviyer; Mirko Schoenitz; Edward Dreizin; New Jersey Institute of Technology

10:00 AM Break

10:20 AM Invited
Multiscale Theory for Mechanochemistry and Its Applications: Valery Levitas; Iowa State University

11:00 AM Invited
Forced Mixing and Nanostructuration in Metallic Alloys Subjected to Severe Plastic Deformation: Pascal Bellon; Robert Averback; Nisha Verma; John Beach; Nirab Pant; Qun Li; Xuekun Shang; Julia Ivanisenko; University of Illinois

11:40 AM
Information on the Mechanism of Mechanochemical Reactions Based on Detailed Studies of the Reaction Kinetics: Francesco Delogu; Laszlo Takacs; Università degli Studi di Cagliari; University of Maryland Baltimore County

Program Organizers: Jing Zhang, Indiana University - Purdue University Indianapolis; Lei Chen, Mississippi State University; Li Ma, National Institute of Standards and Technology; Xinghua Yu, Oak Ridge National Laboratory; Yeon-Gil Jung, Changwon National University; Yanzhou Ji, The Pennsylvania State University, University Park; Long Qing Chen, Penn State University

Wednesday AM

Room: 306
Location: DLL Convention Center

Session Chairs: Jing Zhang, Indiana University - Purdue University Indianapolis; Lei Chen, Mississippi State University

8:00 AM Invited
Investigation on Grain Structure Development of Ti-6Al-4V during Additive Manufacturing: An Integrated Phase-field and Finite-element Modelling: Pengwei Liu; Yanzhou Ji; Alphans A. Antonyosamy; Long-Qing Chen; Lei Chen; Mississippi State University; Pennsylvania State University; Additive Manufacturing R&D Centre

8:20 AM
Accessing and Managing Materials and Process Data for Additive Manufacturing (AM) Simulations and Managing AM Process Life Cycle Data: Najib Baig; Stephen Ward; John Tweddel; Will Marsden; Granta Design

8:40 AM
Quantitative Texture Prediction of Epitaxial Columnar Grains in Additive Manufacturing: Jian Liu; Qian Chen; Yunhao Zhao; Wei Xiong; Albert C. To; University of Pittsburgh

9:00 AM
Compression Behavior of 3D Printed Polymer Lattice Structures: Mohammed Al Rifai; Sagar Sangle; Ahsan Mian; Raghavan Srinivasan; Wright State University

9:20 AM
Computational Simulation of Additively Manufactured Marine Structures: Charles Fisher; Caroline Scheck; Naval Surface Warfare Center

9:40 AM
Distortion Analysis and Reduction for Layerwise Additive Manufacturing Processing by a Laminated Layerwise Analytical Model and Tool: Jinquan Cheng; CS3DM

10:00 AM Break

10:20 AM Invited
Multi-scale Physics-based Modeling Framework for Additive Manufacturing of Metallic Components: Yi Zhang; Weng Lee; Yeon-Gil Jung; Jing Zhang; University of Illinois - Purdue University Indianapolis; Changwon National University
10:00 AM
Experimental Validation of Phase-field Predictions for Rapidly Solidified Microstructures of Metallic Alloys: John Roehling; Aurelien Perron; Jean-Luc Fattebert; Patrice Turchi; Joseph McKeown; 'Lawrence Livermore National Laboratory

11:00 AM
Prediction of Powder Bed Fusion Micro Structures: Christoph Beetz; Salem Moshah; Mustafa Megahed; 'ESI Group; 'Think Solidification, LLC

Multiscale Modeling of Microstructure Deformation in Material Processing – Multi scale Modeling of Microstructure Deformation in Material Processing: Part I
Program Organizers: Lukasz Madej, AGH University of Science and Technology; Krzysztof Muszka, AGH University of Science and Technology; Danuta Szelaiga, AGH University of Science and Technology

Wednesday AM Room: 403 October 11, 2017 Location: DLL Convention Center

Session Chairs: Lukasz Madej, AGH University of Science and Technology; Konstantin Redkin, Whemco

8:00 AM
A Quantitative Characterization of Texture Evolution in Pure Zirconium: Slip Systems and Strength Evolution: Weining Chen; Rulin Chen; Vahid Tari; Jonathan Lind; Robert Suter; Anthony Rollett; 'Carnegie Mellon University; 'Lawrence Livermore National Laboratory

8:20 AM
Using High Energy Diffraction Microscopy (HEDM) to Validate Micromechanical Fields Calculated by FFT Based Method: Vahid Tari; Ricardo A. Lebensohn; Rejju Pokharel; Anthony D. Rollett; 'Carnegie Mellon University; 'Los Alamos National Laboratory

8:40 AM
Evaluating Surface Morphologies as Stress Concentrations through Micromechanical Modeling: Christopher Kanzus; Ross Cunningham; Anthony Rollett; 'Carnegie Mellon University

9:00 AM
Effect of Microstructure on the Elasto-viscoplastic Deformation of Dual Phase Titanium Structures: Tugce Ozturk; Anthony Rollett; 'Carnegie Mellon University

9:20 AM
Predicting Stress Hotspots Using Graph Based Microstructural Features: Ankita Mangal; Elizabeth Holm; 'Carnegie Mellon University

9:40 AM
An Efficient Fast Fourier Transform-based Formulation to Simulate Large Strain Behavior of Polycrystalline Materials: Jaspreet Nagra; Abhijit Brahme; Ricardo Lebensohn; Raja Mishra; Kaan Inal; 'University of Waterloo; 'Los Alamos National Laboratory; 'General Motors

10:00 AM Break

10:20 AM
Accelerating Coupled FEM - Kinetic Monte Carlo Models, with Applications in Metallic Glass and Shape Memory Materials: Thomas Hardin; Christopher Schuh; 'Massachusetts Institute of Technology

10:40 AM
A Computational Study of High Speed Impaction of Ag Nanoparticles and Its Comparison with Experiments: Tushar Chittrakar; Guillaume Noiseau; John Keto; Michael Becker; Desiderio Kovar; 'The University of Texas at Austin

11:00 AM
Microstructure Evolution and Deformation Behavior in Powder Materials during Spark Plasma Sintering: Sudipta Biswas; Vikas Tomar; 'Purdue University

11:20 AM
Three Dimensional Microstructure Modeling of Particulate Composites Using Statistical Synthetic Structure and Its Thermomechanical Finite Element Analysis: Hyong Seop Kim; Hyung Keun Park; Jaimyun Jung; 'POSTECH

11:40 AM
Influence of Grain Orientation Spreads on Tensile Twinning Activation in Magnesium under Simple Compression and Plane Strain Compression: Crystal Plasticity Simulations: Hamad Alharbi; 'King Saud University

Program Organizers: Navin Manjooran, Siemens AG; Gary Pickrell, Virginia Tech

Wednesday AM Room: 319 October 11, 2017 Location: DLL Convention Center

Session Chairs: Gary Pickrell, Virginia Tech; Navin Manjooran, Vice President, Siemens AG

8:00 AM Invited
Structural Characterization of Enzymes Necessary to Degrade Hemicellulose for Microbial Fermentation: Jason Hurlbert; 'Winthrop University

8:40 AM
Development of Nanocarbon-infused High-performance Conductors: U. (Balu) Balachandran; Behai Ma; Stephen Dorris; Tae Lee; Rachel Koritala; David Forrest; 'Argonne National Laboratory; 'U.S. Department of Energy

9:00 AM
Development of Graphene Coated Magnetite Nanocomposite for the Removal of Toxic Ions and Bacteria from Water: Syed Ahmed; Ali Nemati; Waseem Haider; Zia Rahman; 'Central Michigan University

9:20 AM
Effect of Thermal Treatment Temperature on the Catalytic Activity of SiO2 and CeO2 Supported CuO Catalysts: Shaikh Tofazzel Hossain; Yazeed Almesned; Elizabeth Zell; Ruigang Wang; 'Youngstown State University; 'Department of Energy

9:40 AM
Evaluation of Photo-catalytic Behavior Titanium Dioxide Nano-tubular Structure: Waseem Haider; Hassenain Asgar; Ziaur Rahman; 'Central Michigan University

10:00 AM Break
10:00 AM Break

10:10 AM
Morphology Modifications of AuNPs to Enhance the Performance of Aptasensor: Nitesh Sara¢; Sushant Singh1; Alicia Brown1; Bradley Willenberg1; Sudipta Seal1; ‘University of Central Florida

10:30 AM
Extremely High OSC Designed in Fluorite-type Ceria-zirconia: Yusuke Hidaka1; Tomoharu Itoh1; Shingo Katayama1; Masasuke Yamada1; ‘Nippon Denko Co., Ltd.

10:50 AM
Highly Stable, Thermally-processable Polymer Matrices for Semiconductor Nanocrystal (Quantum Dots) Encapsulation and Dispersion: Hunaid Nuhwala1; Xu Zhou1; Matt Bootman1; Lianhua Qu1; ‘Liquid Ion Solutions LLC; ‘Crystal Plex Corporation

11:10 AM
Combinatorial Development of Bulk Metallic Glasses with Potential Applications for Next-generation Intracoronary Drug-eluting Stents: Muhammad Mudasser Khan1; Wasem Haider1; ‘Central Michigan University

Next Generation Biomaterials – Ceramic Biomaterials and Novel Biomaterials

Program Organizers: Roger Narayan, UNC/NCSU Joint Department of Biomedical Engineering; Jie Huang, University College London; Vipul Davé, Johnson & Johnson; Sanjiv Lalwani, Lynntech, Inc.; Marc in het Panhuis, University of Wollongong; Mohan Edirisinghe, University College London

Wednesday AM Room: 334 Location: DLL Convention Center

Session Chairs: Venu Varanasi, Texas A & M University; Mohamed Rahaman, Missouri University of Science and Technology

8:00 AM Invited
Bioactive Glass Composites for Bone Tissue Engineering: Mohamed Rahaman1; ‘Missouri University of Science and Technology

8:20 AM Invited
Fabrication Aspects of Porous Biomaterials in Orthopedic Applications: A Review: Elham Babaeie1; Sarit Bhaduri1; ‘University of Toledo

8:40 AM
Controlled Delivery of Anticancer Drugs to Tumor Cells Using Ternary Complexes of Single-wall Carbon Nanotubes: Piyumi Wijesekara1; Patrick Boyer1; Mohammad Islam1; Kris Dahl1; ‘Carnegie Mellon University

9:00 AM Invited
Synthesis, Processing and Characterization of Titanium Doped SiO2-CaO-Na2O-P2O5 Glasses to Form Mechanically Stable Glass Scaffolds: Anthony Wren1; Simon Chon1; Lindsay Piraino1; ‘Alfred University

9:20 AM
Molecular Motor-powered Shuttles along Multi-walled Carbon Nanotube Tracks: Aurélien Sikora1; Javier Ramón-Azcon1; Kyongwan Kim1; Kelley Reaves1; Winfried Teizer1; ‘AIMR Tohoku University; ‘Lynntech, Inc.; ‘Texas A&M University, AIMR Tohoku University

9:40 AM Invited
Comparison of Gelatin-And Chitosan-nanosilicate Scaffolds on Their Effect on Endothelial Cell and Osteoprogenitor Marker Expression for Non-load Bearing Bone Healing: Vena Varanasi1; ‘Texas A & M University

10:00 AM Break

10:20 AM
Soft Polymer-based Artificial Photoreceptor Layer: Jared Mike1; ‘Lynntech

10:40 AM Invited
Ag-doped Bioactive Glass-ceramic Particles for Combating Bacteria and Promoting Tissue Regeneration in Dental and Orthopedic Applications: Xanthippe Chatzistavrou1; N. Pajares Chamorro1; P. Papagerakis2; C.J. Fenno2; N. Hammer1; S. Badyak3; K.D. Hankenson4; ‘Michigan State University; ‘University of Michigan; ‘University of Pittsburgh

11:00 AM Invited
Novel Antimicrobial Protective Burn Wound Dressings: Joel Gil1; Sanjiv Lalwani1; Stephen Davis1; Richard Sanchez2; ‘University of Miami; ‘Lynntech, Inc.

11:20 AM
Influence of Thermomechanical Process Condition on In Vitro Corrosion of Fine Resoloy® Wire: Adam Griebel1; Jeremy Schaffer1; Roman Menze2; Kai Leymann1; Michael Steker3; Benjamin Bittner3; Clemens Meyer-Kobbe3; ‘Fort Wayne Metals; ‘MeKo

11:40 AM Invited
Multifunctional Biomaterial Surfaces for Antimicrobial Infection: Christopher Siedlecki1; Li-Chong Xu1; Harry Alcock1; Mark Meyerhoff2; ‘Pennsylvania State University; ‘University of Michigan

Non Beam-based Additive Manufacturing Approaches for Metallic Parts – Session I

Program Organizer: Olaf Andersen, Fraunhofer IFAM

Wednesday AM Room: 305 Location: DLL Convention Center

Session Chair: Olaf Andersen, Fraunhofer IFAM

8:00 AM Invited
Direct Molten Metal Write of Structurally Significant Materials: William Carter1; Zachary Sims1; Max Neveau1; Lonnie Love1; Brian Post1; Randall Lind1; Michael Kesler1; Mark Jaster2; David Weiss3; Orlando Rios4; ‘Oak Ridge National Laboratory; ‘PrintSpace 3D; ‘Eck Industries

8:40 AM
3D Inkjet Powder Printing of Implantable Biomaterials and Biomedical Device Prototypes: Bikramjit Basu1; Srimanta Barui1; Sourav Mandal1; ‘Indian Institute of Science

9:00 AM
Additive Manufacturing of High-performance Copper Heat Exchangers via 3D Screen Printing: Kay Reuter1; Olaf Andersen1; Thomas Stüdtlitzky1; Bernd Kieback1; ‘Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM
9:00 AM
Grain Growth And Densification Behavior Of 316L Stainless Steel Metallic Components Produced via Binder Jet-powder Printing (3-D) System Using Water Atomized Powders: Hsiang-Ling Juan1; Yu Zhou1; Christopher Schade2; Calixto Garcia1;1 University of Pittsburgh; 2Hoeganaes Corporation

9:40 AM
Extrusion-based 3D-printing and Sintering of Ni-Mn-Ga and NiTi-Nb Shape Memory Alloys: Shannon Taylor1; Amaka Ibe1; Ramille Shah1; David Dunand1;1 Northwestern University

10:00 AM Break

10:20 AM
Integrated Process Line for Fused Filament Fabrication of Metallic Parts Using Metal Powder Loaded Filaments: Sebastian Riecker1; Olaf Andersen1; Sebastian Hein1; Thomas Studnitzky1; Bernd Kieback1;1 Fraunhofer IFAM; 2Technical University of Dresden

10:40 AM
Slumping during the Sintering of Cantilevered Beams: Experiments and Theory: Zachary Cordero1; Derek Siddel1; Ralph Dinwiddie1; Amelia Elliott1;1 Rice University; 2Oak Ridge National Laboratory

11:00 AM
Roadmap for Metal Hybrids Net-Shaped via Binder Jet Additive Manufacturing: Amy Elliott1; Peeyush Nandwana1; Cameron Shackelford1; Cindy Waters1;1 Oak Ridge National Laboratory; 2North Carolina A&T University

11:20 AM Invited
Binder Jetting 3D Printing: Improving Printer Capabilities and Expanding Available Materials: Andrew Klein1;1 ExOne

Phase Stability, Diffusion Kinetics, and Their Applications (PSDK-XII) – Session IV: J. Willard Gibbs Phase Equilibria Award - Theory, Modelling and Database Development
Program Organizers: Wei Xiong, University of Pittsburgh; Raymundo Arroyave, Texas A & M University; Ji-Cheng Zhao, The Ohio State University; Arthur Pelton, Ecole Polytechnique

Wednesday AM
Room: 413
Location: DLL Convention Center

Session Chairs: Sergei Decterov, Ecole Polytechnique; Daniel Lindberg, Åbo Akademi University

8:00 AM Invited
Influence of Thermodynamics and Diffusion on Reaction Mechanisms during Gas/Solid Reactions: Peter Hayes1;1 University of Queensland

8:20 AM Invited
High Entropy Alloys and the Search for 3-phase Miscibility Gaps: John Morral1; Shuanglin Chen1;1 The Ohio State University; 2CompuTherm

8:40 AM Invited
A Thermodynamic Model for Carbonaceous Electrodes: Patrice Chartrand1; Philippe Ouzilleau1; Aimen Gheribi1;1 Polytechnique Montreal

9:00 AM Invited
Thermodynamic Optimization of the Na2O-B2O3-SiO2 System: Evgenii Nekhoroshev1; Sergei Decterov1;1 CRCT

9:20 AM Invited
Constrained Gibbs Energy Models for Rate-controlled and Partitionless Phase Transformation Systems: Pertti Koukkuri1; Risto Pajanne1;1 VTT

9:40 AM Invited
Beyond Traditional CALPHAD Databases: Ursula Kattner1;1 National Institute of Standards and Technology

10:00 AM Break

10:20 AM Invited
Large-scale Comparison between ab Initio and CalPhad Phase Stabilities: Moritz to Baben1; Klaus Hack1;1 GTT-Technologies

10:40 AM Invited
Development of a Thermodynamic Database for Refractory Boride, Carbide, Nitride and Silicide Systems: Philip Spencer1;1 The Spencer Group

11:00 AM Invited
Integrated Experimental and Modelling Approach to the Thermodynamic Database Development for Multi-component Metallurgical and Recycling Systems: Evgenii Jak1;1 PYROSEARCH, The University of Queensland

Phase Transformations and Microstructural Evolution in Ti and Its Alloys - Experiments
Program Organizers: Carl Boehlert, Michigan State University; Yufeng Zheng, Ohio State University; Vahid Khademi, Michigan State University

Wednesday AM
Room: 307
Location: DLL Convention Center

Session Chairs: Carl Boehlert, Michigan State University; Yufeng Zheng, Ohio State University

8:00 AM Invited
Development of Various Fine Scale Alpha Microstructures in Titanium Alloys: Yufeng Zheng1; Rongpei Shi1; Talukder Alam1; Rajarshi Banerjee1; Yunzhi Wang1; Hamish Fraser1;1 The Ohio State University; 2University of North Texas

8:20 AM Invited
The Evolution of Microstructure in Titanium Alloys: Dipankar Banerjee1;1 Indian Institute of Science

8:40 AM Invited
The Evolution of Omega and Its Effect on the Formation of Alpha in High Misfit Beta Titanium Alloys: Deep Choudhuri1; Yufeng Zheng1; Rongpei Shi1; Talukder Alam1; Vishal Soni1; Srinivas Aditya Mantri1; Yunzhi Wang1; Srinivasan Srivilliputhur1; Hamish Fraser1;1 Rajarshi Banerjee1;1 University of North Texas; 2The Ohio State University

9:00 AM Thermomechanically-induced Phase Transformations in Beta Titanium Alloys Based on Ti-13Cr(wt.%): Vahid Khademi1; Carl Boehlert1; Masahiko Ikeda1;1 Michigan State University; 2Kansai University

9:20 AM In-situ Experiments to Capture the Rapid Evolution of Microstructure during Phase Transformation of Titanium under Dynamic Loading: Benjamin Morrow1; David Jones1; Paulo Rigg1; Ellen Cerreta1;1 Los Alamos National Laboratory; 2Washington State University
9:40 AM
Deformation Induced Phase Transformation in Ti2448: Characterization on the Nanoscale Using Transmission Kikuchi Diffraction: Patrick Trimby; Chuanyong Liu; Xianghai An; Oxford Instruments Nanosanalysis; The University of Sydney

10:00 AM Break

10:20 AM Invited
Controlling Ferroelastic Phase Transformation in Rare-earth Ortho-niobates: Pankaj Sarin; Daniel Lowery; Oklahoma State University

10:40 AM
High Temperature Behavior in Entropy Stabilized Oxide (Mg0.2Co0.2Ni0.2Cu0.2Zn0.2)O: Kuo-pin Tseng; Scott McCormack; Waltraud Kriven; University of Illinois at Urbana-Champaign

11:00 AM Invited
Grain Boundary Phase-like Transformations and Their Roles in Activated Sintering and Beyond: Jian Luo; University of California, San Diego

10:00 AM Break

10:40 AM Invited
Investigation of Single-mode Microwave Coupling in SiC-TiB Microspheres: Xiaolong Lin; Zhizhong Li; Lei Ye; Huimin Tang; Yuanbo Zhang; Guanghui Li; Tao Jiang; Shanghai University; Central South University

11:00 AM Invited
Effect of Plastic Deformation on L10 Chemical Ordering and Microstructure of Equiatomic FePd: Ana Maria Montes-Arango; Amirali Zangiabadi; Katayun Barmak; Laura Lewis; Northeastern University; Columbia University

11:20 AM
Resilient Graphitic Carbons from Electro-thermal Fluidized Bed Reactor: Soeren Koester; Eric Salmon; Carsten Wehling; Superior Graphite

9:40 AM

Program Organizers: Moris Mahmoud, King Fahd University of Petroleum and Minerals (KFUPM) & City for Scientific Research and Technological Applications (SRTA City); Dinesh Agrawal, Pennsylvania State University; Guido Link, Karlsruhe Institute of Technology; Motoyasu Sato, Chubu University; Rishi Raj, University of Colorado at Boulder

Wednesday AM Room: 318
October 11, 2017 Location: DLL Convention Center

Session Chairs: B. Rejaa Janey, Carnegie Mellon University; Zhiwei Peng, Central South University

8:00 AM
Effect of Plastic Deformation on L10 Chemical Ordering and Microstructure of Equiatomic FePd: Ana Maria Montes-Arango; Amirali Zangiabadi; Katayun Barmak; Laura Lewis; Northeastern University, Columbia University

8:20 AM
Microwave Pyrolysis of Pine Sawdust for Preparation of Highly Porous Biochar: Zhiwei Peng; Xiaolong Lin; Zhizhong Li; Lei Ye; Huimin Tang; Yuanbo Zhang; Guanghui Li; Tao Jiang; Central South University

8:40 AM
Observation of Re-entrant Spin Reorientation in TbFe1-xMnxO3: Jincang Zhang; Wenlai Lu; Fei Chen; Yifei Fang; Shanghai University

9:00 AM
Ultrasonic Energy Enabled Dynamic Recovery in Aluminium during Micro Forming and Its Effects on Stress and Microstructure Evolution: Anagh Deshpande; Keng Hsu; Arizona State University

9:20 AM
Investigation of Single-mode Microwave Coupling in SiC-TiB, Materials: Michael Kornecki; Selva Vennila Raju; Victoria Blair; Nicholas Ku; Raymond Brennan; U.S. Army Research Laboratory
10:00 AM Break

10:20 AM Electric Field-assisted Pressureless Sintering Zirconia-Scandia-Ceria Solid Electrolytes: Reginaldo Muccillo1; Eliana Muccillo2; 1IPEN/Federal University of ABC; 2IPEN

10:40 AM Invited
2.45 GHz Hybrid Microwave Crystallization of LAGP Solid-state Electrolyte: Morsi Mahmoud1; King Fahd University of Petroleum and Minerals (KFUPM) & City for Scientific Research and Technological Applications (SRTA City)

11:00 AM A Study of Heavy Clay Body Properties for Hybrid Microwave Firing: Garth Taylor1; Mike Anderson2; Mike Hamlyn3; 1Acme Brick Company; 2Staffordshire University

Program Organizers: Yellapu Murty, MC Technologies LLC; Eric Klier, U.S. Army Research Laboratory; Jack Lifton, Jack Lifton LLC

Wednesday AM Room: 325 Location: DLL Convention Center

Session Chair: Michael Mckittrick, US Department of Energy

8:00 AM Keynote
Defense Logistics Agency – Strategic Materials (DLA-SM): Possible Actions Towards Mitigating the Risk of Rare Earths Shortfall: Vaibhav Jain1; Brian Gabriel1; Defense Logistics Agency- Strategic Materials

9:10 AM Invited
Advances in REE Metal Making Technologies – A Review: Patrick Taylor1; Matt Earlam2; Fangyu Liu3; 1Colorado School of Mines; 2Infinium

9:40 AM Invited
Molecular Recognition Technology: A Green Chemistry, Economical Process for Separation and Recovery of Individual Rare Earth Metals: Steven Izatt1; Ronald Bruening2; Neil Izatt3; Reed Izatt4; 1IBC Advanced Technologies, Inc.

10:00 AM Break

10:30 PM Invited
A Look at Where We Stand on Addressing Technology Needs for Diversifying the Supply of Critical Materials for Clean Energy: Bruce Moyer1; 1Oak Ridge National Laboratory

11:00 AM Invited
Processing Recycled Rare Earth Magnet Alloys: John de Neufville1; David Murphy1; Randall Ice1; 1Eutechix, LLC

11:30 AM Invited
Experimental Characterization of Discarded Electronic Batteries: Otavio Fortini1; Christian Mutale1; Igor Kolomytsein1; 1UMD

12:00 PM Invited
Synthetic Methods for Establishing a Reliable Thermochemical Databank: Richard Roman1; Zhichao Hu1; Paul Kim1; Daniel Kopp1; Ali Eslamimanehs1; Gaurav Das2; Andrzej Anderko2; Radha Shivaramaiah3; Lili Wu2; Alexandra Navrotsky3; 1Rutgers University; 2OLI Systems, Inc.; 3University of California-Davis

Recent Advances in Computer-aided Materials Design – Method Development in Material Design
Program Organizers: Huan Tran, University of Connecticut; Ghanshyam Pilania, Los Alamos National Laboratory; Alexey Kolmogorov, Binghamton University, State University of New York; Mina Yoon, Oak Ridge National Laboratory; Son Hoang, University of Connecticut

Wednesday AM Room: 324 Location: DLL Convention Center

Session Chair: Son Hoang, University of Connecticut

8:00 AM Keynote
Rational Computation-guided Design of Polymer Dielectrics: Rampi Ramprasad1; 1University of Connecticut

8:40 AM Invited
Big, Deep, and Smart Data in Materials Research: Atomic View on Materials Functionality: S. V. Kalinin1; 1Oak Ridge National Laboratory

9:40 AM Invited
Tree Search Approach to Designing Kinematically Active Molecular Materials: Charles Manion1; Laura de Sousa Oliveira2; Matthew Campbell1; Alex Greaney3; 1Oregon State University; 2University of California, Riverside

10:00 AM Break

10:20 PM Invited
Structure Predictions with the Minima Hopping Method: Stefan Goedecker1; Max Amstler2; 1UNI Basel; 2Cornell University

11:00 AM Invited
Multi-Cell Monte Carlo Method for Predicting Phase Stability of Alloys: Wolfgang Windl1; Changming Niu1; Christian Oberdorfer1; Maryam Ghazisaeidi1; 1Ohio State University

11:40 AM Invited
Elucidating Multi-physics Interactions in Suspensions for the Design of Polymeric Dispersants: A Hierarchical Machine Learning Approach: Newell Washburn1; Aditya Menon1; Kun Zhang1; Barnabas Poczos1; 1Carnegie Mellon University
Responsive Functional Nanomaterials – Session IV
Program Organizers: Ziqi Sun, Queensland University of Technology; Jiahua Zhu, The University of Akron; Wenxian Li, Shanghai University; Dawei Wang, University of New South Wales; Wenping Sun, University of Wollongong; Liangzhi Kou, Queensland University of Technology; Wenzhuo Wu, Purdue University
Wednesday AM Room: 320 October 11, 2017 Location: DLL Convention Center
Session Chairs: Ting Liao, Queensland University of Technology; Xiaobo Chen, RMIT

8:00 AM Invited
Ultrafast and Cycle-stable Lithium Storage in Sn-based Nanocomposite Anodes: Yinzhu Jiang1; Zhejiang University

8:20 AM Invited
Silicon-based Core-shell Architectures: From Structural Design to Charge-discharge Process Study: Jianping Yang1; Donghua University

8:40 AM Invited
Interesting And Effective Strategies for Developing Advanced Electrode Materials of Li/Na-ion Batteries: Xing-Long Wu1; Northeast Normal University

9:00 AM Invited
Designed Nanoarchitectures of Vanadium and Phosphate-based Cathodes for Li(Na)-ion Batteries: Xianhong Rui1; Anhui University of Technology

9:20 AM Invited
Designed Copper Selenide Nanotubes as Counter Electrodes of Quantum-dot-sensitized Solar Cells: Xinqi Chen1; Jianping Yang2; Ming Xiao1; Wei Dai1; Hubei University of Education; Donghua University

9:40 AM Invited
Mechanically-assisted Electrochemical Production of Graphene Oxide: Yu Lin Zhong1; Griffith University

10:00 AM Break

10:20 AM Invited
Nanocarbon for Thermal Management: Zhen Liu1; Tucker Witt1; Jacob Lichtenberg1; Stacey Acheampong1; Frostburg State University

10:40 AM Invited
Carbon Materials from Petroleum Heavy Oil: Mingbo Wu1; China University of Petroleum
Surface Protection for Enhanced Materials Performance: Science, Technology, and Application – Corrosion and Functional Coatings

Program Organizers: Kang Lee, NASA Glenn Research Center; Yutaka Kagawa, University of Tokyo; Dongming Zhu, NASA Glenn Research Center; Rodney Trice, Purdue University; Daniel Mumm, University of California, Irvine; Mitch Dorfman, Oerlikon Metco (US); Christian Moreau, Concordia University; Emmanuel Boakye, UES Inc.

Wednesday AM Room: 333
October 11, 2017 Location: DLL Convention Center

Session Chairs: Daniel Mumm, University of California, Irvine; Kang Lee, NASA Glenn Research Center

8:00 AM Corrosion Behavior of Graphene Oxide Coatings on AZ31B Magnesium Alloy: Mohsin Ali Raza1; Faizan Ali Ghauri1; Akhlaq Ahmad2; Muhammad Omer Yousaf2; Asad Ali1; 1University of Punjab; 2UET, Lahore, Pakistan

8:20 AM Evaluation of Surface Applied Corrosion Inhibitor Effectiveness on Reinforced Concrete Structures Based on Electrochemical Techniques vs. ASTM G109: Ahmad Karayan1; Yenny Cubides1; Ange Nzihou1; Claire White1; Winston Soboyejo1; 1Ecole Polytechnique Fédérale de Lausanne (EPFL);

8:40 AM Passive and Active Micro Surfaces and Actuators for Aerodynamic Drag Reduction: Allison Arnold1; Wade Huebsch1; Patrick Browning1; Justin Schrout1; Edward Sabolsky1; 1West Virginia University

9:00 AM The Effect of Chemical Vapor Deposition Grown Polymer Coatings on the Performance of Cathode Material for Lithium Ion Battery: Latino Su1; B. Reeea Jaya1; 1Carnegie Mellon University

Synthesis, Characterization, Properties and Applications of Functional Porous Materials – Porous Material Applications in Environmental and Sustainable Fields

Program Organizers: Lan Li, Boise State University; Kevin Huang, University of South Carolina; Winnie Wong-Ng, National Institute of Standards and Technology

Wednesday AM Room: 329
October 11, 2017 Location: DLL Convention Center

Session Chair: Lan Li, Boise State University

8:00 AM Invited
CO2 Capture Using Sorbent Suspensions: Jeffrey Culp1; Lei Hong2; Robert Thompson1; Fan Shi2; Nicholas Siefert2; McMahan Gray3; David Hopkinson1; 1National Energy Technology Laboratory

8:20 AM Invited
Porous Materials for Carbon Dioxide Capture and Storage: Izaak Williamson1; Winnie Wong-Ng2; Lan Li1; 1Boise State University; 2National Institute Of Standards and Technology

10:00 AM Break

10:20 AM Invited

10:40 AM Flexible Metal Organic Framework (MOF) ([Ni(dpblz][Ni(CN)4]) with an Unusual Ni-N Bond: Winnie Wong-Ng1; Jeffrey Culp; Yu-Sheng Chen2; Jeffrey Deschamps1; Anne Marti1; Izaak Williamson1; Lan Li1; 1National Institute of Standards and Technology; 2NETL, University of Pittsburgh

11:00 AM Role of Sorbent Structure and Phase Balance in Enhanced CO2 Capture Using Mixed Matrix Membranes for Post-combustion CO2 Capture: David Hopkinson1; Surendar Venna1; Anne Marti1; Janice Steckel1; Samir Budhathoki1; Christopher Wilmer2; 1National Energy Technology Lab; 2University of Pittsburgh

11:20 AM Applications of Porous Composites in Heavy Metal Extraction from Contaminated Water: Daniel Sun1; Li Peng1; Sandrine Chuard1; Emad Oveisi1; 1Faraday Technology, Inc.; 2National Institute of Standards and Technology

11:40 AM Design of a Self-forming Dual-phase Membrane to DPF Substrate, which Leads to the DPF Premature Failure: Kun Yang1; John Fox2; Robert Hunsicker1; 1Lehigh University; 2Hunsicker Emission Services (HES), LLC
The 9th International Symposium on Green and Sustainable Technologies for Materials Manufacturing and Processing – Novel Green Technologies for Designing Porous Materials/Green Technologies in Biomaterials and Computational Materials

Program Organizers: Surojit Gupta, University of North Dakota; Jun-ichi Tatami, Yokohama National University; Tatsuki Ohji, National Institute of Advanced Industrial Science and Technology (AIST); Mrityunjay Singh, Ohio Aerospace Institute, NASA Glenn Research Center; Marsha Bischel, Armstrong World Industries, Inc., PA; Makio Naito, Osaka University, Japan; Hisayuki Suematsu, Nagaoka University of Technology, Japan; Yiquan Wu, Alfred University, NY

Wednesday AM Room: 317
October 11, 2017 Location: DLL Convention Center

Session Chairs: Manabu Fukushima, National Institute of Advanced Industrial Science and Technology; Lan Li, Boise State University; Jingyang Wang, Shenyang National Laboratory for Materials Science

8:00 AM Invited
Mesoporous Materials for Desulfurization Technologies: Fabrication and Enzyme Immobilization: Olivia Graeve1; Seongcheol Choi1; 1University of California, San Diego

8:40 AM
Bioactive Glass-ceramic Foams from Alkali Activation and Sinter-crystallization: Hamada Elsayed1; Acacio Rincon Romero 1; Barbara Zavan 1; Enrico Bernardo 1; 1University of Padova

9:00 AM Invited
Base Metal Oxide Catalyst Supported on Corning’s High Porosity Honeycomb Substrate for Room Temperature Catalytic Decomposition of Airborne Formaldehyde: Benedict Johnson1; 1Corning Incorporated

9:40 AM
Microstructure and Mechanical Response of Ceramic Insulators Prepared by Gelation Freezing Route: Manabu Fukushima1; Hideki Hyuga1; Chika Matsunaga1; Tatsuki Ohji1; Yu-ichi Yoshizawa1; 1National Institute of Advanced Industrial Science and Technology (AIST)

10:00 AM Break

10:20 AM Invited
Materials-by-design for Energy and Sustainability Applications: Lan Li1; 1Boise State University

11:00 AM Invited
Use of Nanoclays for Biomaterials Design: Reducing Environmental Footprint: Kalpana Katti1; Dinesh Katti1; 1North Dakota State University

11:40 AM
Phonon Engineering for RE-silicate EBC Candidates: Challenges and Opportunities: Jingyang Wang1; 1Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences

ACerS Robert B. Bosman Award Symposium: Tailoring Ceramic Microstructures: Understanding and Tuning of Materials Performance – Robert B. Bosman Award Symposium II: Tailoring Ceramic Microstructures: Understanding and Tuning of Materials Performance

Program Organizer: Wolfgang Rheinheimer, Karlsruhe Institute of Technology

Wednesday PM Room: 315
October 11, 2017 Location: DLL Convention Center

Session Chair: Wolfgang Rheinheimer, Karlsruhe Institute of Technology

1:00 PM Invited
Grain Growth in Perovskite-based Ceramics: Michael J. Hoffmann1; 1Karlsruhe Institute for Technology (KIT)

ACerS Robert B. Bosman Award Symposium: Tailoring Ceramic Microstructures: Understanding and Tuning of Materials Performance – ACerS Basic Science Division Robert B. Bosman Lecture

Program Organizer: Wolfgang Rheinheimer, Karlsruhe Institute of Technology

Wednesday PM Room: 315
October 11, 2017 Location: DLL Convention Center

Session Chair: Wolfgang Rheinheimer, Karlsruhe Institute of Technology

2:00 PM Invited
Tailoring Lead-free Piezoceramic Composites: Juergen Roedel1; 1TU Darmstadt

2:40 PM Invited
GB Chemistry of Silicon Nitride Based Ceramics – Implications to the Ceramics Properties: Pavol Sajgalik1; Zoltán Lenèéš1; 1Slovak Academy of Sciences

3:20 PM Break

3:40 PM Invited
Tailoring Microstructures for Better Mechanical Properties of Engineering Ceramics: Tatsuki Ohji1; 1National Institute of Advanced Industrial Science and Technology (AIST)

4:00 PM Invited
Toward Seashells under Stress: “Novel Concepts to Design Tough Layered Ceramic Composites”: Raul Bermejo1; Yunfei Chang1; Gary Messing1; 1The Pennsylvania State University
Additive Manufacturing of Metals: Fatigue and Fracture – Session II

Program Organizers: Nikolas Hrabe, National Institute of Standards and Technology; Nicholas Barbosa, National Institute of Standards and Technology; Richard Ricker, National Institute of Standards and Technology; Steve Daniewicz, University of Alabama; Nima Shamsaei, Auburn University; Mohsen Seifi, Case Western Reserve University

ASTM International

Wednesday PM Room: 304
October 11, 2017 Location: DLL Convention Center

Session Chair: Mohsen Seifi, Case Western Reserve University

2:00 PM Invited Paper
Low Cycle Fatigue Behavior of Inconel 718 Fabricated through Electron Beam Melting: Michael Kirs 1; Charles Hawkins 1; Duncan Greely 1; Ryan Dehoff 1, Oak Ridge National Laboratory

2:40 PM
Fatigue Life of Stainless Steel Laser Additive Manufactured Components Using Various Build Parameters: Steven Keckler 1; Penn Rawn 1; Bruce Madigan 1; K.V. Sudhakar 1; Ronda Coguill 1, Montana Tech

3:00 PM
Fatigue Behavior of Electron Beam Melted Ti-6Al-4V: Sources of Scatter and Path Forward: Andrew Chern 1; Peeyush Nandwana 1; Sarah Foster 1; Robert McNadd 1; Ryan Dehoff 1; Peter Liaw 1; Robert Tryon 1; Chad Duty 1, University of Tennessee-Knoxville; Oak Ridge National Laboratory

2:20 PM
Using Fracture Mechanics Methods to Characterize the Adhesion Strength of Cold Spray Additive Repairs: Benjamin White 1; William Story 1; Brian Jordan 1; Luke Brewer 1, University of Alabama

3:40 PM Break

4:00 PM
Surface Treatment of Powder Bed Fusion Additive Manufactured Metals for Improved Fatigue Life: David Witkin 1; Dhruv Patel 1; Henry Helvajian 1; Agustin Diaz 1, The Aerospace Corporation; REM Surface Engineering

4:20 PM
Effect of Surface Roughness on Fatigue Life of Additively Manufactured IN 718: Bo Whip 1; Joy Gockel 1; Luke Sheridan 1; Eric Tatman 1, Wright State University

4:40 PM
Effect of Surface Roughness on the Low- and High-cycle Fatigue Behavior of Binder Jet Printed Nickel-based Alloy 625: Amir Mostafaei 1; Jakub Toman 1; Erica Stevens 1; Markus Chmielu 1, University of Pittsburgh

5:00 PM
Influence of Varying Build Orientation on the Fatigue Performance of AISI10Mg Parts Produced Using Selective Laser Melting: Edward Stu gelmayer 1; Bryce Abstetar 1; K.V. Sudhakar 1; Ronda Coguill 1; Bruce Madigan 1, Montana Tech of the University of Montana

Additive Manufacturing of Metals: Microstructure and Material Properties – AM Processing of Aluminum and Non-ferrous Alloys

Program Organizers: Andrzej Wojcieszynski, ATI Powder Metals; Ulf Ackelid, Freemelt AB; Ola Harrysson, North Carolina State University; Sudarsanam Babu, The University of Tennessee, Knoxville

Wednesday PM Room: 301 Location: DLL Convention Center

Session Chair: Ryan Dehoff, ORNL

2:00 PM
Influence of Arcam EBM Parameters on Properties in Aluminum Alloy 2024: Chris Rock 1; Maria Withrow 1; Tim Horn 1; Harvey West 1, Center for Additive Manufacturing and Logistics

2:20 PM
Microstructure Control in Additive Manufacturing of Aluminum Alloys: Hunter Martin 1; Brennan Yahata 1; Eric Clough 1; Jacob Hundle 1; Tobias Schaad 1; Tresa Pollock 1, University of California, Santa Barbara

2:40 PM
The Microstructure and Mechanical Performance of an Additively Manufactured Aluminum Alloy: Joe Croteau 1; Davaadorj Bayansan 1; Seth Griffiths 1; Christian Leinenbach 1; Nhon Vo 1; David Dunand 1; David Seidman 1, NanoAl LLC; Empa Materials Science and Technology

3:00 PM
Microstructural Evolution of Rapidly Solidified Al-Si and Al-Ge Alloys: Adam Stokes 1; John Roehling 1; Joseph McKeown 1; Daniel Coughlin 1; Amy Clarke 1, Colorado School of Mines; Lawrence Livermore National Laboratory; Los Alamos National Laboratory

3:20 PM
Solidification and Microstructure Mapping of Rapidly Solidified Hypoeutectic Al-Si Alloys: William Hearn 1; Hani Henein 1; Aboud-Aziz Bogno 1; Jonas Valloton 1; Mark Gallerneault 1, University of Alberta; Alceroco

3:40 PM Break

4:00 PM
Microstructures and Mechanical Properties of TiAl Alloys Fabricated by Electron Beam Melting: Ken Cho 1; Ryota Kobayashi 1; Naohide Morita 1; Masahiro Sakata 1; Hironori Yasuda 1; Mitsuharu Todai 1; Takayoshi Nakano 1; Ayako Ikeda 1; Daiuske Kondo 1; Yuto Nagamachi 1; Minoru Ueda 1; Masao Takeyama 1, Osaka University; National Institute for Materials Science; Metal Technology Co. Ltd.; Tokyo Institute of Technology

4:20 PM
Processing-microstructure-mechanical Property Correlation in AlSi10Mg Parts Produced Using Selective Laser Melting: Edward Stuegelmayer 1; Bryce Abstetar 1; K.V. Sudhakar 1; Ronda Coguill 1; Bruce Madigan 1, Montana Tech of the University of Montana

4:40 PM
Selective Laser Melting of Cu10Ni Alloys Using Gas Atomized Powders: Saraj Jadav 1; Pierre Van Cauwenbergh 1; Karel Lietaert 1; Jan Van Humbeeck 1; Jean-Pierre Kruth 1; Sasan Dadbakhsh 1; Aljaz Ivekovic 1; Kim Vanmeensel 1, KU Leuven
Additive Manufacturing of Metals: Microstructure and Material Properties – Phase Formation and Stresses
Program Organizers: Andrzej Wojcieszynski, ATI Powder Metals; Ulf Ackelid, Freemelt AB; Ola Harrysson, North Carolina State University; Sudarsanam Babu, The University of Tennessee, Knoxville

Wednesday PM
Room: 302
Location: DLL Convention Center

Session Chair: Jack Beuth, Carnegie Mellon University

2:00 PM
Effects of Argon-nitrogen Shielding Gas Mixtures on Ferrite-austenite Phase Balance of Additively Manufactured 2205 Duplex Stainless Steel: Andrew Iams; Todd Palmer; Applied Research Laboratory, Pennsylvania State University

2:20 PM
Study of Oxide Inclusion Evolution in AM Stainless Steels: Fuyao Yan; Wei Xiong; Gregory Olson; Northwestern University; University of Pittsburgh

2:40 PM
Oxidation of Ni-based Alloys Fabricated by Additive Manufacturing: Sebastien Dryepondt; Mike Kirka; Oak Ridge National Laboratory

3:00 PM
Reducing Oxygen Content during the Manufacturing of OFHC Copper Using Electron Beam Melting: John Ledford; Harvey West; Diana Ganzina; N. C. Luhmann; Ilbey Karakurt; Liwei Lin; Tim Horn; CAMAL; SLAC National Accelerator Laboratory; University of California, Davis; University of California, Berkeley

3:20 PM Break

3:40 PM
Determination of Residual Stresses in Additively Manufactured Parts Using Deep Hole Drilling, X-ray Diffraction and Synchrotron Diffraction: Florian Brenne; Arnaud Magnier; Sebastian Degener; Behzad Aminforoughi; Wolfgang Zinn; Manuela Klaus; Christoph Genzel; Thomas Niendorf; University of Kassel; Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

4:00 PM
Mechanical Property and Microstructural Comparison of Additively Manufactured Titanium (Ti64) Lattices and Bulk Material: Michael Brand; Chris Chen; Robin Pacheco; Cameron Knapp; Dustin Cummings; Matthew Tucker; Los Alamos National Laboratory

4:20 PM
Wire + Arc Additive Manufacture for Maraging Steels: Xiangfang Xu; Jialuo Ding; Supriyo Ganguly; Chenglei Diao; Stewart Williams; Cranfield University

Additive Manufacturing: In-situ Process Monitoring and Control – Session II
Program Organizers: Ulf Ackelid, Freemelt AB; Andrzej Wojcieszynski, ATI Powder Metals; Sudarsanam Babu, The University of Tennessee, Knoxville; Ola Harrysson, North Carolina State University

Wednesday PM
Room: 303
Location: DLL Convention Center

Session Chair: Anthony Rollett, Carnegie Mellon University

2:00 PM
In-situ Inspection of Laser-based Directed Energy Deposition Processes Using Laser Ultrasonomics: Marissa Brennan; Todd Palmer; Maxwell Wiedmann; Marvin Klein; The Pennsylvania State University; Intelligent Optical Systems (IOS)

2:20 PM
In-situ Thermal Imaging and Ex-situ Surface Topology Measurements for Control of Laser Powder Bed Build Properties: Sarah Foster; Keith Carver; Ralph Dinwiddie; Alexander Plotkowski; Anil Chaudhary; Sudarsanam Babu; University of Tennessee, Knoxville; Oak Ridge National Laboratory; Applied Optimization, Inc.

2:40 PM

3:00 PM
Assessing Surface Porosity Using Physics-based Surrogate Models for Selective Laser Melting: Alexander Wolfer; Umberto Scipioni Bertoli; Dogan Timucin; Kevin Wheeler; Saad Khairallah; Andy Anderson; Manyalibo Matthews; Rose McCallen; Julie Schoenung; Jean-Pierre Delplanque; University of California, Davis; University of California, Irvine; NASA Ames Research Center; Lawrence Livermore National Laboratory

3:20 PM
Automated Laser Track Trace Identification and Defect Characterization in SLM Processes Using Laser Profilometer Data: Subhadeep Chakraborty; Anil Chaudhary; Sudarsanam Babu; University of Tennessee; Applied Optimization

3:40 PM Break

4:00 PM
Dynamics of Droplet Ejection from Metal Powder Bed Layer in Laser Additive Manufacturing as Probed by High Speed Imaging: Sonny Ly; Alexander Rubenchik; Saad Khairallah; Guss Gabe; Manyalibo Matthews; Lawrence Livermore National Laboratory

4:20 PM
High Speed, High Resolution In Situ Monitoring of Spatter during Laser Powder Bed Fusion: Christopher Barrett; Jason Walker; Rodrigo Enriquez Gutierrez; Eric MacDonald; Brett Conner; Youngstown State University; America Makes

4:40 PM
In-situ Laser Modification and Characterization of Materials in the TEM: Patrick Price; Kahlid Hattar; LaRico Treadwell; Tim Boyle; Sandia National Laboratories
5:00 PM
Melt Pool and Build Layer Monitoring on the NIST Additive Manufacturing Metrology Testbed (AMMT)
Brandon Lane; Jason Fox; Ho Yeung; National Institute of Standards and Technology

5:20 PM
X-ray Vision of Laser Powder Bed Fusion Process: Cang Zhao; Kamel Fezzaa; Ross Cunningham; Haidan Wen; Francesco Carlo; Lianyi Chen; Anthony Rollert; Tao Sun; Argonne National Laboratory; Carnegie Mellon University; Missouri University of Science and Technology

Advanced Coatings for Wear and Corrosion Protection – Advanced Coatings for Wear and Corrosion Protection III

Program Organizers: Evelina Vogli, LiquidMetal Group Holdings, Inc.;
Fei Tang, DNV GL; Emad Omrani, University of Wisconsin - Milwaukee; Afsaneh Dorri Moghadam, University of Wisconsin-Milwaukee; Pradeep Menezes, University of Nevada Reno; Pradeep Rohatgi, University of Wisconsin-Milwaukee

Wednesday PM
Room: 338
Location: DLL Convention Center

Session Chairs: Pradeep Menezes, University of Nevada Reno; Pradeep Rohatgi, University of Wisconsin-Milwaukee

2:00 PM
Influence of Cerium Oxide on the Hardness and Wear Resistance of Ni-based Coatings on Ti6Al4V Alloy: Phala Mookenane; Abimbola Popoola; TMonnannme; Olavale Fatoba; Tswane University of Technology; Centre for Scientific and Industrial Research-National Laser Centre

2:20 PM
Properties and Process Development of Vacuum Plasma Sprayed (VPS) Zirconium on SiC: Caen Ang; Scott O’Dell; Kurt Terrani; Lance Snead; Yutai Katoh; Oak Ridge National Laboratory; Plasma Processes; Massachusetts Institute of Technology

2:40 PM
Studies of Corrosion Resistance of Aluminized Coatings in Metal Dusting Environments: Eugene Medvedovski; Jianyu Ma; Xiaoyang Guo; Estelle Vanhaecke; Hilde Venvlikt; Endurance Technologies Inc.; Norwegian University of Science and Technology

3:00 PM
Amin Rabiei Baboukani; Afsaneh Dorri; Pradeep Menezes, University of Nevada Reno

3:20 PM
Comparative Oxidation Behaviour of Additive Manufactured, Drawn and Forged In-718ic Superalloy: Fernando Pedraza; C. Julliet; J. Balmain; X. Feaugas; A. Oudriss; Université de La Rochelle

3:40 PM
Corrosion Mechanisms of Pure Chromium in Multi-oxidant Environments at Elevated Temperatures: Satia Solantanatt; Cecile Bonifacio; Pawel Nowakowski; Brian Gleeson; Paul Fischione; University of Pittsburgh; Fischione Instruments, Inc.

4:00 PM
Flexible Laminar Polymer-ceramic Composite Material for Harsh Environment Robotic Tactile Sensor Application: Kevin Sivamani Varadarajan Idhaim; Edward Sabolisky; Thomas Evans; David Devallance; West Virginia University

4:20 PM
Corrosion Behavior and Passivity of AA5038 Nanostructured Aluminum Alloy Produced by Accumulative Roll-bonding: Amin Rabiei Baboukani; Ahmad Saatchi; Mohammad Asadikyia; Shadi Darvish; Paniz Foroughi; Florida International University; University of Wisconsin Madison

4:40 PM
Localized Corrosion of 0-phase Al2Cu and S-phase Al2CuMg Alloys: Thiago da Silva; Corey Ewaf; Mike Hurley; Lan Li; Boise State University

5:00 PM
Corrosion Inhibition and Adsorption Properties of Antibiotics for Al-alloy in Acidic Environment: Omotayo Sanni; O S Fatoba; Abimbola Popoola; Tswane University of Technology, Pretoria, South Africa

Advanced Materials and Sensors for Harsh Environments – Advanced Materials and Sensors for Harsh Environments I

Program Organizers: Gary Pickrell, Virginia Tech; Navin Manjooran, Siemens AG

Wednesday PM
Room: 333
Location: DLL Convention Center

Session Chairs: Gary Pickrell, Virginia Tech; Navin Manjooran, Vice President, Siemens AG

2:00 PM Introductory Comments

2:40 PM
Comparative Oxidation Behaviour of Additive Manufactured, Drawn and Forged In-718ic Superalloy: Fernando Pedraza; C. Julliet; J. Balmain; X. Feaugas; A. Oudriss; Université de La Rochelle

3:00 PM
Corrosion Mechanisms of Pure Chromium in Multi-oxidant Environments at Elevated Temperatures: Satia Solantanatt; Cecile Bonifacio; Pawel Nowakowski; Brian Gleeson; Paul Fischione; University of Pittsburgh; Fischione Instruments, Inc.

3:20 PM
Flexible Laminar Polymer-ceramic Composite Material for Harsh Environment Robotic Tactile Sensor Application: Kevin Sivamani Varadarajan Idhaim; Edward Sabolisky; Thomas Evans; David Devallance; West Virginia University

3:40 PM Break

4:00 PM
High-resolution, Temperature and Strain Sensors for SiC-SiC Ceramic Matrix Composites: Kevin Rivera; Otto Gregory; University of Rhode Island

4:20 PM
Mechanical Understanding of the Impact of SO2 Content and Temperature on the Hot Corrosion of a Second Generation Nickel-based Superalloy: Emily Kistler; Brian Gleeson; Michael Task; University of Pittsburgh; Pratt & Whitney

4:40 PM
Metal Silicide-refractory Oxide Electroconductive Ceramic Composites for High-temperature and Harsh-environment Sensing Applications: Gunes Takaboylu; Rajalekshmi Chockalingam; Katarzyna Sabolisky; Edward Sabolisky; West Virginia University
Advanced Steel Metallurgy: Products and Processing – Session V
Program Organizers: Emmanuel De Moor, Colorado School of Mines; Amar De, ArcelorMittal Global R&D; Kester Clarke, Colorado School of Mines; Alla Sergueeva, The NanoSteel Company; Charles Enloe, General Motors; Daniel Branagan, The NanoSteel Company; Matthew Kiser, Caterpillar Inc

Wednesday PM
October 11, 2017
Location: DLL Convention Center

Session Chairs: Daniel Branagan, The NanoSteel Company; Kester Clarke, Colorado School of Mines

2:00 PM
3rd Generation AHSS: High Strain Rate Tensile Testing: Sarah Kuhlman1; T. Machrowicz2; C. Parsons2; A. Sergueeva2; A. Frerichs2; B. Meacham2; S. Cheng2; D. Branagan2; 1UDRI; 2The NanoSteel Company, Inc.

2:20 PM
Effects of Martempering on the Strength and Toughness of Medium Carbon Stainless Steels: Warren Garrison1; Justin Kim1; Yu Lin1; Ziheng Wu1; 1Carnegie Mellon University

2:40 PM
Heat Transfer during Bottom Jet Impingement Cooling of a Stationary Steel Plate: Debanga Kashyap1; Vladan Prodanovic1; Matthias Militzer1; 1University of British Columbia

3:00 PM
Relationship of Grain Size and Deformation Mechanism to the Fracture Behavior in High Strength–high Ductility Nanostructured Austenitic Stainless Steel: Y Injeti1; Devesh Misra1; 1University of Texas at El Paso

3:20 PM Break

3:40 PM
Structure - Mechanical Property Relationship in Laser Welded T-250 Maraging Steel Joint: K Li1; Devesh Misra1; 1University of Texas at El Paso

4:00 PM
Tailoring Comprehensive Properties of High Nitrogen Stainless Steel via Friction Stir Processing: Z.Y. Ma1; H. Zhang1; D. Wang1; 1Institute of Metal Research, Chinese Academy of Sciences

4:20 PM
Development of Compacted Vermicular Cast Iron Cylinder Liner for Large Bore Marine Diesel Engine: Ji Haeng Heo1; Seung-Hyouk Nam1; Tae Young Hur1; Jin Guk Kim1; Jong-Hyun Hwang1; Hyundai Heavy Industries, Co. Ltd.

4:40 PM
Effect of Feeding Amount of Calcium on Non-metallic Inclusions of X80 Pipeline Steel: Shusen Li1; Hao Zhou1; Lifeng Zhang1; Ying Ren1; Wen Yang1; 1University of Science and Technology Beijing

5:00 PM
Investigation on the Impurity Absorptivity of Tundish Fluxes: Limei Cheng1; Lifeng Zhang1; 1University of Science and Technology Beijing

Advances in Dielectric Materials and Electronic Devices – Dielectrics I/Dielectrics II
Program Organizers: Amar Bhalla, The University of Texas at San Antonio; Ruyan Guo, The University of Texas at San Antonio; K. M. Nair, E.I.duPont de Nemours & Co, Inc; Danilo Suvorov, Josef Stefan Institute; Rick Ubic, Boise State University

Wednesday PM
Room: 331
October 11, 2017
Location: DLL Convention Center

Session Chairs: Danilo Suvorov, Josef Stefan Institute; Ruyan Guo, The University of Texas at San Antonio

2:00 PM Invited
Enhanced Quality Factor of MgTiO3-based Ceramics at Microwave Frequencies: Eung Soo Kim1; 1Kyonggi University

2:20 PM Invited
Indialite/Cordierite Glass Ceramics Applied for LTCC: Hitoshi Ohsato1; Jobin Varghese2; Timo Vahera2; Heli Jantunen2; Makoto Iwata3; 1Nagoya Industrial Science Research Institute; 2University of Oulu; 3Nagoya Institute of Technology

2:40 PM Effect of Polymer Phase on Freeze-cast High Temperature Dielectric Composites: Edward Gorzkowski1; Eric Patterson2; 1Naval Research Laboratory; 2ASEE

3:00 PM Invited
BaTiO3 Ceramics Porosity Fractal Structured Approach: Vojislav Mitic1; Ljubisa Kocic1; Vesna Paunovic1; 1University of Nis, Faculty of Electronic Engineering

3:20 PM Break

3:40 PM
Interfacing Oxides with Silicon Using Pulsed Laser Deposition: Matjaz Spreitzer1; Daniel Diaz Fernandez1; Tjaša Parkelj1; Danilo Suvorov1; 1Jožef Stefan Institute

4:00 PM
A Broadband, High Frequency Characterization Approach for Combinatorial Dielectric Thin-films: Eric Marksz1; Nathan Orloff2; Christian Long1; James Booth1; Ichiro Takeuchi1; 1University of Maryland; 2National Institute for Standards and Technology

4:20 PM Engineering the Dielectric and Mechanical Properties of Parylene-C Columnar Microfibrous Thin Films by Controlling the Deposition Angle: Ibrahim Khatib1; Chandraprakash Chindam1; Osama Awadelkarim1; Akhlesh Lakhtakia1; 1Pennsylvania State University

4:40 PM
Volume and Polarization Induced Structural Phase Transitions of Pm3m Perovskites: Vignaswaran Kaliyaperumal Veerapandiyan1; YuHuLin Liao1; Walter Schulze1; Scott Mixture1; Steven Pilgrim1; Steven Tidrow1; 1Alfred University
Ceramic-based Optical Materials and Advanced Processing – Session III

Program Organizers: Yiquan Wu, Alfred University; Jas Sanghera, Naval Research Laboratory; Michael Squillante, RMD, Inc; Akio Ikesue, World-Lab. Co., Ltd

Wednesday PM
October 11, 2017
Location: DLL Convention Center

Session Chair: Woohong (Rick) Kim, Naval Research Laboratory

2:00 PM Invited
Novel Powder Synthesis/Consolidation Processing and Characterization of Yttria-based Transparent Optical Ceramics: Do Kyung Kim1; 1KAIST

Theoretical Study on Transparent Spinel Solid Solutions through First-principles Calculation: Hao Wang1; Bingtian Tu1; Lu Ren1; Weimin Wang1; Zhengyi Fu1; 1Wuhan University of Technology

2:40 PM Invited
Effects of Surface Roughness on Optical Characteristics of Ho-doped Polycrystalline YAG Fibers: Hyunjun Kim1; Randall Hay1; Sean McDaniel1; Gary Cook2; Nicholas Usechak1; Augustine Urbas1; Kathleen Shugart1; Ali Kadhim1; HeeDong Lee1; Benjamin Griffin1; Dean Brown1; Randall Corns1; 1UES, Inc.; 2Air Force Research Laboratory; 3Leidos, Inc.

Improvement of Optical Transparency of Non-cubic Ceramic Polycrystals by Grain Orientation under Magnetic Field: Ying Shi1; Lincong Fan1; Debao Lin1; Lei Zhang1; Jianjun Xie1; Fang Lei1; 1Shanghai University

3:00 PM Invited
Tailoring of Rutile&Anatase Hybrid Structure by Supersaturated Precursor Solution: Do Kyung Kim1; Junghyun Cho1; 1SUNY-Binghamton University

3:20 PM Invited
Magnetic Properties and Phase Evolution of Iron Powders after High-temperature Nitridation: Song Law1; Zhiyao Feng1; Parivash Moradifar1; Frank Ernst1; David Matthias1; Matthew Willard1; 1Case Western Reserve University

3:40 PM Break

4:00 PM Invited
Identification of Structural Motifs in Disordered Materials: Jason Maldoniti; 1Virginia Tech; 2North Carolina State University

4:20 PM Invited
Development of Nanocrystalline Magnetic Material for High Current Inductors: Anthony Martone1; Bowen Dong1; Song Law1; Matthew Willard1; 1Case Western Reserve University

4:40 PM Invited
In-situ Characterization of Growth and Performance of Nanostructured Materials for Energy Conversion and Storage: Shen Dillion1; 1University of Illinois at Urbana-Champaign

Controlled Synthesis, Processing, and Applications of Structural and Functional Nanomaterials – Controlled Synthesis, Processing, and Applications of Structural and Functional Nanomaterials III

Program Organizers: Gurpreet Singh, Kansas State University; Kathy Lu, Virginia Tech; Sanjay Mathur, University of Cologne; Edward Gorzkowski, Naval Research Laboratory; Haifao Zhang, UNC Charlotte; Kejie Zhao, Purdue University; Hidehiro Kamiya, Tokyo University of Agriculture and Technology

Wednesday PM
October 11, 2017
Room: 321
Location: DLL Convention Center

Funding Chair provided by: MilliporeSigma

Session Chair: Kejie Zhao, Purdue University

Data and Tools for Materials Discovery and Design: Data Science Methods in Materials Discovery and Development II

Program Organizers: Zi-Kui Liu, The Pennsylvania State University; David McDowell, Georgia Institute of Technology; Carelyn Campbell, National Institute of Standards and Technology; Laura Bartolo, Northwestern University; Bryce Meredig, Citrine Informatics; Mark Tschopp, Army Research Laboratory; Dane Morgan, University of Wisconsin - Madison; Alina Lupulescu, ASM International

Wednesday PM
Room: 323
October 11, 2017
Location: DLL Convention Center

Session Chairs: Tim Mueller, JHU; Elizabeth Holm, CMU

2:00 PM Invited
Applications of Data Science and Machine Learning in Computational Materials Science: Elizabeth Holm1; Brian DeCost1; Ankita Mangal1; 1Carnegie Mellon University

2:20 PM Invited
Identifying Structural Motifs in Disordered Materials: Jason Maldoniti; 1Virginia Tech; 2North Carolina State University

2:40 PM Invited
Development of Nanocrystalline Magnetic Material for High Current Inductors: Anthony Martone1; Bowen Dong1; Song Law1; Matthew Willard1; 1Case Western Reserve University

3:00 PM Invited
Magnetic Properties and Phase Evolution of Iron Powders after High-temperature Nitridation: Song Law1; Zhiyao Feng1; Parivash Moradifar1; Frank Ernst1; David Matthias1; Matthew Willard1; 1Case Western Reserve University

3:20 PM Invited
Mist Deposition and Lift-off Patterning of Nanocrystalline Quantum Dots Films: Ali Sabeeh1; Jared Price1; Jerzy Ruzyllo1; 1The Pennsylvania State University, Taibah University, Saudi Arabia; 2The Pennsylvania State University

3:40 PM Break

4:00 PM Invited
Synthesis of Nanomaterials in Extreme Environments: William Fahrenholtz1; Catherine Johnson1; Vadym Mochalin1; Martin Langenderfer1; Sergei Chertopalo1; 1Missouri University of Science and Technology

4:40 PM Invited
Identifying Structural Motifs in Disordered Materials: Jason Maldoniti; 1Virginia Tech; 2North Carolina State University

5:00 PM Invited
Low Temperature Conventional Sintering of Nanograined Ceramics via High Green Density Processing: John Drazin1; Edward Gorzkowski1; 1ASEE Postdoc at US Naval Research Laboratory; 2NRL

5:20 PM Invited
Process Dependent Morphologies of Nano-particle Superstructures: Kazuhik Sridhar Vadari Venkata1; Nicole Ray1; William Petuskey1; 1Arizona State University
Analyzing Trends and Correlations in Structure-property Relationships Using Canonical Correlation Analysis: Sudipto Mandal; Jacky Lao; Vahid Tari; Anthony Rollett; Carnegie Mellon University

Prediction of Microstructure Evolution in Phase-field Simulations Through Data Analytics and Time Series: yokel Yabansu; Linyun Liang; Long-Qing Chen; Surya Kalidindi; Georgia Institute of Technology; Argonne National Laboratory; The Pennsylvania State University

Prediction of Microstructure Evolution in Phase-field Simulations Through Data Analytics and Time Series: yokel Yabansu; Linyun Liang; Long-Qing Chen; Surya Kalidindi; Georgia Institute of Technology; Argonne National Laboratory; The Pennsylvania State University

Prediction of Microstructure Evolution in Phase-field Simulations Through Data Analytics and Time Series: yokel Yabansu; Linyun Liang; Long-Qing Chen; Surya Kalidindi; Georgia Institute of Technology; Argonne National Laboratory; The Pennsylvania State University

Prediction of Microstructure Evolution in Phase-field Simulations Through Data Analytics and Time Series: yokel Yabansu; Linyun Liang; Long-Qing Chen; Surya Kalidindi; Georgia Institute of Technology; Argonne National Laboratory; The Pennsylvania State University

The Effective Use of Data in Materials Research: Tim Mueller; Johns Hopkins University

Application of Data Science to the Study and Design of 9-12% Cr Steel: Amit Verma; Jeffrey Hawk; Laura Bruckman; Vyacheslav Romanov; Roger French; Jennifer Carter; Case Western Reserve University; NETL Albany; NETL Pittsburgh

Materials Informatics and Big Data: Realization of 4th Paradigm of Science in Materials Science: Ankit Agrawal; Alok Choudhary; Northwestern University

Influence of 0.75 wt% Ta₂O₅ and Nb₂O₅ Doping on the Properties of Zirconia-toughened alumina (ZTA) Composites: Salma Naga; Ahmed Hassan; Mohamed Awaad; National Research Center; Zagazig University

Evidence of Tribchemical Reactions in a Dynamically-impacted Boron Carbide: Jerry LaSalvia; Vladislav Donnich; Brian Schuster; Brady Aydelotte; Anit Giri; Christopher Marvel; Martin Harmer; U.S. Army Research Laboratory; Rutgers University; Lehigh University

Ideal Flows in Pressure – Dependent Plasticity: Sergei Alexandrov; Institute for Problems in Mechanics

Contribution of Stacking Faults on Strengthening of Biomedical Co-Cr-Mo Alloys Studied by X-ray Diffraction Line-profile Analysis: Kenta Yamanaka; Manami Mori; Shigeo Sato; Akihiko Chiba; Tohoku University; National Institute of Technology, Sendai College; Ibaraki University

Further Insights into the Role of Intermetallic Compounds on the Nucleation Phenomena in Sn-Cu-Ag Alloys during Reflow Process: Oleksii Liashenko; Grenoble Institute of Technology

Early Stage of Grain Boundary Nucleation as a Stress Relaxation Response during Thermal Cycling of Pure Tin Films: Congying Wang; Carol Handwerker; John Blended; Purdue University

Effects of Anisotropic Properties on Electromigration in Tin Solder Interconnects: Zachary Morgan; Yongmei Jin; Vahid Attari; Raymundo Arroyave; Michigan Technological University; Texas A&M University

Study of Tin Whisker Growth under Polyurethane Based Conformal Coatings: Fei Dong; Junghyun Cho; Stephan Meschter; Binghamton University, SUNY; BAE Systems

Nucleation of Sn Films on Single Crystal Ge and Si Substrates: Kathlene Reeve; Carol Handwerker; Purdue University
Formation and evolution of tin surface defects during cyclic bending: Xi Chen; Purdue University.

Failure Analysis and Prevention – Steel & Heat Treatment
Program Organizers: Andrew Havics, pH2, LLC; Pierre Dupont, Schaeffler Belgium Sprl/Bvba; Burak Akyuz, ATS, Inc.

Wednesday PM Room: 407
October 11, 2017 Location: DLL Convention Center

Session Chairs: Erik Mueller, National Transportation Safety Board; Christopher Misorski, Mercury Marine; Craig Clauser , Craig Clauser Engineering Consulting

2:00 PM Invited
Cracking of Ladle Spreader Beams at the U. S. Steel Mon Valley Works Edgar Thomson Plant. Steven Bianculli; United States Steel

2:20 PM
Ausferrite and Bainite - Tough Problems, Tough Solutions: John Keough; Kathy Hayrynen; Applied Process Inc.

2:40 PM Invited
Heat Treat Related Failures: Arvid Casler; Aerospace Mfg Consultant

3:00 PM Invited
Failure Analysis of M48 X 625mm High Strength Bolts: Michael Connelly; Casey Products

3:20 PM Break

3:40 PM Invited
Metallurgical Evaluation of a Fractured 4-inch Flexible Bleed Hose From a Combustion Test Cell: William Rossey; GE Aviation

4:00 PM
Metallurgical Evaluation of a 4340 Low Alloy Steel Fixture Used for Aircraft Engine Component Testing: Jonathan Morales; GE Aviation

4:20 PM
The Benefits of Doing Nothing as the First Step in a Failure Analysis: Some Surprising EDS Results with Oxford AZtec EDS on Rusty Uncleaned Specimens: Diane Boone; Debbie Aliya; T. K. Holdings; Aliya Analytical, Inc.

4:40 PM
Failures Caused by Heat Treating: Craig Clauser; CCECI

5:00 PM
Characterization of Steel Continuous Sucker Rods Before and After Heat Treatment: Majid Al-Maharbi; Abdullah Al-Shabibi; Sultan Qaboos University

Failure Analysis and Prevention – Wear & Tribology
Program Organizers: Andrew Havics, pH2, LLC; Pierre Dupont, Schaeffler Belgium Sprl/Bvba; Burak Akyuz, ATS, Inc.

Wednesday PM Room: 408
October 11, 2017 Location: DLL Convention Center

Session Chairs: Jake Auliff, DANFOSS; Michael Budinski, NTSB; Veronique Vitry, UMONS; Mark Hineman, Engineering Systems Incorporated; Mark Russell, Engineering Design & Testing Corporation

2:00 PM Invited
Wear, Friction and Tribology Failure Analysis: Steve Shaffer; Bruker TSOM

2:40 PM Invited
Wear Failure, the Crash of Alaska Airlines Flight 261: Joe Epperson; NTSB

3:00 PM
Tribological Performances, Issues & Utilization of Testing to Improve Functionality: Mark Hineman; Frederick Schmidt; Engineering Systems Inc.

3:30 PM Break

3:40 PM
Modern Tribological Trends in the Rolling-elements Bearing’s Industry in Terms of Materials, Heat Treatments & Coatings: Pierre Dupont; Schaeffler Belgium Sprl/Bvba

4:00 PM
Common ... Let’s Slide Again! A Plain Bearings Story!: Pierre Dupont; Schaeffler Belgium Sprl/Bvba

4:20 PM
Thermally Sprayed Coatings as Substitute for Lead-containing Bronze in Axial Sliding Bearing Applications: Mareike Hesebeck; Galina Haidarschin; Lutz Fassl; Marc Diesselberg; Danfoss Power Solutions; Oerlikon Metco

4:40 PM
Determine Cause of Damage to Differential Gear Box: Kyle Minden; EDT

5:00 PM
Powder Coating for Wear Product Elimination: Mark Russell; Engineering Design & Testing

Fifty Years of Metallography and Materials Characterization – Fifty Years of Metallography and Materials Characterization III
Program Organizers: Ryan Deacon, United Technologies Research Center; Daniel Dennies, Consulting Metallurgical Engineer; George Vander Voort, Consultant - Struers Inc

Wednesday PM Room: 409
October 11, 2017 Location: DLL Convention Center

Session Chair: To Be Announced

2:00 PM
Improving the Precision of Microindentation Hardness Data: George Vander Voort; Consultant - Struers Inc.
2:40 PM Invited
Characterization of Microalloyed Wrought Armor Steels Manufactured in Small Scale: Cody Dyar; William Williams; Haley Doude; Wilburn Whittington; Andrew Oppedal; Mark Tschopp; Hongjoo Rhee; 'Center for Advanced Vehicular Systems - Mississippi State University; 'Army Research Laboratory

2:40 PM Invited
Microstructural Developments in Dual-phase and Advanced High Strength Steels: David Matlock; Emmanuel De Moor; John Speer; 'Colorado School of Mines

3:20 PM Invited
Variant Selection in Primary and Secondary Nucleation of Bainite in Steels with Various Carbon Contents: Shoichi Nambu; Ryosuke Hattori; Mayumi Ojima; Toshihiko Koseki; 'The University of Tokyo

Glass Composites – Applications
Program Organizers: Guang-Ming (Derek) Tao, University of Central Florida; Huanyu Cheng, The Pennsylvania State University; Xin Zhang, Pacific Northwest National Laboratory; Jie Song, Emory University and Georgia Institute of Technology

Wednesday PM Room: 318
October 11, 2017 Location: DLL Convention Center

Session Chairs: Huanyu Cheng, The Pennsylvania State University; Guang-Ming (Derek) Tao, University of Central Florida; Hui Chen, National Energy Technology Laboratory

2:00 PM Invited
Photoelectric Properties of Nano-crystallized Chalcogenide Glass-ceramics: Xianghua Zhang; Ilia Korolkov; Michel Cathelinaud; Hongli Ma; Laurent Calvez; Jean-Luc Adam; 'CNRS/University of Rennes

2:40 PM Invited
Microstructure Effects on the Dynamic Tensile (Spall) Strength of Titanium-variants of Near-alpha: Shoichi Nambu; Ryosuke Hattori; Chikaharu Nakamura; 'The University of Tokyo

4:00 PM Invited
Microstructure on Mechanical Properties: Raul Bermejo; Robert Danzer; 'The Pennsylvania State University; 'Montanuniversitaet Leoben; 'EPCOS OHG

3:20 PM Invited
Effects of Microstructure on the Corrosion Behavior of Borosilicate Glass-ceramics for Waste Vitrification: Nicholas Roberts; Richard Brow; Jarrod Crum; Paul Porter; 'Missouri S&T; 'Pacific Northwest National Laboratories

3:40 PM Break

4:00 PM Invited
Crystallization Kinetics and Microstructural Development in a Complex Borosilicate Glass-ceramic for Waste Vitrification: Paul Porter; Nicholas Roberts; Richard Brow; Jarrod Crum; 'Missouri University of Science and Technology; 'Pacific Northwest National Laboratory

4:40 PM Invited
Nano crystal-glass Composite Electrolytes with Superior Ionic Conductivity and Stability for Na-Ion Batteries: Ruilin Zheng; Hanqing Dai; Wei Wei; 'Nanjing University of Posts & Telecommunications

5:00 PM Invited
Crystallization Kinetics of Glasses with Various Compositions: Shen Li; Wei Wei; 'Nanjing University of Posts & Telecommunications

4:40 PM Invited
Microstructure Effects on the Dynamic Tensile (Spall) Strength of Titanium-based Bulk Metallic Glass In-situ formed Composites: Naresh Thadhani; Wei Wei; 'Georgia Institute of Technology

4:40 PM Invited
Nano crystal-glass Composite Electrolytes with Superior Ionic Conductivity and Stability for Na-Ion Batteries: Ruilin Zheng; Hanqing Dai; Wei Wei; 'Nanjing University of Posts & Telecommunications
Luminescence Properties of Rare Earth Doped Chalcogenide Glass Ceramics and Quantum Dots/Chalcogenide Glass Composite: Jihong Zhang1; Lingchao Meng2; Chao Liu2; Xiujian Zhao1; Jong Heo2; Wuhan University of Science and Technology; Pohang University of Science and Technology (POSTECH)

Innovative Processing and Synthesis of Ceramics, Glasses and Composites – Ceramic Processing II
Program Organizers: Narottam Bansal, NASA Glenn Research Center; Jitendra Singh, Retired, U.S. Army Research Laboratory; Takashi Goto, Tohoku University
Wednesday PM Room: 310 Location: DLL Convention Center
Session Chairs: Teichi Kimura, Japan Fine Ceramics Center(JFCC); K. S. Ravi Chandran, University of Utah

2:00 PM Invited
Laser Sintering of Ceramics for Additive Manufacturing: Teichi Kimura1; Japan Fine Ceramics Center

2:40 PM
Advances in Flame Assisted Flash Sintering: Amir Tavakoli2; Stephen Johnson1; Andrew Hunt1; nGimat LLC

3:00 PM
Mechanism and Kinetics of In Situ Formation of Titanium Boride (TiB) in the Electrical-field-assisted Sintering Process: Jun Du1; K. S. Ravi Chandran2; University of Utah

3:20 PM
Densification and Temperature Profile in Spark Plasma Sintered Fe – based Amorphous Alloy Matrix Composites: Tanaji Paul1; Sandip Harimkar2; Oklahoma State University

3:40 PM Break

4:00 PM
Sintering of Glass Frit: Aubrey Fry1; Hyojin Lee1; William Carty1; Alfred University

4:20 PM
Internal Solid State Displacement Reactions in Non-oxide Ceramics Proceeding through Gaseous Intermediates: Ryan Dempsey1; David Lipke2; Alfred University

4:40 PM
Fabrication of Nano Yttria by the Application of Electric Current Pulse during Precipitation Process: Wenbin Dai1; Chuanzhi Xu1; Xinli Wang1; Xiang Zhao1; Jingkun Yu2; Northeastern University

5:00 PM
Low Temperature Joining of Borosilicate Glass: Eric Maskovin1; William Fahrenholtz2; Richard Brow1; Jessica Buckner1; Missouri University of Science and Technology; Applied Technology Associates

Interfaces, Grain Boundaries and Surfaces from Atomistic and Macroscopic Approaches – Interface Kinetics II
Program Organizers: Dominique Chatain, CNRS, Aix-Marseille University; John Blendell, Purdue University; Wayne Kaplan, Technion - Israel Institute of Technology
Wednesday PM Room: 410 Location: DLL Convention Center
Session Chairs: Ming Tang, Rice University; Rachel Zucker, University of California

2:00 PM
Generalized Interfacial Fault Energies: Christopher Barrett1; Haitham El Kadiri2; Robert Moser; Mississippi State University; 3US Army Corps of Engineers - ERDC

2:20 PM
Local Defect Ordering and Interface Evolution during Electrical Degradation of Barium Titanate: Nicole Creange1; Matthew Cabral2; Gyung Hyun Ryu1; Elizabeth Dickey1; North Carolina State University

2:40 PM
Influence of Chemical Interface Structure on Thin Film Stress Evolution: Tyler Kau1; David Jacobson2; Gregory Thompson3; University of Alabama; University of Arkansas

3:00 PM
Thermodynamics of Grain Boundary Desegregation in Nanocrystalline Alloys: Arvind Kalidindi1; Christopher Schuh1; Massachusetts Institute of Technology

3:20 PM Break

3:40 PM
Thermally Induced Grain Coarsening in Alpha Iron: Yu-Feng Shen1; Robert Suter2; Siddharth Maddali3; Gregory Rohrer4; Aditi Bhattacharya2; Xingting Zhong5; Carnegie Mellon University; Argonne National Laboratory

4:00 PM
Phase Separation and Phase Transformation in Nanocrystalline Fe Alloys: Thermal Stability and Densification Behavior: Dor Amram1; Christopher Schuh1; Massachusetts Institute of Technology

4:20 PM
Exploring the Interactions between Grain Boundaries and Precipitates in Ni-Al Using Molecular Dynamics: Rachel Morrison1; Jennifer Carter1; Saryu Fensin1; Case Western Reserve University; MST-8, Los Alamos National Laboratory

4:40 PM
Anti-thermal Grain Growth in Strontium Titanate: Amanda Krause1; Christopher Marvel1; Wolfgang Rheinheimer2; Michael Hoffmann2; Gregory Rohrer3; Martin Harmer1; Lehigh University; Karlsruhe Institute of Technology; Carnegie Mellon University

5:00 PM
Changes in Local Interface Chemistry during Resistance Degradation of SrTiO3: Daniel Long1; Elizabeth Dickey1; North Carolina State University
International Symposium on Ceramic Matrix Composites – CMC II

Program Organizers: Narottam Bansal, NASA Glenn Research Center; Jitendra Singh, Retired, U.S. Army Research Laboratory; Jacques Lamon, CNRS; Sung Choi, Naval Air Systems Command

Wednesday PM

Session Chairs: Narottam Bansal, NASA Glenn Research Center; Sung Choi, Naval Air Systems Command

2:00 PM Invited

Overview of Erosion in Ceramic Matrix Composites: Sung Choi1; 1Naval Air Systems Command

2:40 PM Characterization of the Erosion Behavior of an MI SiC/SiC Ceramic Matrix Composite: Cajer Gong1; Nesredin Kedir1; Calvin Faucett1; Luis Sanchez1; Sung Choi1; 1Naval Air Systems Command

3:00 PM Invited

Effects of Boron on Oxidation of SiC/BN/SiC Composites: Bohuslava McFarland1; Megan Wilson1; Elizabeth Opila1; 1University of Virginia

3:40 PM Break

4:00 PM Characterization and Analysis of Foreign Object Damage Behavior of an MI SiC/SiC Ceramic Matrix Composite at Ambient Temperature at Full Support Configuration: David Faucett1; Luis Sanchez1; Nesredin Kedir1; Cajer Gong1; Sung Choi1; 1Naval Air Warfare Center Air Division (NAV AIR)

4:20 PM High-temperature Oxidation of BN-coated SiC Sylramic Fibers in Dry and Wet Atmospheres: Valentina Angelici Avincola1; Elizabeth Opila1; 1University of Virginia

4:40 PM Degradation of SiC Fibers at Elevated Temperatures: Evan Callaway1; Frank Zok1; 1University of California, Santa Barbara

International Symposium on Defects, Transport and Related Phenomena – Chemo-Mechanical Coupling

Program Organizers: Tatsuya Kawada, Tohoku University; Manfred Martin, RWTH Aachen University; Sangtae Kim, University of California, Davis

Wednesday PM

Session Chairs: Igor Lubomirsky, The Weizmann Institute of Science; Nicola Perry, Massachusetts Institute of Technology

2:00 PM Invited

Defect Analysis of Material by Replica Technique: Muhammad Hassan1; 1Dawood University of Engineering & Technology, Karachi

2:20 PM The Effect of Hydrogen on Plastic Deformation as Predicted from Discrete Dislocation Dynamic Simulations: Yejun Gu1; Jaafar El-Awady1; 1Johns Hopkins University

2:40 PM Invited

Understanding Stoichiometry-related Chemical Expansion in Mixed Conducting Oxides: Nicola Perry1; Dario Marrocchelli1; Chang Sub Kim1; Sean Bishop1; Harry Fuller1; 1I2CNER, Kyushu University & MIT; 2MIT; 3Redox Power Systems, LLC

3:20 PM Break

3:40 PM Invited

Point Defects and Aneelasticity in Pure and Gd-doped Ceria: Olga Kravnis1; Ellen Wachtel1; Anatoly Frenkel1; Igor Lubomirsky1; 1Weizmann Institute of Science; 2Stony Brook University

4:20 PM Invited

Strain Effects on Oxygen Point Defect Formation and Migration in Perovskite and Ruddlesden-Popper Phases: Dane Morgan1; Tam Mayeshiba1; Zhenzhen Yu1; Ryan Jacobs1; Wei Xie1; Yueh-Lin Lee1; Yang Shao-Horn1; 1University of Wisconsin - Madison; 2University of California, Berkeley; 3National Energy Technology Laboratory; 4Massachusetts Institute of Technology

5:00 PM

Characterization of Defect Microstructure in GeXSi1-x/Si Epitaxial Structures Using Electron Channeling Contrast Imaging: Joseph Tessmer1; Yoosuf Picard1; 1Carnegie Mellon University

Joining of Advanced and Specialty Materials (JASM XIX) – Dissimilar Metal Welds

Program Organizers: Boian Alexandrov, The Ohio State University; Mathieu Brochu, McGill University; Anming Hu, University of Tennessee; Darren Barborak, AZZ WSI; Akio Hirose, Osaka University; Peng He, Harbin Institute of Technology; Zhiyong Gu, University of Massachusetts Lowell; Vikas Patel, ArcelorMittal USA

Wednesday PM

Session Chairs: Zhenzhen Yu, Colorado School of Mines; Ivan Mendoza, Tecnológico Nacional de Mexico

2:00 PM Technologies for Joining Titanium to Steel: Overview and New Development: Yu-Ping Tang1; Jerry Gould1; Bradley Fingland1; 1EWI; 2Tenneco

2:20 PM Characterization of Explosively Clad Steel-titanium and Steel-titanium Systems: M.J. Perricone1; C.M. Hefferan1; K.E. Wagner1; M.S. Potter1; B.R. Bandli1; 1R.J. Lee Group

2:40 PM Simulation Model for Laser Beam Welding of Steel-aluminum Lap Joints: Anton Evdokimov1; Katrin Springer1; Nikolay Doynov1; Ralf Ossenbrink1; Vesselin Michailov1; 1Brandenburg University of Technology

3:00 PM Characterization of the Solidification Process in Dissimilar Welds: Ivan Mendoza-Bravo1; 1Instituto Tecnologico de Veracruz
3:20 PM Break

3:40 PM Characterization of Dissimilar Metal Welds between Grade F65 Steel and Low Alloy Steel Overlays Using Alloy 625 Filler Wire: Ryan Buntain1; Boian Alexandrov2; ‘The Ohio State University

4:00 PM Effect of Post Weld Heat Treatment Temperature on Hydrogen Assisted Cracking of Heat Resistant Stainless Steel Dissimilar Metal Welds: James Rule1; Boian Alexandrov2; ‘The Ohio State University

4:20 PM Effects of Supercritical CO2 on the Mechanical Behavior of Dissimilar Metal-weld: Sajedur Akanda1; M. Kapoor1; K. Rozman1; O. Dogan2; ‘National Energy Technology Laboratory

4:40 PM Optimizing Dissimilar Metal Welds via Pillar Compression and TEM Analysis: Daniel Sorensen1; Jason Myers2; Bernard Li3; Wei Zhang1; Eric Hintsala1; Douglas Stauffer4; Antonio Ramirez1; ‘Medtronic PLC; University of Minnesota Characterization; ‘Ohio State University; ‘Bruker Nano Surfaces

5:00 PM Effects of Pinned and Clamped Loading Conditions on Fatigue Test Results of Similar and Dissimilar Welds in Lap-shear Specimens: Shin-Jang Sung1; Jwo Pan1; ‘University of Michigan

Light Metals Alliance: Light Metals Technology 2017 – Light Metals Technology: Characterization

Program Organizers: Diran Apelian, Worcester Polytechnic Institute; Kumar Sadayyappan, Canmet MATERIALS; Frank Czerwinski, CanmetMATERIALS; Brajendra Mishra, Worcester Polytechnic Institute; Michael Bermingham, The University of Queensland; Wenjiang Ding, Shanghai Jiao Tong University; Zhongyun Fan, Brunel University; Gonasaqren Govender, The Council for Scientific and Industrial Research (CSIR); Karl Kainer, Helmholtz-Zentrum Geesthacht; Andreas Kraly, LKR Leichtmetallkompetenzzentrum Ranshofen GmbH; Salem Seifeddine, Jönköping University; Bong Sun You, Korea Institute of Materials Science

Wednesday PM Room: 415
October 11, 2017 Location: D/L Convention Center

Session Chairs: Andreas Kraly, LKR Leichtmetallkompetenzzentrum Ranshofen GmbH; Salem Seifeddine, Jönköping University

2:00 PM Effect of Heat Treatment and Artificial Ageing on Al-5Mg-2Zn: Levy Chauke1; ‘CSIR

2:20 PM Understanding Homogenous Nucleation Mechanisms in Solidification of Aluminum by Million-atom Molecular Dynamics Simulations: Avik Mahata1; Mohsen Asle Zaeem1; Michael Baskes2; ‘Missouri University of Science and Technology; ‘University of California, San Diego

2:40 PM Effect of Isothermal Holding at Elevated Temperature on Metallurgically Bonded Bimetallic Castings: Carl Soderhjem1; Diran Apelian1; ‘Worcester Polytechnic Institute

3:00 PM Comparison of Microstructure and Tensile Property of Silafont-36 and Mercal 367 in a Rear Cross Member Prototype Casting Using HPDC: Kumar Sadayyappan1; Gabriel Birsan1; Xiaochn Zeng2; Sumanth Shankar2; ‘CanmetMaterials - Natural Resources Canada; ‘LMCRC - McMaster University

3:20 PM Effect of Heat Treatment Conditions on Microstructural, Mechanical Properties and Residual Stress in a Die-cast Al-Si Alloy: Eunkyung Lee1; Brajendra Mishra1; ‘Worcester Polytechnic Institute

3:40 PM Break

4:00 PM Optimization of Thermal Balance of HPDC Tooling by Lubro-refrigeration and Quality Improvement of Castings: Mario Rosso1; Ildiko Peter1; ‘Politecnico di Torino

4:20 PM Investigating Effect of Thermal Parameters on Properties of Al-4%Cu Alloy Squeeze Cast under a High Applied Pressure: Khawaja Haider1; ‘University

4:40 PM Enhancing Aluminum Scrap Recycling through the Implementation of Optoelectronic Sorting Technologies: Sean Kelly1; Diran Apelian1; ‘Worcester Polytechnic Institute

5:00 PM Study on Microstructure and Properties of Low Concentration Al-V Alloy: Yihan Liu1; ‘Northeastern University

5:20 PM Revisit of Al-Si–Mg (Cu) Cast Alloys for Gravity Casting and High Pressure Die Casting: Microstructure and Mechanical Properties: Shouxun Ji1; Xixi Dong1; Zhongyun Fan1; ‘Brunel University

Light Metals Alliance: Light Metals Technology 2017 – Light Metals Technology: Magnesium & General Presentations

Program Organizers: Diran Apelian, Worcester Polytechnic Institute; Kumar Sadayyappan, Canmet MATERIALS; Frank Czerwinski, CanmetMATERIALS; Brajendra Mishra, Worcester Polytechnic Institute; Michael Bermingham, The University of Queensland; Wenjiang Ding, Shanghai Jiao Tong University; Zhongyun Fan, Brunel University; Gonasaqren Govender, The Council for Scientific and Industrial Research (CSIR); Karl Kainer, Helmholtz-Zentrum Geesthacht; Andreas Kraly, LKR Leichtmetallkompetenzzentrum Ranshofen GmbH; Salem Seifeddine, Jönköping University; Bong Sun You, Korea Institute of Materials Science

Wednesday PM Room: 414
October 11, 2017 Location: DLL Convention Center

Session Chairs: Gonasaqren Govender, The Council for Scientific and Industrial Research (CSIR); Ronald Machaka, Council for Scientific and Industrial Research

2:00 PM Structure and Properties of Consolidated Gas-atomized Magnesium Alloy Powders: R Sadangi1; D Kapoor1; T Zahrah2; ‘Armament Research Development Engineering Center; ‘MATSYS, Inc
2:20 PM
Solution Heat Treatment on Mechanical Properties and Corrosion of Extruded Mg5Gd Compared To Pure Mg: Petra Maier1; Maximilian Bechly1; Norbert Hort1; 1University of Applied Sciences Stralsund; 2Helmholtz-Zentrum Geesthacht

2:40 PM
Development of the Multi-purpose High Shear Mixing Technology for Continuous Processing of Al and Mg Alloys: Jayesh Patel1; Yijie Zhang1; Jaime Nebreda1; Zhongyun Fan1; 1BCAST

3:00 PM
Microalloyed Magnesium Alloys with High Complex of Properties: Sergei Belikov1; Vadim Shalomeev1; Eduard Tsivirko1; Nikita Akin1; Sergei Shemyko1; 1Zaporozhye National Technical University

3:20 PM
The Role of Zn Additions on the Microstructure and Mechanical Properties of Mg-Nd-Zn Alloys: Sergei Gavras1; Domonkos Tolnai1; Tungky Subroto1; Ricardo Buzolin1; Norbert Hort1; 1Helmholtz Zentrum Geesthacht

3:40 PM
Break

4:00 PM
Hot Deformation Behavior, Microstructure and Mechanical Properties of Mg-8Zn-1Al-0.5Cu-0.5Ma Alloy: Juansheng Yang1; Shaozhen Zhu1; Tianjiao Luo1; 1Institute of Metal Research, Chinese Academy of Sciences

4:20 PM
Post-forming Mechanical Properties of Double-sided Incrementally Formed Sheet Alloys: Ravi Verma1; Eric Thomas1; Brian Martinek1; Alan Gillard1; Vijitha Kiridena1; 1Boeing

4:40 PM
X-Ray Computed Tomography – An Enabling Tool for Casting Process Cognition Development and Improvement: Ning Sun1; Chen Dai1; Vijay Alreja1; Diran Apelian1; 1Worcester Polytechnic Institute; 2VJC Technologies Inc.

5:00 PM
Computational Study of Competing Icosahedral Approximants in RS8009: Joseph Jankowski1; Jonathan Miorelli1; Michael Kaufman1; Amy Clarke1; Mark Eberhart1; Krish Krishnamurthy1; Vladan Stevanovic1; 1Colorado School of Mines; 2Honeywell

5:20 PM
Complexities in the Assessment of Melt Quality: Martin Riestra1; Anton Bjurenstedt1; Toni Bogdanoff1; Ehsan Ghasemali1; Salem Seifeddine1; 1Jönköping University

Program Organizers: Jake Amoroso, Savannah River National Laboratory; Aladar Csontos, Nuclear Regulatory Commission; Kevin Fox, Savannah River National Laboratory; Tongan Jin, Pacific Northwest National Laboratory; Cory Trivelpiece, Savannah River National Laboratory; Yutai Katoh, Oak Ridge National Laboratory; Bill Lee, Imperial College of London; Josef Matyas, Pacific Northwest National Laboratory; Nathan Mellot, Michigan State University; Kumar Sriraman, University of Wisconsin Madison; S.K. Sundaram, Alfred University

Wednesday PM
October 11, 2017
Location: DLL Convention Center

Session Chairs: Jake Amoroso, Savannah River National Laboratory; Jason Lonergan, Washington State University

2:00 PM
An Empirical Model of Thermodynamic Sulfur Solubility in Nuclear Waste Glasses: Tongan Jin1; Dongsang Kim1; Kevin Fox1; Madison Caldwell1; John Vienna1; Brigitte Weese1; Michael Schweiger1; Renee Russell1; Albert Kruger1; 1Pacific Northwest National Laboratory; 2Savannah River National Laboratory; 3U.S. Department of Energy Office of River Protection

2:20 PM
Application of Evolved Gas Analysis to Nuclear Waste Feed Melting: Miroslava Hajova1; Richard Pokorny1; Jaroslav Klouzek2; Seungmin Lee2; Joseph Traverso1; Michael Schweiger1; Albert Kruger1; Pavlo Hrma1; 1University of Chemistry and Technology Prague; 2Pacific Northwest National Laboratory; 3Office of River Protection, DOE

2:40 PM
Invited
Atomic Computer Simulations of Nuclear Waste Materials: Jincheng Du1; 1University of North Texas

3:00 PM
Effect of Foaming on Heat Flux to the Cold Cap In the High-alumina HLW Melter Feed: SeungMin Lee1; Pavlo Hrma1; Richard Pokorny1; Jaroslav Klouzek2; Michael Schweiger1; Albert Kruger1; 1Pacific Northwest National Laboratory; 2Laboratory of Inorganic Materials, Joint Workplace of the Institute of Chemical Technology Prague and the Institute of Rock Structure and Mechanics of the ASCR; 3U.S. Department of Energy, Office of River Protection

3:20 PM
Enhanced Vitrification Processing Models for High TiO2 Containing Glasses: Carol Jantzen1; Cory Trivelpiece1; Tommy Edwards1; 1Savannah River National Laboratory

3:40 PM
Break

4:00 PM
Invited
Savannah River National Laboratory Strategies for Waste Treatment Processing: Connie Herman1; 1Savannah River National Laboratory

4:40 PM
Structures and Properties of Spinel MgAl2O4/Glass Interfaces from Molecular Dynamics Computer Simulations: Wei Sun1; Menggao Ren1; Lu Deng1; Jincheng Du1; 1University of North Texas

5:00 PM
Predictive Modeling of Crystal Accumulation in the HLW Glass Melters Processing Radioactive Waste: Josef Matyas1; Vivianaluxa Gervasio1; Sulaiman Sannoh1; Albert Kruger1; 1Pacific Northwest National Laboratory; 2U.S. Department of Energy, Office of River Protection

5:20 PM
MD Simulations of the Bulk and Surface Structures of Nuclear Waste Glasses: La Deng1; Jincheng Du1; 1University of North Texas

Materials Property Understanding through Characterization – Metals I

Program Organizers: Indrajit Dutta, Corning Incorporated; Nicholas Smith, Corning Incorporated

Wednesday PM
October 11, 2017
Location: DLL Convention Center

Session Chair: Scott Misture, Alfred University

2:00 PM
Innovative SEM/EDS Characterization of Steel Facilitated by a Silicon Drift Detector: John Konopka1; 1Thermo Fisher Scientific

2:20 PM
Stable Core-shell Particles in Nanocrystalline Cu-Ta: Christopher Marvel1; B. Hornbuckle1; Kristopher Darling2; Martin Hamer1; 1Lehigh University; 2Army Research Laboratory

2:40 PM
Microstructure-property Relations in Mn-Al-base Ferro-magnet Alloys Obtained by High-Strain-Rate Severe Plastic Deformation Processing: JaeHyuk Jo1; Sahar Farjami1; Ravi Shankar1; Hasso Weiland1; Jorg Wiezorek1; 1University of Pittsburgh; 2Arconic, Inc.

3:00 PM
Experimental Determination of the Mueller Matrix Components for Uniaxial Alpha-titanium from Computational Polarized Light Microscopy: Ke-Wei Jin1; Marc De Graef1; 1Carnegie Mellon University

3:20 PM
Break

3:40 PM
Effect of Nanoprecipitation on Magnetic Properties of Fe-P based Alloy: Sundararajan Govindan1; Ravi Gautham1; D Prabhu1; Raghavan Gopalan1; 1Indian Institute of Technology Madras; 2ARCI

4:00 PM
Microstructural Evolution of Ti-7Al under Cyclic Loading: Rachel Lim1; Yufeng Shen1; Tugez Ortuk1; Joel Bernier1; Christopher Kantzos1; He Liu1; Paul Shade1; Robert Suter1; Anthony Rollett1; 1Carnegie Mellon University; 2Lawrence Livermore National Laboratory; 3U.S. Air Force Research Laboratory

4:20 PM
A New View of the Grain Coarsening Behavior of Austenite and the Role of High Mobility Boundaries in Ti-microalloyed Low-carbon Steels: Victor Blancas-Garcia1; Enrique Garcia2; C. Isaac Garcia2; 1Tenaris / University of Pittsburgh; 2Tenaris; 3University of Pittsburgh

4:40 PM
High Strain Rate Testing of Wrought Super Alloy to Address the Structural Integrity Requirements of Gas Turbine Engine Casings: Anuradha Majila1; 1Gas Turbine Research Establishment
Materials Selection and Surface Analyses for Corrosion Prevention and Detection – Coatings and Protection/Corrosion Technologies
Program Organizers: Matthew Asmussen, Pacific Northwest National Laboratory; Ajit Mishra, Haynes International; Sudhakar Mahajanam, PinnacleART; Eric Schindelholz, Sandia National Laboratory; Xueyuan Zhang, Gamry Instruments; Guang-Ling Song, Xiamen University; Luis Garfrais, Wood Group Kenny; Raul Rebak, General Electric

Wednesday PM
Room: 405
October 11, 2017
Location: DLL Convention Center

Session Chairs: Xueyuan Zhang, Gamry; Ajit Mishra, Haynes International

2:00 PM
Advances in Zinc Phosphate Activator Technology: Mark McMillen1; PPG Industries Inc

2:20 PM
Evaluation of Coating Performance on AA6XXX via Standard Corrosion Cabinet Testing: Mary Lyn Lim1; Brian Okerberg1; Peter Votruba-Drazil1; PPG

2:40 PM
Corrosion Mechanism of Cathodic Protected Transmission Pipeline Steel with Damaged Enamel Coatings: Liang Fan1; Genda Chen1; Signo T. Reis1; Mike Koenigstein1; Missouri University of Science and Technology; Perma Engineered Coatings, Roesch Inc.

3:00 PM
Electrochemically Accelerated Degradation of Organic Coating: Dajiang Zheng1; Qi Gui1; Guang-Ling Song1; Xiamen University

3:20 PM Break

3:40 PM
Co-localization of Complementary Characterization Tools to Investigate Corrosion Performance: Corey Eflau1; Thiago da Silva1; Elton Graungnard1; Paul Davis1; Lan Li1; Mike Hurley1; Boise State University

4:00 PM
Application of Frequency and Amplitude Modulation Instrumentation in Corrosion: Xueyuan Zhang1; Gamry Instruments

4:20 PM
Study on Time-variant Characteristics of Metal/Electrolyte Interface under AC Interference: Yanzia Du1; Minxia Lu1; Yingwu Xiao1; Dezhi Tang1; University of Science and Technology Beijing/University of Pittsburgh

4:40 PM
Study on Corrosion Mechanism of MnS Inclusions with Different Size in Steel: Qing Liu1; Weiming Shi1; Shufeng Yang1; Weihua Zhang1; Jingshe Li1; Xueliang Zhang1; University of Science and Technology Beijing

Mechanochemical Synthesis and Reactions in Materials Science II – Session III
Program Organizers: Antonio Fuentes, Cinvestav del IPN; Laszlo Takacs, University of Maryland Baltimore County; Challapalli Suryanarayana, University of Central Florida; Jacques Huot, Universite du Quebec a Trois-Rivieres

Wednesday PM
Room: 327
October 11, 2017
Location: DLL Convention Center

Session Chairs: Antonio Fuentes, Cinvestav del IPN; Francisco Gotor, Instituto de Ciencia de Materiales de Sevilla

2:00 PM Invited
Mechanochemistry under Hydrogen Gas: Synthesis of Efficient Materials for Hydrogen Storage and Electrochemical Applications: Fermin Cuevas1; Junxian Zhang1; Michel Latroche1; CNRS-UPEC/ICMPE/FRance

2:40 PM
Effect of Ball Milling on the Hydrogen Storage Properties of TiFe Alloy Doped with 4wt.% ZrMn2 Additive: Gabriela Romero1; Peng Lv2; Jacques Huot2; Instituto Tecnologico y de Estudios Superiores de Monterrey (ITESM); UQTR

3:00 PM
Alane by Mechanochemical Metathesis: Reaction Control by Inert Solids, Liquids and Gases: Shalabh Gupta1; Ihor Hlova1; Takeshi Kobayashi1; Jennifer Goldston1; Marek Pruski1; Vitalij Pecharsky1; Ames Laboratory

3:20 PM Break

3:40 PM
Defect-laden 2D Materials for Enhanced Mechanocatalysis: Richard Blair1; University of Central Florida

4:00 PM
Magnesiothermic MASHS of Zirconium and Hafnium Diborides: Sergio Cordova1; Evgeny Shafirovich1; The University of Texas at El Paso

4:20 PM
SMACS: Surface Mechanical Attrition of Cold Spray Composite Coatings: Heather Murdock1; Blake Barnett1; Jonathan Ligda1; Army Research Lab

4:40 PM
The Energy Consumed in Ball Mills: Oavio Fortini1; UMD

Metal and Polymer Matrix Composites III – Metal Matrix Composites
Program Organizers: Nikhil Gupta, New York University; Tomoko Sano, U.S. Army Research Laboratory

Wednesday PM
Room: 330
October 11, 2017
Location: DLL Convention Center

Session Chairs: Tomoko Sano, U.S. Army Research Laboratory; Jennifer Sietins, U.S. Army Research Laboratory

2:00 PM Invited
Lightweight Self-lubricating Aluminum Matrix Composites Reinforced by Graphene: Emad Omrani1; Afshaneh Dorri Moghadam1; Pradeep Rohatgi1; University of Wisconsin, Milwaukee
2:40 PM
Boron Nitride Nanotube Reinforced Aluminum Composite via Solidification Processing: Pranjal Nastiya; Benjamin Boesl; Arvind Agarwal; Florida International University

3:00 PM
Advances on Fabrication of Al-based Nanocomposites Assisted by Ultrasonic and Electromagnetic Processing: Laurentiu Nastac; Yang Xuan; University of the Alabama

3:20 PM Break

3:40 PM
Electrical and Mechanical Properties of Copper Metal Matrix Composite Containing Polydopamine Derived Nanocarbon: Yao Zhao; Bosen Qian; Haoqi Li; Dmitriy Dikin; Fei Ren; Temple University

4:00 PM

4:20 PM
The Development and Mechanical Characterization of Aluminium Copper-carbon Fiber Metal Matrix Hybrid Composite: Muhammad Manzoor; Muhammad Feroz; Tahir Ahmad; Muhammad Kamran; Rafiq Ahmad; Muhammad Butt; University of the Punjab

4:40 PM
Thermomechanical Analysis of Hot Cracking in Non-weldable Ni-based Superalloy: Yousub Lee; Mike Kirka; Naren Ragavhan; Alex Plotkowski; Alfredo Okello; Ryan Dekoff; Oak Ridge National Laboratory; University of Tennessee, Knoxville

5:00 PM
Microstructure Modeling of Selective Laser Melting of Inconel 718: Kubra Karayagiz; Thien Duong; Tahide Attar; Luke Johnson; Brian Franco; Gustavo Tapia; Ji Ma; Alaa Elwany; Ibrahim Karaman; Raymund Arroyave; Texas A&M University

5:20 PM
Mean-field Process-microstructure Modeling for Additive Manufacturing of High-quality Parts: Yunhao Zhao; Qian Chen; Jian Liu; Albert To; Wei Xiong; University of Pittsburgh

5:40 PM
Modeling of Laser Heat Input for Laser Powder Bed Fusion: Toshi-Taka Ikeshoji; Makiko Yonehara; Kazuya Nakamura; Masakazu Araki; Hideki Kyoogoku; Kindai University

6:00 PM
Modeling of Phase Transformation and Transport Phenomena in the LENS Process via the Lattice Boltzmann-Cellular Automata Method: Matthew Rolchigo; Michael Mendoza; Richard LeSar; Peter Collins; Iowa State University

6:20 PM
Multiscale Modeling of Microstructure Deformation in Material Processing – Multi scale Modeling of Microstructure Deformation in Material Processing: Part II
Program Organizers: Lukasz Madej, AGH University of Science and Technology; Krzysztof Muszka, AGH University of Science and Technology; Danuta Szeliga, AGH University of Science and Technology

6:40 PM
Review of Highly Alloyed Tool Steel and Cast Irons Used for Hot-Cold Rolling Mill Applications: Konstantin Redkin; Christopher Hriz; Isaac Calixto Garcia; WHEMCO Inc; University of Pittsburgh

7:00 PM
Experiments and Simulations of Double Side Shot Peened Aluminum: Siavash Ghanbari; David Bahr; Purdue University
2:40 PM Prediction of Strain Inhomogeneity during Cyclic Plastometric Tests Based on Digital Material Representation Approach: Krzysztof Muszka1; Paulina Graca1; Janusz Majta1; Łukasz Madej1; AGH Univeristy of Science and Technology

3:00 PM The Effect of Strain Rate and Microstructure Parameters on The Mechanical Behavior of Dual Phase Steels in Different Conditions: Parametric Study and Optimization: Tarek Belgasam1; Hussein Zbib1; Washington State University

3:20 PM Break

3:40 PM First Principle Study of Plastic Deformation Mechanisms of fcc High Entropy Alloys: Mohsen Beyramali Kivy1; Mohsen Asle Zaeem1; Missouri University of Science and Technology

4:00 PM Representativeness Aspects of Digital Material Representation Model of Dual Phase Steels: Łukasz Madej1; Aneta Muzyk1; Konrad Perzynski1; Jiangting Wang1; AGH University of Science and Technology; Deakin University

4:20 PM Modeling of Potential Distribution of Automotive Aluminum Structures Using Organic Coating: Arash Shadravan1; Mahdi Mohajeri1; Reservoirfocus LLC; Texas A&M University

4:40 PM A Molecular Dynamics Study of Grain Boundary Motion during Plastic Deformation in fcc Metals: Maosheng Li1; Chan Gao1; Hua Liang1; Institute of Applied Physics and Computational Mathematics; Institute of Nuclear Physics and Chemistry

5:00 PM Modeling of Mechanical Behavior of Materials with Gradient Microstructure: Effect of Grain Boundary Sliding and Dislocation Density: Mehdi Hamid1; Hussein Zbib1; Washington State University

2:00 PM Invited
Synthesis and Characterization of Aerosol Deposited Materials: Andrew Vackel1; Sandia National Laboratories

2:40 PM Solar-induced Photothermal Effect of FeO Nanoparticles and Thin Films for Energy Efficient Materials: Donglu Shu1; Lucas Zhao1; Andrew Dunn1; University of Cincinnati

3:00 PM Lead-free SnTe-based Thermoelectrics: Enhancement of Thermoelectric Performance by Doping with Gd/Ag: Lijuan Zhang1; University of Wollongong

3:20 PM Morphology Dependent Charge Storage in Cerium Oxides Nanostructures: Audityya Jeyaranjan1; Tamil Selvan Sakthivel1; Sudipta Seal1; University of Central Florida

3:40 PM Break

3:50 PM Nanomaterials by Flame Synthesis in Energy Applications: Randy Vander Wal1; Penn State University

4:10 PM Nanosensors for Detecting Pollutants in Water: Shobhan Paul1; Zetanostics Inc

4:30 PM Nanomaterials by Flame Synthesis in Energy Applications: Randy Vander Wal1; Penn State University

4:50 PM Nanosensors for Detecting Pollutants in Water: Shobhan Paul1; Zetanostics Inc

Next Generation Biomaterials – Next Generation Biomaterials II
Program Organizers: Roger Narayan, UNC/NCSU Joint Department of Biomedical Engineering; Jie Huang, University College London; Vipul Davé, Johnson & Johnson; Sanjiv Laliwani, Lynntech, Inc.; Marc in het Panhuis, University of Wollongong; Mohan Edirisinghe, University College London

Wednesday PM Room: 334
October 11, 2017 Location: DLL Convention Center

Session Chairs: Matthew Korey, Purdue University; John Obayemi, Worcester Polytechnic Institute; Sahar Mokhtari, Alfred University

2:00 PM Chemically Anchoring Tannic Acid to a Polymeric Backbone - A Novel Solution for Next-generation Burn Wound Treatment: Matthew Korey1; Caitlyn Clarkson1; John Howarter1; Purdue University

2:20 PM Ligand-conjugated Biosynthesized Magnetite Nanoparticles for Specific Targeting of Breast Cancer: The Role of Adhesion: John Obayemi1; Jingjie Hu1; Vanessa Uzonwanne1; Olushola O dusanya1; Karen Malatesta1; Sina Youssefian1; Winston Soboyejo1; Worcester Polytechnic Institute; Princeton University; Sheda Science and Technology Complex (SHESTCO)

2:40 PM Evaluation of Stress Assisted Degradation of Absorbable Medical Sutures: Joseph Prati1; Dong Kim1; M. Matthewson1; Rutgers University
3:00 PM
Length-dependent Intracellular Bundling of Single-wall Carbon Nanotubes Influences Retention in Macrophages: Sumin Jin; Patrick Boyer; Piyumi Wijesekara-Kankanange; Kris Dahl; Mohammad Islam; 1Carnegie Mellon University

3:20 PM Break

3:40 PM
Single Phase Newberyite Coatings on Ti6Al4V implants by Rapid Microwave Irradiation Technique: Prabaha Sikder; Yufu Ren; Sarit Bhaduri; 1The University of Toledo

4:00 PM
Synthesis of Bifunctional Coatings on Ti6Al4V Implants by Rapid Microwave Irradiation Technique: Prabaha Sikder; Yufu Ren; Sarit Bhaduri; 1The University of Toledo

4:20 PM
Copper Based Glass Polyalkenoate Bone Cements: Effect of Copper Substitution on Physical, Mechanical, and Antibacterial Properties: Sahar Mokhtar; Anthony Wren; 1Alfred University

4:40 PM
Biocompatibility and Nanomechanical Properties of Novel Intermetallic Coatings on Orthopedic Implant Material: Muhammad Atif Makhdoom; Tahir Ahmad; Muhammad Kamran; Fahad Riaz; 1University of the Punjab

5:00 PM Invited
Calcium Oxalate Derived Materials: New Insights: Christian Bonhomme; 1Université Pierre et Marie Curie

Non Beam-based Additive Manufacturing Approaches for Metallic Parts – Session II
Program Organizer: Olaf Andersen, Fraunhofer IFAM

Wednesday PM
Room: 305
Location: DLL Convention Center

Session Chair: Mark Norfolk, Fabrisonic

2:00 PM Invited
Ultrasonic Additive Manufacturing State-of-the-Art: Adam Hehr; Justin Wenning; Mark Norfolk; 1Fabrisonic LLC

2:40 PM
Metal Additive Manufacturing through Friction Stir-facilitated Deposition: Hang Yu; Nanci Hardwick; 1Virginia Tech; 2Aeroprobe Corporation

3:00 PM
Large Scale Layered Object Manufacturing – Boundary Conditions for the Joining Process Diffusion Bonding: Simon Jahn; 1iifw Jena

3:20 PM
Additive Manufacturing Technology Based on Stationary Shoulder Friction Stir Welding for Aluminum Alloy: Li Xing; Liming Ke; Bin Huang; 1NanChang HangKong University

Phase Stability, Diffusion Kinetics, and Their Applications (PSDK-XII) – Session V: J. Willard Gibbs
Phase Equilibria Award - Applications of Computational Thermodynamics
Program Organizers: Wei Xiong, University of Pittsburgh; Raymundo Arroyave, Texas A & M University; Ji-Cheng Zhao, The Ohio State University; Arthur Pelton, Ecole Polytechnique

Wednesday PM
Room: 413
Location: DLL Convention Center

October 11, 2017

Session Chairs: Chris Bale, Ecole Polytechnique; Philip Spencer, The Spencer Group

2:00 PM Invited
FACTSAGE Modeling Of Mineralogical Composition of Steelmaking Slags and the Coupling to the Use of Slags for Construction Purposes: Bo Björkman; 1Luleå University of Technology

2:20 PM Invited
Reaction between High Al Steel and Mold Flux during Continuous Casting: Experiment and Kinetic Simulation Using Thermodynamic Database: Min-Su Kim; Youn-Bae Kang; 1Korea Institute of Industrial Technology; 2Pohang University of Science and Technology

2:40 PM Invited
The Transformation of Bubbles in Glass Melts: Susan Schiefelbein; 1Corning Research & Development Corporation

3:00 PM Invited
Application Examples of Thermochemical Process Simulation Using Simusage - Introducing Current Projects from Metallurgy and Combustion Technology: Stephan Petersen; Klaus Hack; Peter Monheim; Piotr R. Scheller; Michael Müller; Matthias Dohm; Sabrine Khadhraoui; 1GTT-Technologies; 2Prof. em. (TU Bergakademie Freiberg); 3Forschungszentrum Jülich GmbH; 4SMS Group GmbH

3:20 PM Break

3:40 PM Invited
Exsolution of Solutes from Particles Formed by High-temperature Gas-to-Particle Conversion Processes: R. Diemer; 1University of Delaware

4:00 PM Invited
Experimental Studies and Thermodynamic Modeling of the Phase Equilibria of Corrosive Alkali-lead Halides in Combustion of Waste-derived Fuels: Daniel Lindberg; Jonne Niemi; Markus Engblom; Mikko Hupa; 1Åbo Akademi

4:20 PM Invited
Ash Behavior in Biomass Combustion and Global Thermodynamic Equilibrium Analysis: Mikko Hupa; 1Åbo Akademi

4:40 PM Invited
Calphad Study of Earth’s Multicomponent Core: Surendra Saxena; 1FIU
Phase Transformations in Ceramics: Science and Applications – Experimental Studies in Phase Transformations II

Program Organizers: Waltraud Kriven, University of Illinois at Urbana-Champaign; Pankaj Sarin, Oklahoma State University; Ricardo Castro, University of California, Davis; Yu Zhong, Florida International University

Wednesday PM Room: 312
October 11, 2017 Location: DLL Convention Center

Session Chairs: Pankaj Sarin, Oklahoma State University; Randall Hay, Air Force Research Laboratory

2:00 PM Invited
Thermodynamic Investigation on the Stoichiometry of PMN-PT Single Crystals: Hooman Sabarou1; Dehua Huang2; Yu Zhong3; 1Florida International University; 2Navy Undersea Warfare Center

2:40 PM Invited
Martensitic Transformation in Granular Shape Memory Ceramic Packings: Hang Yu1; Hunter Rauch1; Mostafa Hassani-Gangaraj2; Zehui Du3; Chee Lip Gan3; Christopher Schuh4; 1Virginia Tech; 2MIT; 3Nanyang Technological University

3:20 PM Break

3:40 PM Invited
Phase Equilibrium in the 30% Al2O3 Plane of the Quaternary CaO-SiO2-MgO-Al2O3 System: Lifeng Sun1; Junjie Shi1; Jiyu Qiu1; Maofa Jiang1; Qing Zhao2; 1Key Laboratory for Ecological Metallurgy of Multimetallic Ores (Ministry of Education), School of Metallurgy, Northeastern University of China; 2Northeastern University of China

4:00 PM
Magnesium Oxychloride: Formation Kinetics Formation and Water Stability Enhancement: Roque Gochez1; Christopher Kitchens1; 1Clemson University

4:20 PM Invited
Phase and Microstructural Evolution of Yttrium Disilicate in High-temperature High-velocity Water Vapor: Robert Golden1; Elizabeth Opila1; 1University of Virginia

5:00 PM
Novel Microstructures and Innovative Processing in Cobalt Titanate: Kevin Anderson1; Anit Giri2; Richard Vinci1; Helen Chan1; 1Lehigh University; 2U.S. Army Research Laboratory
Rare Earth Metals, Compounds, and Alloys: Synthesis, Processing, Emerging Applications, Recent Advances, Future Challenges – Current Production Status, Availability, and Economics of REE/REM

Program Organizers: Yellapu Murty, MC Technologies LLC; Eric Klier, U.S. Army Research Laboratory; Jack Lifton, Jack Lifton LLC

Wednesday PM Room: 325
Location: DLL Convention Center

Session Chair: Yellapu Murty, MC Technologies

2:00 PM Keynote
Rare-Earth Permanent Magnets without Heavy Rare Earth Elements: Recent Developments and Applications: Yutaka Yoshida1; Atsushi Hattori2; Minoru Aizaki2; Takahiko Iriyama3; 1Daido Steel (America) Inc.; 2Daido Electronics Co., Ltd.; 3Daido Steel Co., Ltd.

2:40 PM Invited
Production Status and Forecast for the Availability of Rare Earth Materials: Steve Constantinides1; 1Magnetics and Materials LLC

3:10 PM Invited
Prospects for New Rare-earth Mines Outside of China: What Happened to the 400 Exploration Projects?: Roderick Eggert1; 1Colorado School of Mines

3:40 PM Break

4:00 PM Invited
Economics of Rare Earth Projects: Ian Chalmers1; 1Alkane Resources Ltd

4:30 PM Invited
Beneficiation of Rare Earth Minerals: Corby Anderson1; 1Colorado School of Mines

5:00 PM Invited
Investigation of Al-Sc Alloy for Lightweight Armor: Eric Klier1; Nhon Vu2; Denver Gallardy2; Kevin Doherty2; David Seidman3; David Dunand4; Matthew Burkins5; 1Army Research Laboratory; 2NanoAl LLC; 3U. S. Army Research Laboratory; 4Northwestern University

5:30 PM Concluding Comments Yellapu Murty

Recent Advances in Computer-aided Materials Design – Computational-experimental Synergy in Materials Discovery I

Program Organizers: Huan Tran, University of Connecticut; Ghanshyam Pilania, Los Alamos National Laboratory; Alexey Kolmogorov, Binghamton University; State University of New York; Mina Yoon, Oak Ridge National Laboratory; Son Hoang, University of Connecticut

Wednesday PM Room: 324
Location: DLL Convention Center

Session Chair: Anand Chandrasekaran, University of Connecticut

2:00 PM Invited
High-throughput Experiments Driven by Active Learning: Ichiro Takeuchi1; 1University of Maryland

2:30 PM Invited
Multiscale Solid Interface Engineering: Shuai Shao1; Jian Wang2; 1Louisiana State University; 2University of Nebraska - Lincoln

3:00 PM
Anisotropic Thermal Transport Behavior in New 2D Material NaSn2As2: Jixian Wang1; Wolfgang Windl2; 1The Ohio State University

3:20 PM Break

3:40 PM Invited
Understanding the Amorphization Resistance of Complex Oxides via Machine Learning: Ghanshyam Pilania1; Karl Whittle2; Chao Jiang2; Robin Grimes2; Christopher Stanek2; Kurt Sickafus2; Blas Uberuaga2; 1Los Alamos National Laboratory; 2University of Liverpool; 3Idaho National Laboratory; 4Imperial College London; 5University of Tennessee

4:10 PM Invited
Materials Design and Engineering Using Machine Learning Approaches: Tu Le1; 1RMIT University

4:40 PM
Application of Computational Modeling to Trial and Error Minimization for Alloy Property Optimization: Derek Tsaknopoulos1; Danielle Cote1; Richard Sisson1; Victor Champagne1; 1Worcester Polytechnic Institute; 2US Army Research Laboratory

5:00 PM
Modeling and Simulation of High-entropy Alloys: Yong Zhang1; 1University of Science and Technology Beijing

Responsive Functional Nanomaterials – Session V

Program Organizers: Ziqi Sun, Queensland University of Technology; Jiahua Zhu, The University of Akron; Wenxian Li, Shanghai University; Dawei Wang, University of New South Wales; Wenping Wu, University of Wollongong; Liangzhi Kou, Queensland University of Technology; Wenzhuo Wu, Purdue University

Wednesday PM Room: 320
Location: DLL Convention Center

Session Chairs: Jianping Yang, Donghua University; Yu Lin Zhong, Griffith University

2:00 PM Invited
Electronic-mechanical-magnetic Coupling in 2D Materials: Liangzhi Kou1; 1Queensland University of Technology

2:20 PM Invited
Physical Chemical Properties of Blue Phosphorus and Its Derivatives from Computational Studies: Chuan Tang1; 1University of Nevada Las Vegas

2:40 PM Invited
Atom-functionalized Carbon-based Nanomaterials in Energy Applications: Ting Liao1; 1Queensland University of Technology

3:00 PM Invited
Mechanical Response of Titanium and Magnesium under Shock Loading – Twinning Mode Revealed by High-throughput Simulations: Gang Zhou1; Yan He1; Hao Wang1; Dongsheng Xu1; Rui Yang1; 1Institute of Metal Research, Chinese Academy of Sciences
3:20 PM Break

3:40 PM Invited
Osteoanabolic Implant Materials for Orthopedic Treatments: *Xiaobo Chen*; 1RMIT

4:00 PM Invited
Structural Refinement in Ti-0.5Fe by Combining Phase Transformation and Plastic Deformation: *Guanyu Deng*; 1Tilak Bhattacharjee; 2Yan Chong; 2Wu Gong; 2Yuan Zhang; 2Yu Bai; 1Akinobu Shibata; 1Nobuhiro Tsujj; 1Department of Materials Science and Engineering, Kyoto University; 2Department of Materials Science and Engineering, Kyoto University; Elements Strategy Initiative for Structural Materials (ESISM), Kyoto University; 3Department of Materials Science and Engineering, Kyoto University

4:20 PM Invited
The Mechanical Behavior Dependence on the TiB Whisker Realignment during Hot-working in Titanium Matrix Composites: *Fengcang Ma*; 1University of Shanghai for Science and Technology

4:40 PM Invited
Bio-inspired Superhydrophobic and Superhydrophilic Surfaces: *Ziqi Sun*; 1Queensland University of Technology

Program Organizers: Lan Li, Boise State University; Kevin Huang, University of South Carolina; Winnie Wong-Ng, National Institute of Standards and Technology

Wednesday PM Room: 329 Location: DLL Convention Center

Session Chair: Winnie Wong-Ng, National Institute of Standards and Technology

2:00 PM Invited
Gradient Metal-organic Frameworks: *Nathaniel Rosi*; 1University of Pittsburgh

2:20 PM Invited
Porphyrins as Microporous Multifunctional Materials: *Lawrence Cook*; 1Greg Brewer; 2Winnie Wong-Ng; 1The Catholic University of America; 2The National Institute of Standards and Technology

2:40 PM Invited
Connecting the In-operando Reduction Kinetics of Porous Nickel Oxide and Copper Oxide in Dilute H2 from the Molecular- To Micron-Scales for Clean Energy Generation: *Greeshma Gadikota*; 1Princeton University

3:00 PM
Highly Compressible Carbon Properties and Potential Applications: Changjun Zhou; 1Soeren Koester; 1Superior Graphite Co

3:20 PM Break

3:40 PM Invited
Sorbet Materials Applications in the Remote Sensing of CO2 and CH4: *Jeffrey Culp*; 1Ki-Joong Kim; 2Jagannath Devkota; 1Paul Ohodnicki; 2National Energy Technology Laboratory

4:00 PM Invited
Porosity and Strength Relationship in Carbonated Wollastonite (20 CaSiO3): *Daniel Kopp*; 1Richard Riman; 1Ryan Anderson; 1Kevin Blinn; 1Rutgers, The State University of New Jersey; 2RRTC, Inc.

4:20 PM
Mechanical Performance of Graded Auxetic Polyurethane Foam Designs: *Yamusa Balogun*; 1Shelby Mullen; 1Nathan Durcholz; 1Crane Division, Naval Surface Warfare Center

4:40 PM
Evaluation of Materials for Gas Blowing Device in Molten Steel: *Akifumi Takeuchi*; 1Tatsuya Oouchi; 1Katsumi Morikawa; 1Hatsuo Taira; 1Krosaki Harima Corporation

5:00 PM
Porous Metals by Intraparticle Expansion: Opportunities for New Applications: *Laura Guerara*; 1Joseph Wright; 1Erika Zurita-Torres; 1Roger Welsh; 1Samuel Brennan; 1Mark Atwater; 1Millersville University

The 9th International Symposium on Green and Sustainable Technologies for Materials Manufacturing and Processing – Novel Utilization of Waste Materials/ Next Generation Green Technologies II

Program Organizers: Surojit Gupta, University of North Dakota; Jun-ichi Tatami, Yokohama National University; Tatsuki Ohji, National Institute of Advanced Industrial Science and Technology (AIST); Mrityunjay Singh, Ohio Aerospace Institute, NASA Glenn Research Center; Marsha Bischel, Armstrong World Industries, Inc., PA; Makio Naito, Osaka University, Japan; Hisayuki Suematsu, Nagaoka University of Technology, Japan; Yiquan Wu, Alfred University, NY

Wednesday PM Room: 317 Location: DLL Convention Center

Session Chairs: Luca Masi, Granta Design; Martha L. Mecartney, University of California, Irvine; Edward Gorzkowski, Naval Research Laboratory

2:00 PM
Investigation on the Properties of Lump Ores in Corex 3000 Iron Making Process: *Xiaoqin Liu*; 1Chengsong Liu; 1Fei Ye; 1Zhongliang Wang; 1Wuhan University of Science and Technology

2:20 PM
Effect of Unmelted Lime on the Element Migration Behavior in CaO-SiO2-MgO-Al2O3-FeO-(Cr2O3) Slag: *Qing Zhao*; 1Chengjun Liu; 1Longhu Cao; 1Baokuan Li; 1Maofa Jiang; 1Northeastern University

2:40 PM
Pyrolysis of Agricultural Waste to Form Nano-structures of Carbides, Nitrides, and Silicates: *Edward Gorzkowski*; 1Syed Qadri; 1Bhakta Rath; 1Naval Research Laboratory

3:00 PM
Reduction Behavior of Ludwigtite Iron Concentrates by Gas-based Direct Reduction: *Luxing Feng*; 1Shenwu Group Environment & Energy Technology Co., Ltd.
Additive Manufacturing of Metals: Fatigue and Fracture – Session III

Program Organizers: Nicholas Hrabe, National Institute of Standards and Technology; Richard Ricker, National Institute of Standards and Technology; Steve Daniewicz, University of Alabama; Nima Shamsaei, Auburn University; Mohsen Seifi, Case Western Reserve University/ASTM International

Thursday AM
Room: 304
October 12, 2017
Location: DLL Convention Center

Session Chair: Amber Andreaco, GE Additive

8:00 AM Invited
Understanding the Influence of Powder Bed Fusion Processing on the Shape Memory Alloy, Uranium-6 Wt. Pct. Plutonium: Amanda Wu1; John Elmer1; Donald Brown2; Bjorn Clausen3; Gilbert Gallegos1; Lawrence Livermore National Laboratory; Los Alamos National Laboratory

8:40 AM
Modelling Melt Pool Residual Stresses in Powder Bed Fusion Processes: Mustafa Megahed1; Joerg Willems1; ESI Group

9:00 AM
Evolution of Crack Patterns During Direct Laser Metal Deposition of Inconel 738 Superalloy: Abhishek Ramakrishnan1; Amrinder Singh1; Guru Dinda1; Wayne State University

9:20 AM
Direct Laser Metal Sintered (DMLS) of Aermet 100 Steel Powder: Michael Hesper1; Elias Jelis1; Matthew Clemente1; Rajendra Sadangi1; Fernando Echavarria-Hidalgo1; U.S. Army, ARDEC, Picatinny Arsenal

9:40 AM
Influence of Post Processing on Direct Metal Laser Sintered Ti6Al4V Using In-situ Micro-computed Tomography: Andelle Kudzal1; Timothy Walter1; Clara Hofmeister1; Brandon McWilliams1; Jianyu Liang1; Worcester Polytechnic Institute; US Army Research Laboratory; Oak Ridge Institute for Science and Education

10:00 AM Break

10:20 AM
Static and Fatigue Performance of Ti-6Al-4V ELI Solid Structures Fabricated via Selective Laser Melting: Oscar Quintana1; Andrew Rosenberger1; Weidong Tong1; DePuy Synthes Joint Reconstruction

10:40 AM
Towards Development of Design Rules for Selecting Optimum Process Parameters for Manufacturing Components with Complex Geometries in Electron Beam Melting Additive Manufacturing: Michael Massey1; Sean Yoder1; Alex Plotkowski1; Michael Kirka1; Saresh Babu1; University of Tennessee; Oak Ridge National Labs

11:00 AM
Impact of AM Processing Parameters on High-temperature Creep Behavior of IN718: David Newell1; Ryan O’Hara1; USAF

11:20 AM
Relating Component Poroisty Distributions to Fatigue Failure in Additively Manufactured Inconel 718: Luke Sheridan1; Joy Gockel1; Onome Scott-Emuakpor1; University of Texas at El Paso

Advanced Materials and Sensors for Harsh Environments – Advanced Materials and Sensors for Harsh Environments II

Program Organizers: Gary Pickrell, Virginia Tech; Navin Manjooran, Siemens AG

Thursday AM
Room: 333
October 12, 2017
Location: DLL Convention Center

Session Chairs: Gary Pickrell, Virginia Tech; Navin Manjooran, Vice President, Siemens AG

8:00 AM Introductory Comments

8:40 AM
Enabling Surface Acoustic Wave (SAW) Devices for Gas Sensing in Harsh Environments: Robert Fryer1; Paul Ohodnicki1; U.S. DOE - National Energy Technology Laboratory

9:00 AM
Role of Silicides and Laves Phases on the Stability of Bulk and Powder Nb-20Cr-XSi Alloys during High Temperature Oxidation: Paola Barruza1; Shailendra Varma1; University of Texas at El Paso

9:20 AM
The Effect of Surface Modification by Aluminizing and Halogen Enrichment on the High-temperature Degradation Behavior of a Commercial Three-phase TiAl Alloy: Matthew Kovalchuk1; Brian Gleeson1; University of Pittsburgh

9:40 AM
Thermal Alteration and Characterization of Exemplar Space Shuttle Alloy Systems: Arlene Smith1; University of Texas at El Paso
10:00 AM Break

10:20 AM
Thick Film Ceramic Sensors Fabricated by Direct-writing for Temperature and Health Monitoring in Harsh-environments: Nandhini Ranganathan1; Katarzyna Sabolsky1; Joshua Ingersoll1; Michael Comnarretto2; Daryl Reynolds1; Costas Sterros1; Edward Sabolsky1; 1Department of Mechanical and Aerospace Engineering, West Virginia University; 2Lane Department of Computer Science and Electrical Engineering, West Virginia University

Advanced Steel Metallurgy: Products and Manufacturing – Session VI

Program Organizers: Emmanuel De Moor, Colorado School of Mines; Amar De, ArcelorMittal Global R&D; Kester Clarke, Colorado School of Mines; Alla Sergueeva, The NanoSteel Company; Charles Entoe, General Motors; Daniel Branagan, The NanoSteel Company; Matthew Kiser, Caterpillar Inc

Thursday AM Room: 406
October 12, 2017 Location: DLL Convention Center

Session Chairs: Alla Sergueeva, The NanoSteel Company; Cem Tasan, Massachusetts Institute of Technology

8:00 AM
Designing Healable Steels with Excellent Reusability: Cem Tasan1; Menglei Jiang1; Meimei Wang1; 1MIT

8:20 AM
Development of New Pretreatment Process with BOF in East Japan Works (Keihin), JFE Steel: Masashi Funahashi1; Takahiko Maeda1; Takeshi Ishii1; Takashi Takaoka1; 1JFE Steel Corporation

8:40 AM
Effect of Hood Pressure on Nitrogen Pick-up in the LD Steel Making Process: Anand Babu G1; Balakrishnan V1; Virendra K Bari1; M K Singh1; Siddhartha Misra1; 1Tata Steel India

9:00 AM
Effect of Scale Formation on Copper Enrichment in Continuously Cast Slab: Caihuan Huang1; 1Northeastern University

9:20 AM
Estimation of Slag in Ferrochromium: Robert Koziell1; George Wrightson1; 1Andrew S. McCreath & Son, Inc.

9:40 AM
Improvement of Titanium Yield in High C and Si Killed Steels Injecting Wire Highly Compacted Ferrotitanium: Fernando Velazquez1; Luis Arqueros1; 1Ingot Alloys Mexico; 1Compañía Siderúrgica de Huachipato CAP Acero

10:00 AM Break

10:20 AM
Semi-molten State Reduction Behavior of Panzhihua Ilmenite Concentrate with Additive: Wei Lv1; Xueming Lv1; Junyi Xiang1; Xuewei Lv1; Yingyi Zhang1; Chengyi Ding1; 1Chongqing University

10:40 AM
Study on Modification of Inclusions in Aluminum Deoxidized Steel by Carbonate: Bing Ni1; Tonglu Yao1; 1Central Iron and Steel Research Institute

11:00 AM
Characterization of Inclusions during Calcium Treatment: Yang Liu1; Lifeng Zhang1; 1University of Science and Technology Beijing

11:20 AM
Modeling of the Agglomeration of Al2O3 Inclusions in Molten Steel: Haojian Duan1; Lifeng Zhang1; 1University of Science and Technology Beijing

11:40 AM
The Effects of Milling Energy and Carbon Concentration on the Microstructural Evolution of Ultra High-carbon Fe-C Alloys: Ibrahim Khafailah1; Alex Aning1; 1Virginia Tech

Advances in Dielectric Materials and Electronic Devices – Multiferroics and Devices

Program Organizers: Amar Bhalla, The University of Texas at San Antonio; Ruyan Guo, The University of Texas at San Antonio; K. M. Nair, E.I.duPont de Nemours & Co, Inc; Danilo Suvarov, Jožef Stefan Institute; Rick Ubic, Boise State University

Thursday AM Room: 331
October 12, 2017 Location: DLL Convention Center

Session Chairs: Steven Tidrow, Alfred University; Vojislav Mitic, University of Nis, Faculty of Electronic Engineering

8:00 AM
Cyclic Azasilanes as Volatile and Reactive Precursors for Atomic and Molecular Layer Deposition: Nicholas Strandwitz1; 1Lehigh University

8:20 AM
Functional Properties of Some Rare Earth Based Double Perovskite Oxides for Future Application: Dev Mahato1; 1National Institute of Technology Patna

8:40 AM
Effect of Processing Conditions on Electromagnetic (EM) Response Properties of Polymer-derived SiC Ceramics: Cheryl Xu1; 1Florida State University

9:00 AM
The Effects of Metal Work Function, Doping, and Source-drain Underlap Variation on I_d-V_g Characteristics of a Highly Scaled InAs Hetero Structure Field Effect Transistor: Ahmed Sharif1; Abir Sha’dman1; 1Bangladesh University of Engineering and Technology

9:20 AM
Ferroics and Multiferroics for Terahertz-device Design: Moumita Dutta1; Souvik Betal1; Xomalin Peralta1; Amar Bhalla1; Ruyan Guo1; 1University of Texas at San Antonio

9:40 AM
Magnetoelectric Nanorobots for Remotely Controlled Dynamic Cell Manipulation: Souvik Betal1; Moumita Dutta1; Amar Bhalla1; Ruyan Guo1; 1University of Texas at San Antonio
Controlled Synthesis, Processing, and Applications of Structural and Functional Nanomaterials – Controlled Synthesis, Processing, and Applications of Structural and Functional Nanomaterials IV

Program Organizers: Gurpreet Singh, Kansas State University; Kathy Lu, Virginia Tech; Sanjay Mathur, University of Cologne; Edward Gorzkowski, Naval Research Laboratory; Haitao Zhang, UNC Charlotte; Kejie Zhao, Purdue University; Hidehiro Kamiya, Tokyo University of Agriculture and Technology

Thursday AM Room: 321
October 12, 2017 Location: DLL Convention Center

Funding support provided by: MilliporeSigma

Session Chair: Haitao Zhang, UNC Charlotte

8:00 AM Coercivity Model for (Co, Ni)-based Soft Nanocomposite Magnets: Jonathan Healy1; Bowen Dong 1; Song Lan 1; Billy Hornbuckle2; Gregory Thompson 2; Maria Daniil3; Matthew Willard1; 1Case Western Reserve University; 2University of Alabama; 3Bard Early College High School

8:20 AM Invited Phase Change Nanoparticles for Biosensing, Barcoding and Enhanced Cooling: Ming Su1; Sichao Hou1; 1Northeastern University

9:00 AM Dislocation Aided Orientation Alignment during Initial Stages of Crystal Growth: Amit Samanta1; Andrew Lange1; Tammy Olson1; Selim Elhadj1; 1Lawrence Livermore National Laboratory

9:20 AM Thermodynamic Stabilization of Nano-scale Nickel Catalysts for Energy Conversion: Stephen Sofie1; David Driscoll1; 1Montana State University; 2Glacigen Materials Inc.

9:40 AM Reaction Intermediate Induced Vapor-Liquid-Solid Growth of Amorphous Silicon Oxide Nanowires: Joseph Huson1; Tao Sheng1; Haitao Zhang1; 1UNC Charlotte

10:00 AM Break

10:20 AM Porous Silicon Oxycarbide (SiOC) Materials and Environmental Applications: Sasana Aguirre-Medel1; Jared Enriquez1; Peter Kroll1; 1University of Texas at Arlington

10:40 AM Growth Direction Control of ZnO Nanorods on the Edge of the Patterned ITO/AZO Bi-layers: Ching-Han Liao1; Cheng-Yi Liu1; 1National Central University

11:00 AM Synthesis of Nanocrystalline Ultrahigh Temperature Ceramic Powders via Rapid Single-step High Temperature Spray Pyrolysis: Zhe Cheng1; Junheng Xing1; Paniz Foroughi1; Andres Behrens1; 1Florida International University

12:20 AM Nanostructured TiO2 - Hydrotalcite Composites for Vanillin Photocatalytic Decomposition: Andrei Jitianu1; Anhay Hernandez-Mujica2; Naphati O’Connor1; Ravnit Kaur-Bhatia1; Nicoleta Apostol1; Mihaela Jitianu2; 1Lehman College, City University of New York; 2William Paterson University; 3National Institute of Materials Physics

11:40 AM Nanocrystalline Metal Grain Stabilization by Carbon Nanotube Aerogel Cages: Siyuan Liu1; Yeon Joo Jeong1; Mohammad Islam1; 1Carnegie Mellon University

Emerging Interconnect and Pb-free Materials for Advanced Packaging Technology – Session III

Program Organizers: Albert T. Wu, National Central University; Carol Handwerker, Purdue University; Fiqiri Hodaj, Grenoble Institute of Technology

Thursday AM Room: 336
October 12, 2017 Location: DLL Convention Center

Session Chairs: Chengyi Liu, National Central University; Fiqiri Hodaj, Grenoble Institute of Technology

8:00 AM Invited Effect of Ag additive in Sn on Cu dissolution into Sn3.5Ag solder: Cheng-Yi Liu1; Erh-Ju Lin1; Yue-Kai Tang1; Yi-chun Hsu1; Yu-Jin Hu1; 1Department of Chemical and Materials Engineering of NCU

8:40 AM Sinter Joining of GaN Die on DBA/DBC Substrates and Their Thermal Stability: Chanyang Choe1; Chuantong Chen1; Aiji Suetake1; Noriko Kagami1; Shijo Nagao1; Toshiyuki Ishina1; Ichihito Narita2; Seigo Kurosaka2; Katsuaki Suganuma1; 1Osaka University; 2Osaka Kyoiku University; 3Uyemura & Co., Ltd.

9:00 AM Improving the Power Handling of Flexible and Printed Electrical Interconnects for High Pulsed Current Applications: Roberto Aga1; Eric Kreit1; Steven Dooley2; Carrie Bartsch2; Emily Heckman2; 1KBR/Wyle/AFRL; 2Air Force Research Lab

9:20 AM Processing and Reliability of Metal Sintering Die-attach for Wide-bandgap Power Devices: Shijo Nagao1; Hao Zhang1; Chuantong Chen1; Akio Shimoyama1; Katsuaki Suganuma1; 1Osaka University

9:40 AM Micromechanism of Recrystallization in Lead-free Solder Joints: Limin Ma1; Fu Guo1; Jing Han1; 1Beijing University of Technology
Failure Analysis and Prevention – Unusual and Complex Cases

Program Organizers: Andrew Havics, pH2, LLC; Pierre Dupont, Schaeffler Belgium Sprl/Bvba; Burak Akyuz, ATS, Inc.

Thursday AM

Room: 407
Location: DLL Convention Center

Session Chairs: Joseph Lemberg, Exponent; Pierre Dupont, Schaeffler Belgium Sprl/Bvba; Burak Akyuz, Applied Technical Services Inc; William Carden, McSwain Engineering

<table>
<thead>
<tr>
<th>Time</th>
<th>Session Title</th>
<th>Presenter(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:00 AM</td>
<td>An Artificial Intelligence Driven Post-test Failure Analysis Technique:</td>
<td>Adyota Gupta¹; Robert Ritchie¹; University of California, Berkeley</td>
</tr>
<tr>
<td>8:20 AM</td>
<td>Example Use of Failure Assessment and Tolerable Flaw Diagrams in the</td>
<td>David Bosko¹; 1Engineering Design & Testing Corp.</td>
</tr>
<tr>
<td>8:40 AM</td>
<td>Simple Failure Analysis, Complex Root Cause Determination:</td>
<td>Dennis McGarry¹; Tom Easley¹; SEA Ltd</td>
</tr>
<tr>
<td>9:00 AM</td>
<td>Metallurgical Application in Forensic Fire Investigation:</td>
<td>Raymond Thompson¹; Dustin Nolen¹; Vista Engineering</td>
</tr>
<tr>
<td>9:20 AM</td>
<td>Selected Failure Investigations from the ASMI Eisenman Materials Camp:</td>
<td>Daniel Dennies²; DMS, Inc.</td>
</tr>
<tr>
<td>9:40 AM</td>
<td>On the GHISLENGHIEN's Disaster, Belgium, July 2004 : A Dramatic Pipeline's</td>
<td>Pierre Dupont¹; Schaeffler Belgium Sprl/Bvba</td>
</tr>
<tr>
<td>10:00 AM</td>
<td>Unusual Propeller Failure, Lead Poisoning:</td>
<td>Joe Epperson¹; NTSB</td>
</tr>
<tr>
<td>10:20 AM</td>
<td>Complex Failure of a Residential Heating and Air Conditioning System:</td>
<td>William Carden¹; McSwain Engineering, Inc.</td>
</tr>
<tr>
<td>10:40 AM</td>
<td>Failure Analysis of a Diesel Generator Connecting Rod:</td>
<td>Francisco Rumiche¹; Carlos Juarez¹; Aníbal Rozas¹; Julio Cuisano¹; Paul Lean¹; Pontificia Universidad Católica del Peru</td>
</tr>
<tr>
<td>11:00 AM</td>
<td>Root Cause of Damage to Mixing Tanks:</td>
<td>Kenneth Marshall²; Engineering Design & Testing Corp.</td>
</tr>
<tr>
<td>11:20 AM</td>
<td>Failure of a Helicopter Rotor Pinion:</td>
<td>Véronique Vitry¹; Victor Ioan Stanici¹; Schaeffler Belgium</td>
</tr>
</tbody>
</table>

Glass Composites – Structure and Properties

Program Organizers: Guang-Ming (Derek) Tao, University of Central Florida; Huanyu Cheng, The Pennsylvania State University; Xin Zhang, Pacific Northwest National Laboratory; Jie Song, Emory University and Georgia Institute of Technology

Thursday AM

Room: 318
Location: DLL Convention Center

Session Chairs: Cheng Zhang, NIST; Hui Chen, National Energy Technology Laboratory

<table>
<thead>
<tr>
<th>Time</th>
<th>Session Title</th>
<th>Presenter(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:00 AM</td>
<td>Invited Glass-ceramic Composite for Wavelength Tunable Light Source:</td>
<td>Shifeng Zhou¹; South China University of Technology</td>
</tr>
<tr>
<td>8:40 AM</td>
<td>Invited HBQ100 – A Novel Silicon-silica Composite:</td>
<td>Frank Wessely¹; Dennis Braeunhaus¹; Gerrit Scheich¹; Nils Christian Nielsen¹; Heraeus Quarzglas GmbH & Co. KG</td>
</tr>
<tr>
<td>9:00 AM</td>
<td>Comparison of Hot Pressing and Spark Plasma Sintering in the Densification</td>
<td>Qi Zhang¹; Wei Wei¹; Nanjing University of Posts & Telecommunications</td>
</tr>
<tr>
<td>9:20 AM</td>
<td>Broadband Tunable Emission of Glasses for Single-phase Multi-Chromatic/White</td>
<td>Ruilin Zheng¹; Weiwei¹; Alfred University</td>
</tr>
<tr>
<td>10:00 AM</td>
<td>Improved Characterization of Cell Phone Glass by SEM/EDS with an</td>
<td>John Konopka¹; Thermo Fisher Scientific</td>
</tr>
<tr>
<td>10:20 AM</td>
<td>Vector Soliton Polarization Dynamics in Anisotropic Silica Glass Optical</td>
<td>Chengbo Mou¹; Sergey Sergeyev¹; Raz Arip¹; Aleksey Rozhin¹; Shanghai University; Aston University; University of Sulaimani</td>
</tr>
<tr>
<td>10:40 AM</td>
<td>Recent Development of China Nuclear Waste Vitrification:</td>
<td>Kai Xu¹; Guangxuan Zhang¹; Wuhan University of Technology</td>
</tr>
<tr>
<td>11:00 AM</td>
<td>Sintering Behavior and Phase Transition of ZnS-CaLa2S4 Composites:</td>
<td>Yiyu Li¹; Qiyuan Wu¹; Alfred University</td>
</tr>
</tbody>
</table>

¹University of California, Berkeley
²Pilkington PLC
Innovative Processing and Synthesis of Ceramics, Glasses and Composites – Ceramic Processing III
Program Organizers: Narottam Bansal, NASA Glenn Research Center; Jitendra Singh, Retired, U.S. Army Research Laboratory; Takashi Goto, Tohoku University

Thursday AM
October 12, 2017
Location: 310

Session Chair: Dipankar Ghosh, Old Dominion University

<table>
<thead>
<tr>
<th>Time</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:00 AM</td>
<td>Effect of Processing on the Properties and Morphology of MWCNT Segregated Networks: Morgan Watt; Rosario Gerhardt; 1 Georgia Institute of Technology</td>
<td></td>
</tr>
<tr>
<td>8:20 AM</td>
<td>Single-step Anode-Supported SOFC Electrode Infiltration Using Bio-adhesive Catechol Surfactants: Ozcan Ozmen; Shiwoo Lee; Gregory Hackett; Harry Abernathy; Edward Sabolsky; 1 West Virginia University; 2AECOM/GES; 3US DOE-National Energy Technology Laboratory</td>
<td></td>
</tr>
<tr>
<td>8:40 AM</td>
<td>Clay/Biochar Ceramics for Thermal Energy Storage: Pierre-Marie Nguyen; Ange Nzihou; Claire White; Winston Soboyejo; 1 Worcester Polytechnic Institute; 2Mines Albi; 3Princeton University</td>
<td></td>
</tr>
<tr>
<td>9:00 AM</td>
<td>Nanostructured SnO2 Thin Films via Hydrothermal Method: Behnam Garakani; Jong Hyun Shim; Junghyun Cho; 1Binghamton University</td>
<td></td>
</tr>
<tr>
<td>9:20 AM</td>
<td>Ice-templated Ceramic Scaffolds: Developing Structure-Property (Mechanical) Relationships through Deliberate Microstructural Modifications: Dipankar Ghosh; Mahesh Banda; Hyungsu Kang; Valere Kamaha; 1Old Dominion University</td>
<td></td>
</tr>
<tr>
<td>9:40 AM</td>
<td>Flexural Strength of Nanostructured Titanium Boride (TiB) Ceramic as Affected by the Leftover Ductile Metallic Phase: Jun Du; 1K. S. Ravi Chandran; 1University of Utah</td>
<td></td>
</tr>
<tr>
<td>10:00 AM</td>
<td>Break</td>
<td></td>
</tr>
<tr>
<td>10:20 AM</td>
<td>Novel Processing and Mechanical Characterization of Cu-Al2O3 Layered Nanocomposite: Kevin Anderson; Richard Vinci; Helen Chan; 1Lehigh University</td>
<td></td>
</tr>
<tr>
<td>10:40 AM</td>
<td>Synthesis of Carbide Ceramics through the Carburization of Adsorbed Anions on an Activated Carbon Matrix: Grant Wallace; Jerome Downey; Jannette Chorney; Katie Schumacher; Alaina Mallard; 1Montana Tech of the Univ of MT</td>
<td></td>
</tr>
<tr>
<td>11:00 AM</td>
<td>Determination of Ceramic Retention in Composite Cold Spray: A Finite-element Study: Rohan Chakraborty; Jun Song; 1McGill University</td>
<td></td>
</tr>
<tr>
<td>11:20 AM</td>
<td>Numerical Investigation of Heat Transfer and Reaction Kinetics during the Self-propagating High-temperature Synthesis of Silicon Nitride: Venkata Doddapaneni; Sibney Lin; 1Lamar University</td>
<td></td>
</tr>
<tr>
<td>1:00 PM</td>
<td>Two-phase Solid-liquid Coexistence of Al-Cu Binary Alloys by Molecular Dynamics Simulations Using the Modified Embedded-atom Method: Avik Mahata; Mohsen Asle Zaeem; Michael Baskes; 1Missouri University of Science and Technology; 2University of California, San Diego</td>
<td></td>
</tr>
</tbody>
</table>

Interfaces, Grain Boundaries and Surfaces from Atomistic and Macroscopic Approaches – Interface Properties
Program Organizers: Dominique Chatain, CNRS, Aix-Marseille University; John Blendell, Purdue University; Wayne Kaplan, Technion - Israel Institute of Technology

Thursday AM
October 12, 2017
Location: 410

Session Chairs: John Blendell, Purdue University; Dominique Chatain, CNRS, Aix-Marseille University

<table>
<thead>
<tr>
<th>Time</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:00 AM</td>
<td>The Role of Grain Boundary Structure on Defect Accommodation and Damage Tolerance: Garritt Tucker; Dan Foley; 1Colorado School of Mines; 2Drexel University</td>
<td></td>
</tr>
<tr>
<td>8:20 AM</td>
<td>Analysis of Dislocations Generated from Nanoindentation in Single and Bicrystal Ta: Bret Dunlap; Martin Crimp; 1Michigan State University</td>
<td></td>
</tr>
<tr>
<td>8:40 AM</td>
<td>Investigation of the Effect of Interface Character on Bulk Mechanical Properties of Nanocrystalline FCC Metals: Jacob Gruber; Garritt Tucker; 1Drexel University</td>
<td></td>
</tr>
<tr>
<td>9:00 AM</td>
<td>Incompatibilities in the Shock Responses of Grain Boundaries and Voids in Bicrystals: Steven Valone; Saryu Fensin; Richard Hoagland; 1Los Alamos National Laboratory</td>
<td></td>
</tr>
<tr>
<td>9:20 AM</td>
<td>Investigating Specimen- and Grain-size Effects on Plastic Deformation and Strength of Polycrystalline Yttria-stabilized Tetragonal Zirconia Nanopillars: Ning Zhang; Mohsen Asle Zaeem; 1Missouri University of Science and Technology</td>
<td></td>
</tr>
<tr>
<td>9:40 AM</td>
<td>ECCI Analysis of Dislocation Slip Transferring Across Grain Boundaries in Commercially Pure Titanium: Songyung Han; Martin Crimp; 1Michigan State University</td>
<td></td>
</tr>
<tr>
<td>10:00 AM</td>
<td>Break</td>
<td></td>
</tr>
<tr>
<td>10:20 AM</td>
<td>Simulation-informed Image Processing of Polycrystals: Jeffrey Rickman; Amirkoushyar Ziaabadi; Charles Bouman; Jeff Simmons; 1Lehigh University; 2Purdue University; 3Air Force Research Laboratory</td>
<td></td>
</tr>
<tr>
<td>10:40 AM</td>
<td>Impact of Impurities and Transition Metal Dopants on the Stability and Strength of Grain Boundaries via First-principles Calculations: Zhifeng Huang; Timothy Rupert; 1University of California, Irvine</td>
<td></td>
</tr>
<tr>
<td>11:00 AM</td>
<td>Two-phase Solid-liquid Coexistence of Al-Cu Binary Alloys by Molecular Dynamics Simulations Using the Modified Embedded-atom Method: Avik Mahata; Mohsen Asle Zaeem; Michael Baskes; 1Missouri University of Science and Technology; 2University of California, San Diego</td>
<td></td>
</tr>
</tbody>
</table>
11:20 AM
Grain Boundary Characterization of Boron Suboxide with Silica Additives: Christopher Marvel1; Kristopher Behler2; Jerry LaSalvia3; Martin Harmer4; 1Lehigh University; 2Army Research Laboratory

International Symposium on Ceramic Matrix Composites – CMC III
Program Organizers: Narottam Bansal, NASA Glenn Research Center; Jitendra Singh, Retired, U.S. Army Research Laboratory; Jacques Lamon, CNRS; Sung Choi, Naval Air Systems Command
Thursday AM Room: 316
October 12, 2017 Location: DLL Convention Center
Session Chairs: Jacques Lamon, LMT ENS Cachan; Gregory Morscher, University of Akron

8:00 AM Invited
ZrC/ZrB, Based Ultra High Temperature Ceramic Matrix Composites Derived from RMI Technique: Shaoming Dong1; Xiaowu Chen1; Dewei Ni1; Shanghai Institute of Ceramics, Chinese Academy of Sciences
8:40 AM
Processing and Characterization of Graded CMCs with through Thickness Thermal Conductivity Control: Derek King1; Ming Cher2; Ray Ko1; Michael Cuniberti1; 1UES Inc; 2Air Force Research Laboratory; 3University of Dayton Research Institute
9:00 AM
CMC Sandwich Structures Incorporating Additively Manufactured Ceramic Cores: Tiffany Stewart1; Christine Lihn1; Zak Eckel1; Tobias Schaedler1; Jake Hundle1; 1HRL Laboratories LLC
9:20 AM
SiC Ceramic Matrix Composites with Robustly Hot Corrosion Resistant Matrixes: Xiuhua Zhang1; Jianhui Hu1; Shaoming Dong1; Jinsong Yang1; Liz Gao1; Haijun Zhou1; 1Shanghai Institute of Ceramics, Chinese Academy of Sciences
9:40 AM
Self-lubricated Structural Ceramics Served in Extreme Environments: Yongsheng Zhang1; Litian Hu1; 1State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics of the Chinese Academy of Sciences
10:00 AM Break
10:20 AM Invited
Use of Electrical Resistance and Acoustic Emission to Monitor Crack Growth in Advanced Ceramic Composites: Gregory Morscher1; Ryan Maxwell1; Rabih Mansour1; 1University of Akron
11:00 AM
Modeling the Effect of Damage on the Electrical Resistivity of SiC/SiC Composites: Roy Sullivan1; Eric Baker1; Craig Smith1; Gregory Morscher1; 1NASA/Glenn Research Center; 2Connecticut Reserve Technologies, Inc.; 3University of Akron
11:20 AM
Matrix Cracking and Fiber Breaks in SiC/SiC CMCs Using In Situ Tomography Techniques: Ashley Hilmas1; Anjali Singh1; Ying Zhou1; Greg Wilson1; Yan Gao1; Dula Parkinson1; Harold Barnard1; Emmanuel Maillet1; 1University of Michigan; 2GE Global Research, 3GE Aviation; 4Lawrence Berkeley National Laboratory

11:40 AM
Three-dimensional Damage in Ceramic Matrix Composites: Insight from Volumetric Digital Image Correlation: Brendan Croom1; Peng Xu2; Edward Lahoda1; Christian Deck1; Xiaodong Li1; 1University of Virginia; 2Westinghouse Electric Company; 3General Atomics

International Symposium on Defects, Transport and Related Phenomena – Transport at Interfaces
Program Organizers: Tatsuya Kawada, Tohoku University; Manfred Martin, RWTH Aachen University; Sangdae Kim, University of California, Davis
Thursday AM Room: 411
October 12, 2017 Location: DLL Convention Center
Session Chairs: Shu Yamaguchi, The University of Tokyo; Bilge Yildiz, Massachusetts Institute of Technology

8:00 AM Invited
Beyond Electrostatic Effects at Oxide Hetero-interfaces: Electrochemical Phase Change, Strong Electric Fields, and Elastic Strain: Bilge Yildiz1; 1Massachusetts Institute of Technology
8:40 AM Invited
Effect of Spin Order on Oxygen Reduction Reaction at NiO Surface: Shu Yamaguchi1; 1The University of Tokyo
9:20 AM Invited
Mechanism of Reaction and Degradation of SOFC MIEC Cathodes Investigated by Using Patterned Thin Film Model Electrode: Koji Amezawa1; Yoshinobu Fujimaki1; Yusuke Shindo1; Keita Mizuno1; Takashi Nakamura1; Yuta Kimura1; Kiyofumi Nitta1; Yasuko Terada1; Fumitada Iguuchi1; Keiji Yashiro1; Hiroo Yugami1; Tatsuya Kawada1; 1Tohoku University; 2JASRI
10:00 AM Break
10:20 AM
Resistance Degradation of Bicrystal Strontium Titanate Utilizing Impedance Spectroscopy and Thermally Stimulated Depolarization Current: Jared Carter1; Thorsten Bayer1; Clive Randall1; 1The Pennsylvania State University
10:40 AM
Microstructural-based “Multiphysics” Simulations of Coupled Transport and Electrochemistry in Three Phase SOFC Cathodes: Quantifying Performance Distributions: Tim (Yu-Ting) Hsu1; Rubayyat Mahbub1; William Epting1; Harry Abernathy1; Gregory Hackett1; Anthony Rollett1; Shawn Litster1; Paul Salvador1; 1U.S. DOE National Energy Technology Laboratory
11:00 AM
Oxygen Exchange Reaction on Dense and Porous Lanthanum Cobaltite Based Perovskites: Tatsuya Kawada1; Keiji Yashiro1; Shin-ichi Hashimoto1; Koji Amezawa1; Shogo Miyoshi1; Jun Kubota1; Katsuhiko Yamaji1; Toshiaki Matsui1; 1Tohoku University; 2NIMS; 3Fukuoka University; 4AIST; 5Kyoto University
Joining of Advanced and Specialty Materials (JASM XIX) – Welding Processes
Program Organizers: Boian Alexandrov, The Ohio State University; Mathieu Brochu, McGill University; Anming Hu, University of Tennessee; Darren Barborkak, A2Z WSI; Akio Hirose, Osaka University; Peng He, Harbin Institute of Technology; Zhiyong Gu, University of Massachusetts Lowell; Vikas Patel, ArcelorMittal USA

Thursday AM
Room: 326
Location: DLL Convention Center

Session Chair: Boian Alexandrov, The Ohio State University

8:00 AM
Solid State Joining of Steel to Aluminum with Refractory Metal Tools: Martin McDonnell1; Ashish Dasgupta2; ‘US Army-TARDEC; ‘Focus: HOPE, Inc.

8:20 AM
Numerical Simulation and Experimental Investigation on Impulse Friction Stir Welding of 6082-T6 Aluminum Alloy: Jurij Golubev1; Iulia Morozova1; Anton Naumov1; Cord Hantelmann1; Nikolay Doynov1; Vesselin Michailov1; Brandenburg University of Technology (BTU) Cottbus – Senftenberg; ‘Peter the Great Saint-Petersburg Polytechnic University

8:40 AM
Utilizing Site Specific Shear Punch Testing to Evaluate Friction Stir Welded Al-2139 T8 Plate: B. Hornbuckle1; Jordan the Gleeble 3500 to Study Phase Transformations in Zr-2.5Nb: Ember Sikorski1; Eric Nelson1; Iurii Golubev1; Iuliia Morozova1; Anton Naumov1; Cord Hantelmann1; Nikolay Doynov1; Vesselin Michailov1; ‘Brandenburg University of Technology (BTU) Cottbus – Senftenberg; ‘Peter the Great Saint-Petersburg Polytechnic University

9:00 AM
Manufacturing of Assembled Aluminium-steel Gearwheels by Lateral Extrusion: Robert Meissner1; Mathias Liewald1; ‘Institute for Metal Forming Technology

9:20 AM
Computational Modeling for Optimization of Temperbead Welding: Matt Forquer1; Boian Alexandrov1; ‘The Ohio State University

9:40 AM
Experimental Investigations on Electron Beam Welding of SAE 15B41 Steel: Sandeep Thakare1; ‘Bharat Forge Limited

10:00 AM
Break

10:20 AM
Effect of Electrode Material on Dissimilar Joints between Grade 70 SA-516 and Grade B SA-517 Carbon Steels: Fahad Riaz1; Muhammad Kamran1; Atif Makhdoom1; Faraz Hussain1; Faran Bilal1; ‘University of the Punjab Lahore

10:40 AM
Characterization of Fiber Laser Welded TC4/SS 304 Joints Using Cu Interlayer: Seyed Reza Elmi Hosseini1; Zhugou Li1; ‘Shanghai Jiaotong University

11:00 AM
HDPE High-density Polyethylene Pipe Systems Welding Process: Marai Khulife1; ‘Libyan Welding Center

11:20 AM
Ceramic-metal Joining with Transient Porous Nickel Interlayer Enabled Silver Brazing: Quan Zhou1; Thomas Bieler1; Jason Nicholas1; ‘Michigan State University

Materials for Nuclear Energy Applications – Structural Materials, Fuels, and Irradiation Effects
Program Organizers: Kumar Sridharan, University of Wisconsin; Jake Amoroso, Savannah River National Laboratory; Aladar Csontos, Nuclear Regulatory Commission; Kevin Fox, Savannah River National Laboratory; Yutai Katoh, Oak Ridge National Laboratory; Bill Lee, Imperial College of London; Josef Matyas, Pacific Northwest National Laboratory; Raul Rebak, GE Global Research; Cory Trivelpiece, Savannah River National Laboratory

Thursday AM
Room: 401
Location: DLL Convention Center

Session Chairs: Philip Edmondson, Oak Ridge National Laboratory; Samuel Briggs, Sandia National Laboratories

8:00 AM Invited
High Temperature Creep Behavior of Alloy 709: Martin Taylor1; Harrison Puglisi1; Jose Ramirez Ruiz2; Indrajit Charit3; Gabriel Potirniche1; Robert Stephens4; Michael Glazoff5; ‘University of Idaho; ‘Idaho National Laboratory

8:20 AM
Axial Temperature Uniformity and Diametrical Dilatometry Testing in the Gleeble 3500 to Study Phase Transformations in Zr-2.5Nb: Catherine Jordan1; Don Redmond1; Jeremy Vosburgh1; John Seidensticker1; Ashley Lucente1; ‘BMPC

8:40 AM
Structural, Chemical and Thermal Property Changes of Zirconium Diboride under Ion Beam Irradiation: Joseph Graham1; Miguel Crespillo2; ‘Missouri University of Science and Technology; ‘The University of Tennessee, Knoxville

9:00 AM
Thermodynamic Modeling and Compatibility of UN Fuel-FeCrAlY Cladding Materials: Mallikharjuna Bogala1; Mark Noordhoek1; Emily Moore1; Tashaime Wilson1; Theodore Besmann1; ‘University of South Carolina

9:20 AM
Computational Studies of UO2, UN and Zr Materials for Pellet-cladding Interactions: Ember Sikorski1; Eric Nelson1; Lan Li1; ‘Boise State University

9:40 AM
On the 650°C Thermostability of 9-12Cr Heat Resistant Steels Containing Different Precipitates: Yiyan Shao1; Hai Wang1; Wei Yan1; ‘Institute of Metal Research, Chinese Academy of Sciences

10:00 AM
Break

10:20 AM
Chemically-biased Defect Diffusion in Concentrated-solid-solution Alloys: Shijun Zhao1; Yuri Osetsky1; Yanwen Zhang1; ‘Oak Ridge National Laboratory

10:40 AM
Tuning MoO3 Nanostructures Using Low Energy High Flux He+ Ion Irradiation: Jitendra Tripathi1; Theodore Novakowski1; Arvind Sundaram1; Antony Damico1; Tatyana Sizyuk1; Ahmed Hassanein1; ‘Purdue University
Materials Issues in Nuclear Waste Management – Fundamental Issues in Nuclear Waste Management

Program Organizers: Jake Amoroso, Savannah River National Laboratory; Aladar Csontos, Nuclear Regulatory Commission; Kevin Fox, Savannah River National Laboratory; Tongan Jin, Pacific Northwest National Laboratory; Cory Trivelpiece, Savannah River National Laboratory; Yutai Katoh, Oak Ridge National Laboratory; Bill Lee, Imperial College of London; Josef Matyas, Pacific Northwest National Laboratory; Nathan Mellot, Michigan State University; Kumar Sridharan, University of Wisconsin Madison; S.K. Sundaram, Alfred University

Thursday AM Room: 402 October 12, 2017 Location: DLL Convention Center

Session Chairs: Josef Matyas, Pacific Northwest National Laboratory; Devon McClane, Savannah River National Laboratory

8:00 AM Invited
Advanced Characterization of Model Multiphase Ceramic Waste Forms: Kyle Brinkman1; Wilson Chi2; Jake Amoroso1; ’Clemson University; ’University of Connecticut; ’Savannah River National Laboratory

8:20 AM Potential Impacts of Spinel Crystallization in High Level Nuclear Waste Glasses: Devon McClane1; Jake Amoroso1; ’Savannah River National Laboratory; Albert Kruger2; ’US Department of Energy Office of River Protection

8:40 AM Understanding the Influence of Melt Chemistry on Nucleation and Growth of Spinel in High-level Nuclear Waste Glasses: Harishkesh Kamat1; Mohamed Naji2; Steven Cheng3; Donna Guillen4; Paul Bingham1; Ashutosh Goel1; ’Rutgers University; ’Idaho National Laboratory; ’Sheffield Hallam University

9:00 AM Strong Base [SB] Weak Acid [WA] Impacts on HLW and LAW Glass Dissolution: Carol Jantzen1; Cory Trivelpiece1; ’Savannah River National Laboratory

9:20 AM Nepheline Crystal Growth in High Level Nuclear Waste Glasses: Jake Amoroso1; Devon McClane1; Kevin Fox1; Albert Kruger2; ’Savannah River National Laboratory; ’US Department of Energy Office of River Protection

9:40 AM Invited
Applications of Ancient Roman Cementitious Systems to Long Term Nuclear Waste Performance: Marie Jackson1; ’University of Utah

10:20 AM Break

10:40 AM Multicomponent Glass Surfaces: Composition, Structure, and Reactions: Stephen Garofalini1; Ming Tai Ha1; Joelyn Urraca1; ’Rutgers University

11:00 AM Effects of Silica Saturation on ISG Corrosion in Alkaline Solutions: Cory Trivelpiece1; Carlo Pantano2; Jarrett Rice2; ’Savannah River National Laboratory; ’The Pennsylvania State University

11:20 AM Sintering Behavior of Glass Binders for the Immobilization of High-Level Waste Salt: Levi Gardner1; Manish Wasnik1; Michael Simpson1; Krista Carlson2; ’University of Utah

Materials Property Understanding through Characterization – Metals II

Program Organizers: Indrajit Dutta, Corning Incorporated; Nicholas Smith, Corning Incorporated

Thursday AM Room: 412 October 12, 2017 Location: DLL Convention Center

Session Chair: Yoosuf Picard, Carnegie Mellon University

8:00 AM Evolution of Al-Zn-TM (TM = Zr, Ni) Precipitates Morphologies and Structures due to Age Hardening: Oladeji Fadayomi1; Gregory Odegard2; Paul Sanders3; ’Michigan Tech University

8:20 AM Precipitate Shape and Creep Resistance in Single Crystal Nickel-base Superalloys: Ryan Harrison1; Patrick Callahan1; Tresa Pollock2; Marc De Graef3; ’Carnegie Mellon University; ’University of California, Santa Barbara

8:40 AM Hot Rolling Effect upon the High Temperature Johnson-Cook Strength and Failure Models for a 15V38 Grade Steel: Mario Buchely1; David Van Aken2; Ronald O’Malley3; K. Chandrashekhara4; Simon Lekakh5; ’Missouri University of S&T

9:00 AM The Role of Tungsten in Retarding Crystallization of Amorphous Ni80P20: Xia Zhang1; Pei Zhang2; Paul Voyles3; Xinyu Liu4; Rohan Akolkar5; Frank Ernst1; ’Case Western Reserve University; ’University of Wisconsin, Madison

9:20 AM Understanding the Microstructural Factors Responsible for the Low-toughness Performance of Seamless-pipe Steel through Advanced Microstructural Characterization and NDT-EMAT Analysis: Gregorio Solis Bravo1; C. Isaac Garcia1; ’University of Pittsburgh

9:40 AM Effect Of Batch And Continuous Annealing Processes on Crystallographic Texture and Formability of an IF Steel: Gozde Aldikacti1; Umran Baskaya2; Kemal Davut3; ’ERDEMIR R&D Department; ’Atilim University Metal Forming Center of Excellence/Atilim University Department of Metallurgical and Materials Engineering

10:00 AM Break

10:20 AM Testing Prior Grain Size Dependence of Toughness in Steel Using Austenite Quenching, Partitioning and Tempering of Experimental Steel: Mohammad Hassan1; M. Inam2; Muhammad Mughal1; Hafiza Ulfat Javaid1; Yasim Imtiaz2; Arisha Nasik2; Warda Qureshi3; ’University of the Punjab; ’New Shalimar Steel

10:40 AM Testing Prior Grain Size Dependence of Toughness in Steel Using Austenite Reconstruction: Chasen Ranger1; Anthony Rollett2; Vahid Tari1; ’Carnegie Mellon University

10:40 AM Quenching, Partitioning and Tempering of Experimental Steel: Muhammad Hassan1; M. Inam2; Muhammad Mughal1; Hafiza Ulfat Javaid1; Yasim Imtiaz2; Arisha Nasik2; Warda Qureshi3; ’University of the Punjab; ’New Shalimar Steel
Mechanochemical Synthesis and Reactions in Materials Science II – Session IV

Program Organizers: Antonio Fuentes, Cinvestav del IPN; Laszlo Takacs, University of Maryland Baltimore County; Challapalli Suryanarayana, University of Central Florida; Jacques Huot, Universite du Quebec a Trois-Rivieres

Thursday AM Room: 327 Location: DLL Convention Center

Session Chairs: Richard Blair, University of Central Florida; Fermin Cuevas, INSTITUT DE CHIMIE ET DES MATERIAUX PARIS-EST

8:00 AM
Mechanochemical Synthesis and Characterization of Digenite, Cu₁₈S₈: Matej Baláž; Anna Zorkovská; Nina Daneu; Erika Dutková; Jaroslav Briancin; Mária Kanuchová; Zdenka Bujnáková; Peter Baláž; 1 Institute of Geotechnics, Slovak Academy of Sciences, Košice, Slovakia; 2 Department of Nanostructured Materials, Jožef Stefan Institute, Ljubljana, Slovenia; 3 Faculty of Mining, Ecology, Process Control and Geotechnologies, Technical University, Košice, Slovakia

8:20 AM
Kesterite Cu₂ZnSnS₄: Mechanochemical Synthesis of Solar Cell Absorber in Scalable Amounts: Peter Baláž; Matej Baláž; Marcela Achimovicová; Michal Hegedüs; Matej Tešinsky; Nina Daneu; Erika Dutková; Mária Kanuchová; 1 Institute of Geotechnics, Slovak Academy of Sciences, Košice, Slovakia; 2 Faculty of Natural Sciences, P.J.Šafárik University, Košice, Slovakia; 3 Jožef Stefan Institute, Ljubljana, Slovenia; 4 Faculty of Mining, Ecology, Process Control and Geotechnologies, Technical University, Košice, Slovakia

8:40 AM
Magnetic Behavior of Nanostructured Oxides Prepared by Mechanochemical Synthesis: Vladimir Sepešák; 1 Karlsruhe Institute of Technology

9:00 AM
Surface Characterization of Activated Chalcopyrite Particles via the FLSmidth ROL Process. Part 2: Surface Spectroscopy Investigations: Adam Karcz; Anne Juul Damø; Jytte Boll Illerup; Sara Rocks; Kim Dam-Johansen; David Chaiko; 1 Technical University of Denmark; 2 FLSmidth

9:20 AM
Mechanochemical Synthesis of Lanthanide Hafnates: Influence of Different Cation Substitutions on the Structural Characteristics and Electrical Properties of Gd₂Hf₂O₇: Nayeli Cepeda-Sánchez; José Díaz-Guillén; Miroslaw Maczka; Ulises Amador; Antonio Fuentes; 1 Cinvestav del IPN; 2 Instituto Tecnológico de Sáttillo; 3 Institute of Low Temperature and Structure Research; 4 Universidad San Pablo CEU

9:40 AM
Phase Evolution during the Synthesis of Manganese Germanides: Vamsi MMeka; Tanjore Jayaraman; 1 University of Michigan, Dearborn

Metal and Polymer Matrix Composites III – Polymer Matrix Composites

Program Organizers: Nikhil Gupta, New York University; Tomoko Sano, U.S. Army Research Laboratory

Thursday AM Room: 330 Location: DLL Convention Center

Session Chairs: Arvind Agarwal, Florida International University; Emad Omrani, University of Wisconsin - Milwaukee

8:00 AM Invited Particle Brush Materials – Building Blocks for Multifunctional Nanocomposites With Engineered Properties: Michael Bockstaller; 1 Carnegie Mellon University

8:40 AM
Synthesis and Characterization of Biomimetic Composites for Dental Applications: Rashmi Mallu; Isabel Lloyd; Yang Yang; Karan Mohan; Ayush Thapa; Joe Marchese; Kai-wen Chang; 1 University of Maryland, College Park

9:00 AM
Cellulose Nanocrystals for Lightweight Sheet Molding Compounds Composites: Amir Asadi; Robert Moon; Kyriaki Kalaitzidou; 1 Georgia Institute of Technology; 2 US Forest Service

9:20 AM
Nano-damping Behavior of 3D Graphene Foam Reinforced Polyurethane Composites: Adeyinka Idowu; Laiza Fontoura; Marcus Herndon; Pranjal Nautiyal; Archana Loganathan; Benjamin Boesl; Arvind Agarwal; 1 Florida International University

9:40 AM
Structural Modification of Polyethylene Using Dialium Guineense Particles: Joshon Johnson Agunsoye; 1 University of Lagos

10:00 AM
Effect of Melon Shell Particles on the Microstructure and Mechanical Properties of Epoxy/Melon Shell Particulate Bio-composites: Suleiman Hassan; Victor Aigbodion; C U Atuanya; 1 University of Lagos; 2 University of Nigeria; 3 Nnamdi Azikiwe University

Program Organizers: Jing Zhang, Indiana University - Purdue University Indianapolis; Lei Chen, Mississippi State University; Li Ma, National Institute of Standards and Technology; Xinghua Yu, Oak Ridge National Laboratory; Yeon-Gil Jung, Changwon National University; Yanzhou Ji, The Pennsylvania State University, University Park; Long Qing Chen, Penn State University

Thursday AM
Room: 306
October 12, 2017
Location: DLL Convention Center

Session Chairs: Jing Zhang, Indiana University - Purdue University Indianapolis; Lei Chen, Mississippi State University

8:00 AM Invited
Thermal and Elastic Properties of δ-γ”, and γ-Ni3Nb at Finite Temperature and Interfacial Energy between Precipitates and Matrix from First-principles Calculations: Yi Wang1; Kevin McNamara1; Yanzhou Ji1; Zi-Kui Liu1; Rich Martukanitz1; Long-Qing Chen1; 1The Pennsylvania State University

8:20 AM
Rapid Alloy Screening: Tailoring Aluminum Alloy Composition for Additive Manufacturing: Joe Croteau1; Davood Bayansani1; Nhon Vo1; David Dunand1; David Seidman1; 1NanoAl LLC

8:40 AM
Optimization of Metal Additive Manufacturing Process Using a Computational Sequential Minimum Energy Design Approach: Kai Wong1; Kelvin Leung1; Azadeh Keshtgar1; Nicole Apetre1; Nagaraja Iyyer1; 1Technical Data Analysis Inc.

9:00 AM
Powderless Alloy Development Approach for Titanium Alloy Tailored for Additive Manufacturing: Yining He1; Bryan Webler1; 1Carnegie Mellon University

9:20 AM Invited
Fast Finite Element Predictions of Distortion, Residual Stresses, and Strength of Additively Manufactured Ti-6Al-4V: Ayman Salem1; Daniel Satko1; Joshua Shaffer1; Luke Wuerterberger1; 1Materials Resources LLC

9:40 AM
Multivariate Statistical Calibration of a FEM Thermal Simulation Model for Selective Laser Melting of Ti6Al4V: Mohamad Mahmoudi1; Gustavo Tapia1; Kuba Karayagiz1; Brian Franco1; Luke Johnson1; Ji Ma1; Raymundo Arroyave1; Ibrahim Karaman1; Alaa Elwany1; 1Texas A&M University

10:00 AM
Thermophysical and Thermochemical Property Measurement and Simulation of Liquid Metal Alloys for Additive Manufacturing Simulation and Materials Design: Jonathan Rusch1; Sanjeev Tulasige1; Brian Novak1; Shengmin Guo1; Wenjin Meng1; Dorel Moldovan1; Michael Sansoucie1; 1University of Louisiana at Lafayette; 2Louisiana State University; 3NASA Marshall Space Flight Center

Multiscale Modeling of Microstructure Deformation in Material Processing – Multi-scale Modeling of Microstructure Deformation in Material Processing: Part III

Program Organizers: Lukasz Madej, AGH University of Science and Technology; Krzysztof Muszka, AGH University of Science and Technology; Danuta Szeliga, AGH University of Science and Technology

Thursday AM
Room: 403
October 12, 2017
Location: DLL Convention Center

Session Chair: Krzysztof Muszka, AGH University of Science and Technology

8:00 AM Invited
3D Mapping Grain Morphology and Grain Orientations by Laboratory Diffraction Contrast Tomography: Leah Lavery1; Nicolas Gueninchault2; Florian Buchmann1; Christian Holzner1; Hrishikesh Bale1; Erik Lauridsen1; Carl Zeiss X-ray Microscopy; 1Xnovo Technology ApS

8:40 AM
Developing a Crystal Plasticity Model Based on the Discrete Element Method: Agnieszka Truszkowska1; Qin Yu1; T. Matthew Evans1; Alex Greaney2; Jamie Kruzic3; 1Oregon State University; 2University of California, Riverside; 3University of New South Wales

9:00 AM
Interoperability of Crystal Plasticity and Finite Element Codes Using Crystal Tracking in Microstructure-informed Cloud Computing: Ayman Salem1; Joshua Shaffer1; Luke Wuerterberger1; Adam Pilchak2; 1Materials Resources LLC; 2Air Force Research Laboratory

9:20 AM
Physics Based-crystal Plasticity Modeling of Single Crystal Niobium: Tias Maiti1; Aritra Chakraborty1; Philip Eisenlohr1; Di Kang1; Thomas Bieler1; 1Michigan State University

9:40 AM
Modeling Viscoplastic Deformation of Synthetic Welded Microstructures: Efrain Hernandez-Rivera1; Theron Rodgers2; Philip Goins1; Mark Tschopp1; 1U.S. Army Research Laboratory; 2Sandia National Laboratories

10:00 AM Break

10:20 AM
Nanoprecipitates as Templates for Martensite in High Temperature NiTiHf Shape Memory Alloys: Kathryn Esham1; Harshad Paranjape1; Peter Anderson1; Mike Mills1; Lee Casalena2; Yuzhhi Wang1; Yipeng Gao1; 1Ohio State University; 2Colorado School of Mines

10:40 AM
Atomic-scale Prediction of Thermodynamic Forces Using Molecular Dynamics: Mulaine Shih1; Michael Mills1; Maryam Ghaizaseidi1; Peter Anderson1; 1Ohio State University
Program Organizers: Navin Manjooran, Siemens AG; Gary Pickrell, Virginia Tech

Thursday AM
October 12, 2017
Room: 319
Location: DLL Convention Center

Session Chairs: Gary Pickrell, Virginia Tech; Navin Manjooran, Vice President, Siemens AG

8:00 AM Invited
Nanoscale Performance Mapping through the Thickness of Polycrystalline Thin Film Solar Cells: Bryan Huey1; 1University of Connecticut

8:30 AM
Solar-thermal Conversion Behavior of Microencapsulated Phase Change Material with Solar-absorbing Metamaterial Based Shells: Alan Tong1; 1Neaqua Valley High School

8:50 AM
Structure-activity Relationships of CuOx/CeO2 Catalysts: Elizabeth Zell1; Shaikh Hossain1; Ruigang Wang2; 1Youngstown State University; 2The University of Alabama

9:10 AM
Superparamagnetic Iron Oxide Core/Shell Nanostructures for Targeted Drug Delivery: Zia Ur Rahman1; Nabeel Ahmed1; Waseem Haider1; Ali Nemati1; 1Central Michigan University

9:30 AM
The Effect of Local Charge in TiO2 Nanorods on Light Harvesting and Hysteresis in Halide Perovskite Solar Cells: Fangda Yu1; Jung-Kun Lee1; 1University of Pittsburgh

9:50 AM
The Structural, Optical and Electrical Properties of SnO2 Nanowires for Resistive Gas Sensors: Mohamud Al-Hashem1; Priyanka Karnati1; 1The Ohio State University

10:10 AM Break

10:30 AM
TiO2 Functionalized Multiwalled Carbon Nanotubes by Atomic Layer Deposition for Highly Sensitive Gas Sensors: Liliana Stan1; Michela Sainato2; Ralu Divan1; Yuzi Liu1; Igor Paprotny1; 1Argonne National Laboratory; 2University of Illinois at Chicago

10:50 AM Invited
Tomographic AFM of Solar Cells for 3-d Photovoltaic Mapping at the Nanoscale: Justin Luria1; Katherine Atamanuk1; Alexandra Longacre1; James Steffes1; Bryan Huey1; 1University of Connecticut

11:10 AM
Tuning the Lattice Parameter of InxZnyP for Highly Luminescent Quantum Dots: Yuyang Su1; 1Industrial Technology Research Institute

11:30 AM
Two-dimensional Nanocomposites of MoS2 in a Poly (Vinyl Alcohol) Matrix: Celeste Robert1; Karen Supan1; Joshua Maurer2; Michael Miller2; Stephen Bartolucci2; 1Norwich University; 2U.S. Army Armaments Research Development and Engineering Center – Benét Laboratories

Non Beam-based Additive Manufacturing Approaches for Metallic Parts – Session III
Program Organizer: Olaf Andersen, Fraunhofer IFAM

Thursday AM
October 12, 2017
Room: 305
Location: DLL Convention Center

Session Chair: Olaf Andersen, Fraunhofer IFAM

8:00 AM
Additive Manufacturing Evaporative Casting: Sarah Jordan1; Mark DeBruin1; 1Skuld LLC

8:20 AM
Assessment of Environmental Contamination in Ti-6Al-4V Parts Fabricated from the Laser Hot Wire Process: Michael Kottman1; Paul Denney1; James McGuffin-Cawley1; Badri Narayanan1; 1Lincoln Electric; 2Case Western Reserve University

8:40 AM
Densification and Sintering of Metallic Struts within Micro-trusses 3D-printed from Powder-based Liquid Inks: Christoph Kenel1; Ramille Shah1; David Dunand1; 1Northwestern University

9:00 AM
Mechanisms for Deformation and Film Formation from High Speed Aerosol Deposition of Ag: Tushar Chitrakar1; Jeremiah McCallister1; Michael Becker1; John Kato1; Desiderio Kovar1; 1University of Texas at Austin

9:20 AM
Neutron Diffraction Mapping of Residual Stresses in Large-scale Wire-fed Additively Manufactured Components: Jeff Bunn1; Niyanth Sridharan1; Srdjan Simunovic1; Andrzej Nycez1; 1Oak Ridge National Laboratory
Phase Stability, Diffusion Kinetics, and Their Applications (PSDK-XII) – Session VI: Application of Thermodynamics and Diffusion

Program Organizers: Wei Xiong, University of Pittsburgh; Raymundo Arroyave, Texas A & M University; Ji-Cheng Zhao, The Ohio State University; Arthur Pelton, Ecole Polytechnique

Thursday AM Room: 413 Location: DLL Convention Center

Session Chairs: Peisheng Wang, National Institute of Standards and Technology; Zhangqi Chen, The Ohio State University

8:00 AM
Structure Evolution, Thermodynamic and Kinetic Properties of Liquid Ni-Al: An ab Initio Molecular Dynamics StudyStructure Evolution, Thermodynamic and Kinetic Properties of Liquid Ni-Al: An ab Initio Molecular Dynamics Study: William Yi Wang1; Jian Tang2; Jian Wang1; Bin Tang1; Hongchao Kou1; Jinshan Li1; Shun-Li Shang2; Irina V. Belova3; Greame E. Murch1; Zi-Kui Liu1; 1Northwestern Polytechnical University; 2The Pennsylvania State University; 3The University of Newcastle

8:20 AM
Modelling of Prismatic Grain Growth in Cemented Carbides: Manon Bovale1; Joakim Odqvist1; Annika Borgenstam1; John Ågren2; 1KTH - Royal Institute of Technology

8:40 AM
Thermodynamic Simulation on the Chemical Stability of (La0.8Sr0.2)0.98Cr0.9Fe1-xO3±d: Thermo-simulation on the Chemical Stability of (La0.8Sr0.2)0.98Cr0.9Fe1-xO3±d: Hooman Sabarou1; Shadi Darvish1; Yu Shadi2; 1Florida International University

9:00 AM
Binder Removal Modeling: Utilizing Thermogravimetric Analysis (TGA) for Kinetic Parameter Determination: Joseph Prati1; M. Matthewson2; Jay Martin3; Richard Haber4; 1Rutgers University; 2Lafayette College

9:20 AM
In Situ Synchrotron Studies and Modelling of Austenitisation Kinetics during Continuous Heating in Hypereutectoid Steels: Bij-Na Kim1; Jit Sietsma2; Maria Santofimia3; 1TU Delft

9:40 AM
Thermodynamics of (La0.8Sr0.2)0.98Cr0.9Fe1-xO3±d: Hooman Sabarou1; Shadi Darvish1; Yu Shadi2; 1Florida International University

8:00 AM
Phase Transformations and Microstructural Evolution in Ti and Its Alloys – Experiment and Simulations

Program Organizers: Carl Boehlert, Michigan State University; Yufeng Zheng, Ohio State University; Vahid Khademi, Michigan State University

Thursday AM Room: 307 Location: DLL Convention Center

Session Chairs: Dong Wang, Xi’an Jiaotong University; Hao Wang, Institute of Metal Research

11:00 AM
Understanding and Control of Phase Separation in Synthesis of Nanocrystalline TaxHf1-xC Powders: Panji Foroughi1; Cheng Zhang1; Arvind Agarwal1; Zhe Cheng1; 1Florida International University

11:20 AM
Characterization of the Metatectic Reaction in the Iron-boron System: Kara Liutjohan1; Matthew Krane2; Volkan Ortalan3; David Johnson4; 1Purdue University

11:40 AM
Thermodynamic Analyzing the Effect of Intermetallic Compounds on Thermal Diffusivity of Mg-La-Zr Alloys: WenFei Zhu1; Qun Luo1; Shuanglin Chen1; Jie Yu Zhang1; Qian Li1; 1Shanghai University; 2Shanghai University; 3Shanghai Institute of Materials Genome

10:00 AM
Microstructural Evolution during Precipitation Hardening of Al-Cu Alloys with Phase-field Crystal Model: Ahmad Nourian-Avval1; Ebrahim Asadi2; 1University of Memphis

10:20 AM
Recrystallization in Ti-4Al-4V Alloys and Comparison with Experiment: Arvind Agarwal1; N. Ganesan1; V. Pratihar2; M. Johnson1; 1Florida International University

10:40 AM
Quantitative Defect Chemistry Analysis and Electronic Conductivity Prediction Of (La0.8Ca0.2)0.95FeO3±dPerovskite: Shadi Darvish1; Yu Zhong1; 1Florida International University
10:00 AM Break

10:20 AM Invited
Computational Phase Equilibria and Design of Metal Matrix Composites in Ti-B-Fe System: Ahmed Degnha; Vikas Jindal; K. S. Ravi Chandran; 1University of Utah

10:40 AM Empirical Modelling of the Dynamic Spheroidization of the a-phase during Isothermal Compression of Ti6Al4V: Kalenda Matumbo; 2CSIR

11:00 AM Developing the System of Self-consistent Governing Equations in Microstructure Evolution Prediction of Two-Phase Titanium Alloys. Integrated Computational Materials Engineering (ICME) on the Base of Deform 2D/3D Software: Anton Ektov; J.H. Kim; 2VSMPO-AVISMA Corporation; 3Hanbat National University

11:20 AM Investigation of Phase Field Modeling as a Method for Predicting a Lath Width in Ti-5111: Daniel Bechetti; Charles Fisher; Jennifer Wolk; 1Naval Surface Warfare Center; Office of Naval Research

Phase Transformations in Ceramics: Science and Applications – Theoretical Modeling of Phase Transformations and Phase Equilibria
Program Organizers: Waltraud Kriven, University of Illinois at Urbana-Champaign; Pankaj Sarin, Oklahoma State University; Ricardo Castro, University of California, Davis; Yu Zhong, Florida International University

Thursday AM Room: 312 Location: DLL Convention Center

Session Chairs: Helen Chan, Lehigh University; Yu Zhong, Worcester Polytechnic Institute

8:00 AM Invited
In Situ Determination of Phase Equilibria, Thermal Expansion and Phase Transformations in the Ternary Hafnia-Tantalita-Titania System: Scott McCormack; 1Waltraud Kriven; 2Sergey Ushakov; 3Alexandra Navrotsky; 4Richard Webber; 1University of Illinois at Urbana-Champaign; 2University of California, Davis

8:20 AM High-pressure Phase Transformation to Monazite Structure in Xenotime Rare-earth Orthophosphates: Matthew Musselman; Taylor Wilkinson; Bianca Habel; Corinne Packard; Colorado School of Mines; 1Oak Ridge National Lab

8:40 AM Invited
Prediction of Diffusionless Phase Transformations in Complex Materials: Randall Hay; Pavel Mogilevsky; Emmanuel Bouky; 1Air Force Research Laboratory

9:20 AM Directions of Zero Thermal Expansion in Anisotropic Oxides: Scott McCormack; William Wheeler; Waltraud Kriven; 1University of Illinois Urbana-Champaign

9:40 AM Coexistence and Domain Dynamics of Ferroelectric Phases in Vicinity of the MPB: Oscar Torres; Edwin Garcia; Catherine Bishop; 1University of Canterbury; 2Purdue University

10:00 AM Break

10:20 AM Invited
Simulation and Experiments of Template-directed Eutectic Solidification for Nanophotonic Metamaterials: Erik Hanson; Julia Kohaneck; Ashish Kulkarni; Runyu Zhang; Katsumo Thornton; Paul Braun; 1University of Michigan-Ann Arbor; 2University of Illinois at Urbana-Champaign

10:40 AM Invited
First-principles Phase Diagram Calculations for the Rocksalt-structure Quasibinary Systems TiN-ZrN, TiN-HfN and ZrN-HfN: Zhi Liu; Benjamin Burton; Sanjay Khare; Daniel Gall; 1University of Toledo; 2NIST; 3Rensselaer Polytechnic Institute

11:20 AM Effects of Crystallographic Orientation and Pre-existing Defect on Mechanical Properties of Polycrystalline Yttria-stabilized Tetragonal Zirconia: Ning Zhang; Mohsen Asle Zaeemi; Missouri University of Science and Technology

Recent Advances in Computer-aided Materials Design – Computational-experimental Synergy in Materials
Discovery II
Program Organizers: Huan Tran, University of Connecticut; Ghanshyam Pilania, Los Alamos National Laboratory; Alexey Kolmogorov, Binghamton University, State University of New York; Mina Yoon, Oak Ridge National Laboratory; Son Hoang, University of Connecticut

Thursday AM Room: 324 Location: DLL Convention Center

Session Chair: Aleksey Kolmogorov, Binghamton University

8:00 AM Invited
Understanding and Design of Graphene-based Materials for Supercapacitors: Gyeong Huang; 1University of Texas at Austin

8:40 AM Invited
Theory-informed Design of Functional Materials: Bobby Sumpter; 1Oak Ridge National Laboratory

9:20 AM Rational Design of Heterocycle Polymers Using First Principles Computations and Machine Learning: Anand Chandrasekaran; Deepak Kamal; Rampi Ramprasad; Arun Mannodi-Kanakkithodi; 1University of Connecticut

9:40 AM Computer-aided Designing and Screening of High-performance Solid Sorbents for CO2 Capture Technology: Tuhua Duan; 1National Energy Technology Laboratory

10:00 AM Break

10:20 AM Invited
Nanocomposites of Polymers and Carbon-based Nanofillers: Enhancing Mechanical Properties through Synergistic Modular Fabrication and Computational Design: SonBinh Nguyen; 1Northwestern University

11:00 AM Design Principles for Solid-state Sodium Superionic Conductors via First-principles Calculations and Experimental Verifications: Shun-Li Shang; Zhaoxin Yu; Yi Wang; Donghai Wang; Zi-Kui Liu; 1Pennsylvania State University
11:20 AM Magnetic Fields and Thermal Gradients: Simulated Engineering of Three-dimensional Microstructure through Thermomagnetic Manipulation: Philip Goins¹; Efrain Hernandez-Riviera¹; Mark Tschopp¹; ¹Army Research Laboratory

11:40 AM Thermodynamic Stability Maps for the La0.6Sr0.4Co0.2Fe0.8O3–δ–SO2–O2 System for Application in Solid Oxide Fuel Cells: Shadi Darvish¹; Yu Zhong¹; ¹Florida International University

Program Organizers: Lan Li, Boise State University; Kevin Huang, University of South Carolina; Winnie Wong-Ng, National Institute of Standards and Technology

Thursday AM
Room: 329 Location: DLL Convention Center

Session Chair: Kevin Huang, University of South Carolina

8:00 AM
A Facile Preparation of Methyltriethoxysilane Based Transparent Silica Xerogel Monoliths: Xuan Cheng¹; Ziwei Niu¹; Xiaoyong He¹; Bicheng Tang¹; Liuying Huang¹; Ying Zhang¹; ¹Xiamen University

8:20 AM
A Hybrid Porous Spherical Structure for Enhanced Energy Absorption: Baoxing Xu¹; ¹University of Virginia

8:40 AM
CAD-integrated Modelling of Lattice Structures for Additive Manufacturing and Property Evaluation of Generated Specimens: Richard Kordass¹; Peter Koch¹; Thomas Toeppel¹; Hannes Kom¹; Christine Schöne¹; Bernhard Mueller¹; Ralph Stelzer¹; ¹Fraunhofer Institute for Machine Tools and Forming Technology IWU; ¹Technische Universität Dresden

9:00 AM
Creating High Surface Area SiOC Materials Using Different Additives: Kathy Liu¹; Donald Erb¹; ¹Virginia Tech

9:20 AM
Fabrication of Engineered Aerogel with Micro-Scale Interconnected Porosity for Volatile Halide Capture: Bonan Wang¹; Krista Carlson¹; Benjamin Boesl¹; Arvind Agarwal¹; ¹Florida International University

9:40 AM
Fabrication of Ni-based Metallic Scaffolds with Dual Level Porosity: Arun Bhattacharjee¹; Haozhi Zhang¹; Ajith Achuthankutty¹; Aditya Patibandla¹; Ashley Paz y Puente¹; ¹University of Cincinnati

10:00 AM Break

10:20 AM
Porosity Characterization of Solution-processed ITO Films by Neutron Reflectometry: Ning Xia¹; Valeria Lauter¹; Rosario Gerhardt¹; ¹Georgia Institute of Technology; ²Oak Ridge National Laboratory

10:40 AM
Synthesis and Characterization of Aluminosilicate Network Structures with Controllable Porosity: Applications as Light-weight Mechanically Robust Thermal Insulators: Pratish Rao¹; Moe Momayeza¹; Krishna Muralidharan¹; Keith Runge¹; Douglas Loy¹; ¹University of Arizona
Additive Manufacturing of Composites and Complex Materials II – Poster Session
Program Organizers: Dirk Lehmhus, ISIS Sensorial Materials Scientific Centre; Jonathan Spowart, Air Force Research Laboratory; Nikhil Gupta, New York University

Tuesday AM
October 10, 2017
Room: Exhibition Hall
Location: DLL Convention Center

A-1: 3D Printing of Hierarchical Porous Thermoplastic Polyurethane Foam with Tuned Piezoresistivity Behavior: Qiyi Chen; ‘Case Western Reserve University
A-2: Additive Manufacturing of Clay Modified with Primary Battery Waste: Edisson Ordóñez; Henry Colorado; ‘Universidad de Antioquia
A-4: Development of SiC Ceramics with Complicated Shape Using the FDM Type 3D Printer: Hisaya Masuda; Yoshio Ohita; Mikito Kitayama; ‘Fukuoka Institute of Technology
A-5: Surface Morphology of Additive Manufactured Metal Matrix Composites: Cindy Waters; Bernard Ilogebe; Mohammad Khan; Any Elliott; ‘NCA&T State University; ‘Manufacturing Demonstration Facility - Oak Ridge National Laboratory

Additive Manufacturing of Metals: Fatigue and Fracture – Poster Session
Program Organizers: Nikolas Hrabe, National Institute of Standards and Technology; Nicholas Barbosa, National Institute of Standards and Technology; Richard Rickor, National Institute of Standards and Technology; Steve Daniewicz, University of Alabama; Nima Shamsaei, Auburn University; Mohsen Seifi, Case Western Reserve University/ASTM International

Tuesday AM
Room: Exhibition Hall
Location: DLL Convention Center

Session Chair: Nikolas Hrabe, National Institute of Standards and Technology

A-6: Characterization of Surface Roughness at Several Downward Facing Angles in Additive Manufacturing: Eric Tatman; Joy Gockel; Luke Sheridan; Bo Whip; ‘Wright State University

Additive Manufacturing of Metals: Microstructure and Material Properties – Poster Session
Program Organizers: Andrzej Wojcieszynski, ATI Powder Metals; Ulf Ackelid, Freemelt AB; Ola Harrysson, North Carolina State University; Sudarsanam Babu, The University of Tennessee, Knoxville

Tuesday AM
Room: Exhibition Hall
Location: DLL Convention Center

A-8: Experimental Research on Solidification of Duplex Stainless Steel Refined by Complex-nucleus with TiN: Zongxu Pang; Rong Zhu; Tu Kailu; ‘University Of Science and Technology Beijing
A-9: Manufacturing of Titanium Porous Layers by LENS Method: Tomasz Durejko; Magdalena Lazinska; Justyna Aniszewska; Paweł Jóźwik; ‘Military University of Technology
A-10: On the Microstructure of Alloy 625 Produced by Laser AM: Cilene Medeiro; André Luiz Pinto; M.Grace Burke; Guillermo Solórzano; ‘Department of Chemical and Materials Engineering, PUC-Rio, Rio de Janeiro, Brazil; ‘Brazilian Center of Research in Physics, Rio de Janeiro, Brazil; ‘Materials Performance Centre, University of Manchester; ‘Department of Chemical and Materials Engineering, PUC-Rio, Rio de Janeiro, Brazil
Additive Manufacturing of Metals: Post Processing – Poster Session
Program Organizers: Ola Harrysson, North Carolina State University; Andrzej Wojcieszynski, ATI Powder Metals; Ulf Ackelid, Freemelt AB; Sudarsanam Babu, The University of Tennessee, Knoxville
Tuesday AM Room: Exhibition Hall October 10, 2017 Location: DLL Convention Center

A-12: Development of a Stress Relief Treatment for SLM UNS N07718 API for Use in Oil and Gas Applications: Madison Burns1; Florian Hengsbach2; Christoph Wangenheim2; Kay-Peter Hoyer2; Mirko Schaper2; 1Paderborn University, Lehrstuhl für Werkstoffkunde; 2Paderborn University, Lehrstuhl für Werkstoffkunde; 3Baker Hughes INTEQ GmbH
A-13: Application of Hydrogen Sintering and Phase Transformation for Post Treatment of Gas Dynamic Cold Spray Deposits of Titanium Alloys: Gehn Ferguson1; James Paramore1; Brady Butler1; Blake Barnett1; 1U.S. Army Research Laboratory

Advanced Coatings for Wear and Corrosion Protection – Poster Session
Program Organizers: Evelina Vogli, LiquidMetal Group Holdings, Inc.; Fei Tang, DNV GL; Emad Omran, University of Wisconsin - Milwaukee; Afsaneh Dorri Moghadam, University of Wisconsin- Milwaukee; Pradeep Menezes, University of Nevada Reno; Pradeep Rohatgi, University of Wisconsin-Milwaukee
Tuesday AM Room: Exhibition Hall October 10, 2017 Location: DLL Convention Center Session Chair: Evelina Vogli, LiquidMetal Group Holdings

H-1: Air Plasma Spray Preparation of HfO2/Mullite/Mo(Si,Al)2 Environmental Barrier Coatings: Hao Lan1; Chuanging Huang; Weigang Zhang1; 1Institute of Process Engineering, Chinese Academy of Sciences
H-2: Development of a New Synthesized Organic Pigment for Coatings and Its Evaluation: Weixiu Zeng1; Qixin Zhou1; 1The University of Akron
H-3: Electrodeposited Sn-Ni-graphene Oxide Composite Coatings for Improved Corrosion Resistance of Mild Steel in 3.5% NaCl: Anshul Kamboj1; 1Indian Institute of Technology, Roorkee, India
H-4: Friction and Wear Behaviour of Ceramic-composites Integrated Structure and Lubricating Function: Litian Hu2; Hengzhong Fan3; Junjie Song1; Yunfeng Su1; Yongsheng Zhang1; 1Lanzhou Institute of Chemical Physics of the Chinese Academy of Sciences
H-5: Establishment of the Relationship between the Microstructure Characteristics and the Heat Resistance of Silicate Coatings Obtained under SHS Conditions: Borys Sereda1; Dmytro Sereda2; 1DSTU; 2Zaporizhzhya State Engineering Academy
H-6: Natural Product as Corrosion Inhibitor for Stainless Steel in Acidic Medium: Omotayo Sanni1; Abimbola Popoola1; 1Tshwane University of Technology
H-7: Obtaining of Wear-resistant Carbide Coatings on High-carbon Steels under SHS Conditions: Borys Sereda1; Dmytro Sereda2; 1DSTU; 2Zaporizhzhya State Engineering Academy
H-8: Production of Highly Effective SHS Coatings Operating in Oxidizing and Corrosive Environments: Borys Sereda1; Dmytro Sereda2; 1DSTU; 2Zaporizhzhya State Engineering Academy

Advanced Manufacturing, Processing, Characterization and Modeling of Functional Materials – Poster Session
Program Organizers: Markus Chmielus, University of Pittsburgh; Mohammad Elahinia, University of Toledo; Reginald Hamilton, The Pennsylvania State University; Haluk Karaca, University of Kentucky; Reza Mirzaei, Virginia Tech
Tuesday AM Room: Exhibition Hall October 10, 2017 Location: DLL Convention Center

J-1: Characterization of Direct Laser Deposited Magnetocaloric Ni-Co-Mn-Sn: Erica Stevens1; Katerina Kimes1; Anna Wojcik2; Wojciech Maziarz2; Jakub Toman1; Markus Chmielus1; Volodymyr Chernenko2; 1University of Pittsburgh; 2Polish Academy of Science; 3BCMaterials & University of Basque Country; Ikerbasque, Basque Foundation for Science
J-2: Isotropic Negative Thermal Expansion Metamaterials: Lingling Wu1; Bo Li1; Ji Zhou1; 1Tsinghua University

Advanced Materials for Oil and Gas Applications - Performance and Degradation – Poster Session
Program Organizers: Yellapu Murty, MC Technologies LLC; Paal Bratland, OneSubsea; Andrzej Wojcieszynski, ATI Powder Metals; Maria Sawford, ATI; Xi Shan, GE Oil & Gas
Tuesday AM Room: Exhibition Hall October 10, 2017 Location: DLL Convention Center

H-9: Influence of Thermomechanical Schedules on the Crystallographic Texture and Impact Toughness Anisotropy in API X70 Steel: Pavel Glukhov1; Alexandr Kononov1; Nikolay Kolbasnikov1; Oleg Sychev2; 1Peter the Great St. Petersburg Polytechnic University; 2PISC Severstal
G-1: Characterization of Inclusions in Slab of Grain-oriented Silicon Steel: Ming Li; Qiang Ren; Jiayi Wang; Lifeng Zhang; 1University of Science and Technology Beijing

G-2: Influences of Zinc on the Erosion of Blast Furnace Hearth Refractories: Qiangjian Song; Xiaojun Ning; Jianliang Zhang; Kexin Jiao; Cui Wang; Yang Liu; 1The University of Science and Technology Beijing

G-3: Control of Non-metallic Inclusions in High Quality Saw Wires: Min Jiang; Xinhua Wang; Kun-Peng Wang; 1University of Science and Technology Beijing

G-4: Correlation of Microstructure and Mechanical Properties in Welded Joints of 12MnNiVRF Pressure Vessel Steel Subjected to High Heat Input Electrogas Welding: Yang Shen; Cong Wang; 1Northeastern University

G-5: Development of Steel Suitable for Two-side Enameling: Mohamed Safa; Tarek Khalefa; Mohamed Aboud; 1EZDK; 2Cairo University

G-6: Distribution of Non-metallic Inclusions along the Thickness of Q345D/E Steel Slab: Xincheng Wang; Wen Yang; Lifeng Zhang; Ying Wang; 1University of Science and Technology Beijing

G-7: Double Slag Modification Method for Reducing Slag Oxidation of IF Steel: Yanzhao Luo; 1Shougang Research Institute of Technology

G-8: Granulation of FeSi Alloy by Rotary Multi-nozzles Cup Atomizer: Wenchoa He; Xuweii Lv; Xueqin Li; Jie Qiu; 1Chongqing University

G-9: Evolution Behavior and Refinement Mechanism of Inclusion by Magnesium Treatment in Al-killed Steel: Chengjun Liu; Zhe Yu; Qing Zhao; 1Northeastern University

G-10: Experimental Investigation on Inclusions in Hot Rolled Axle Steel by the Mold Casting: Yanbin Yin; Jiongming Zhang; Jinhao Han; Mingzhi Zhai; 1State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing

G-11: Experimental Study on MnS Inclusion in Continuously Cast Bloom of Rail Steel: Sen Luo; Bingyu Wang; Weiling Wang; Miaoyong Zhu; 1Northeastern University

G-12: Improving Burnt Edge Defects in Boron-alloyed Steel: Mohamed Safa; 1EZDK

G-13: Increasing the Lifetime of Large Forging Dies by Repairwelding: Michal Ducheck; Martina Koukolikova; 1COMTES FHT

G-14: Influences of Cooling Rates on Precipitation Behavior and Austenite Phase Transformation in High Ti Microalloyed Steel: Tao Liu; Dengfu Chen; Mujun Long; Junsheng Cao; Lintao Gui; Huamei Du; 1Chongqing University

G-15: Microstructural Evolution and Mechanical Properties of a Prototype 0.2C-6Mn-1Si-1Al Third Generation Steel: Vivek Patel; Joseph McDermid; 1University of Science and Technology Beijing

G-16: Migration Behavior of Inclusions in Molten Steel under the Treatment of Electric Current Pulse: Wenbin Dai; Xinhui Wang; Danbin Jia; Xiang Zhao; Jingkun Yu; 1Northeastern University

G-17: Modification of Oxide Inclusions in Q345D Steel: Yi Wang; Lifeng Zhang; Wen Yang; Qiang Ren; Dongteng Pan; Xincheng Wang; Libin Sun; 1University of Science and Technology Beijing

G-18: Nano-sized Carboide Precipitates in High-strength Low-alloy Steels: Kaiping Du; Yueguang Yu; Shuting Zhang; Ji Shi; 1Beijing General Research Institute of Mining and Metallurgy

G-19: Non Equilibrium Thermodynamics of Quench and Partition Steels: Amit Behera; Gregory Olson; 1Northwestern University

G-20: Numerical Analysis on Effect of Additional Gas Injection on Characteristics around Raceway in Melter Gasifier: Kaiping Du; Shengli Wu; Zhekai Zhang; 1Beijing General Research Institute of Mining and Metallurgy; 2School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing

G-21: Numerical Study of Nail Board Experiments to Determine the Characteristics of the Surface in the CC Mold: Wei Liu; Shufeng Yang; Weihua Zhang; Jingshe Li; Xueliang Zhang; 1University of Science and Technology Beijing; Hesteel Group Tangsteel Company; 2Shougang Jingtang United Iron & Steel Co. Ltd.

G-22: Numerical Study of Steel Flow and Inclusion Removal during RH Degassing Process: Wei Liu; Shufeng Yang; Weihua Zhang; Jingshe Li; Xueliang Zhang; 1University of Science and Technology Beijing

G-23: Prediction of Precipitation Strengthening of l-carboide in Austenite-based Low-density Steel: Jaesun Lee; Siwook Park; Hwangsun Kim; Seong-Jun Park; Phanair Madakashira; Heung Nam Han; 1Seoul National University; 2Korea Institute of Materials Science

G-24: Research of CO2−O2 Mixed Injection Steelmaking in 300T Converter: Xueliang Wang; Rong Zhu; Binglong Zhang; Jiming Bian; Yiqiang Zhu; Wenhe Wu; 1University of Science and Technology Beijing; 2Shougang Jingtang United Iron & Steel Co. Ltd.

G-25: Simulation and Application of the Coherent Oxygen Supplying Technology with Low Calorific Value Fuel Gas in EAF Steelmaking Process: Wei Guangsheng; Dong Kai; Liu Runzao; Wu Xuebao; 1University of Science and Technology Beijing

G-26: Simulations and Modeling of Metallurgical Phenomena Produced on Pressing in SHS-conditions: Borya Sereda; Dmytro Sereda; Irina Kryglyak; 1DSTU; 2Zaporizhzhya State Engineering Academy

G-27: Study on the Reducing Reaction Characteristics of the Iron Oxide Briquettes under H2 and CO Mixtures: Xiaowei Wang; Jian Liang Zhang; Zhenjian Liu; Xingle Liu; 1University of Science and Technology Beijing; 2University of Science and Technology Beijing

G-28: Study on the Effect of Unburned Pulverized Coal on the Gasification Reaction Performance of Coke: Kaishi Wang; Yifan Chai; Jianliang Zhang; Xiaoyue Fan; Guangwei Wang; 1University of Science and Technology Beijing

G-29: Study on the Reacting Behavior of Reactant and Slag in the Molten Steel: Liwu Zhan; 1University of Science and Technology Beijing

G-30: Study on the Reducing Reaction Characteristics of the Iron Oxide Briquettes under H2 and CO Mixtures: Xiaowei Wang; Jian Liang Zhang; Zhenjian Liu; Xingle Liu; 1University of Science and Technology Beijing; 2University of Science and Technology Beijing
G-31: The Influence Factors about Exacting Thickness Tolerance of Cold Rolled Strength Steel in Hot Rolling: Jiachun Xu1; Baosteel

G-32: The Influence of Chemistry and Process Parameters on the Microstructure and Mechanical Property of DP78: Mingsheng Xiu1; Hongbo Zhang1; Lin Zhang1; Guilan Li1; HBIS Tangsteel

G-34: The Temperature Measurement and Simulation Analysis for Mold Cu-tube of High Speed Billet Caster: Yang Chen1; Fu-shuai Li1; Jiong-ming Zhang1; Sai-zhen Ning1; Liang Qian1; State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing; CCTEC Engineering Co., Ltd

G-40: The Effect of Microstructure on the Properties of Ultra High-carbon Steel Produced by Mechanical Alloying and Spark Plasma Sintering: Ibrahim Khalfallah; Alex Aning1; Virginia Tech

Advances in Dielectric Materials and Electronic Devices – Poster Session
Program Organizers: Amar Bhalla, The University of Texas at San Antonio; Ruyan Guo, The University of Texas at San Antonio; K. M. Nair, E.I. du Pont de Nemours & Co, Inc; Danilo Suvorov, Jožef Stefan Institute; Rick Ubic, Boise State University

Tuesday AM
Location: DLL Convention Center

D-1: Applications of Magnetoelectric Gradiometer and Its Vibration Rejection Enhancement Based on H-Field Modulation Technique: Junran Xu1; Xin Zhang1; Chung Ming Leung1; Jie-Fang Li1; Dwight Viehland1; Virginia Tech

D-2: Effect of Different Methods of Oxygen Treatment on Structure and Dielectric Properties of Mn-doped Ca6Sr80TiO3 Ceramics: Lin Zhang1; Michael Lanagan1; Juan Xie2; Qi Xu1; Zhonghua Yao1; Hua Hao2; Hanxing Liu1; The Pennsylvania State University; State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology

D-3: Fixing the Navy’s Railgun: Raising the Glass Transition Temperature of PEN: Seth Kreider1; Daniel Miranda1; Penn State University

D-4: Observation of Ti-Ti Bonding in Ti/Cu/Pt-supported Rutile TiO2(110) Surface: Ab Initio Calculations: Lei Li1; Wenshi Li1; Han Qin2; Jianfeng Yang3; Canyan Zhu1; Lingfeng Mao2; University of Alberta; Soochow University

D-5: Study Broadband Dielectric Spectroscopy of (Ba,Sr)TiO3 at Different Temperatures: Maryam Sarkarat1; Michael Lanagan1; Penn State University

D-6: Effect of Pb(Zn1/3Nb2/3)O3 Addition on the Phase Transition and Ferroelectric Behavior for Pb(Zr0.95Ti0.05)O3 Ceramics: Mapeng Zheng1; Yudong Hou1; Mankang Zhu1; Beijing University of Technology

D-7: Preparation and Characterization of Aurivillius Phase Na0.5Bi2.5Nb2O9 by an Economical Aqueous Sol-Gel Technique: Yu Dong Hou1; Mu Peng Zheng2; Jing Yang Rong2; Man Kang Zhu1; Beijing University of Technology

Advances in Zinc-coated Sheet Steel Processing and Properties – Poster Session
Program Organizers: Frank Goodwin, International Zinc Association; Joseph McDermid, McMaster University

Tuesday AM
Location: DLL Convention Center

G-35: Electrochemical Properties of Continuous Galvanized Coatings on Direct Hot Pressed Steels: Caitlin Dever1; Joseph Kish1; Joseph McDermid1; McMaster University

G-36: Reactive Wetting of Advanced High Strength Steels by a Zn-Al-Mg Bath: Daniëlle De Rango1; Joseph McDermid2; McMaster University

Ceramic-based Optical Materials and Advanced Processing – Poster Session
Program Organizers: Yi-Quan Wu, Alfred University; Jas Sanghera, Naval Research Laboratory; Michael Squillante, RMD, Inc; Akio Ikuesue, World-Lab. Co., Ltd

Tuesday AM
Location: DLL Convention Center

C-1: Effects of Sintering Temperature on Structure and Photoluminescence of Eu-activated-Mg-doped Silicon Oxynitride Phosphors: Ying Zhang1; Jialin Qu1; Yuqian Zhou1; Xuan Cheng1; Jingyu Sun1; Xiamen University

C-2: Preparation of Zirconia-strengthened Alumina by Polymeric Preceramic Method: Yuanchao Li1; Zhaiyi Yang1; Wenfeng Qiu1; Tunable Materials

Construction and Building Materials for a Better Environment – Poster Session
Program Organizers: Henry Colorado, Universidad de Antioquia; Dileep Singh, Argonne National Laboratory; Flavio Silva, Pontificia Universidade Católica do Rio de Janeiro (PUC-Rio)

Tuesday AM
Location: DLL Convention Center

J-3: C4H11NO Performance on Steel-rebar Corrosion in Industrial/Microbial Simulating Environment: Joshua Okeniyi1; Abimbola Popoola2; Covenant University, Ota, Nigeria; Tshwane University of Technology, Pretoria, South Africa

J-4: Corrosion Behaviour of Steel-reinforcement in C3H7NO2S-admixed Concrete Immersed in Saline/Marine Simulating-environment: Joshua Okeniyi1; Abimbola Popoola2; Olugbenga Omotosho1; Cleophas Loto1; Elizabeth Okeniyi1; Samuel Ogbiye1; Covenant University, Ota, Nigeria; Tshwane University of Technology, Pretoria

J-5: Developing Heat Conduction Pathways through Short Polymer Chains in a Hydrogen Bonded Polymer System: Nitin Mehra1; Mu Liwen1; Jiahua Zhu1; The University of Akron
J-6: Effect of Coconut Fibers in Asphalt Properties: Yailuth Loaiza Lopera1; Edwin Garcia1; Henry Colorado1; ‘Universidad de Antioquia
J-7: Fabrication by Additive Manufacturing of Clay with Electric Arc Furnace Steel Dust (EAF Dust): Edisson Ordóñez1; Henry Colorado1; ‘Universidad de Antioquia
J-8: Physical and Mechanical Properties of Sintered Bricks Produced with Red Mud: Chen Shichao1; Bian Miaoian1; Ma Dongyang1; Sun Hui1; ‘Beijing Shenwu Environment & Energy Technology Co., Ltd.
J-10: Tannic Acid - A New Bio-based, Environmentally-friendly Hardener for Epoxy Resins: Matthew Korey1; John Howarter1; ‘Purdue University

Controlled Synthesis, Processing, and Applications of Structural and Functional Nanomaterials – Poster Session
Program Organizers: Gurpreet Singh, Kansas State University; Kathy Lu, Virginia Tech; Sanjay Mathur, University of Cologne; Edward Gorzkowski, Naval Research Laboratory; Hai Tao Zhang, UNC Charlotte; Kejie Zhao, Purdue University; Hidehiro Kamiya, Tokyo University of Agriculture and Technology
Tuesday AM Room: Exhibition Hall Location: DLL Convention Center

Funding support provided by: MilliporeSigma

I-1: Bulk Monolithic Carbon Nanofibers: Tailoring Geometry, Properties and Hybrid Structures: Mark Awater1; Roger Welsh1; Benjamin Stone1; Aif Joy1; Laura Guevara1; ‘Millersville University
I-2: Multi-Scale Mechanics and Electrical Transport in a Free-Standing 3D Architecture of Graphene and Carbon Nanotubes Fabricated by Pressure Assisted Welding: Pranjal Nautiyal1; Leslie Embrey1; Benjamin Boesl1; Arvind Agarwal1; ‘Florida International University
I-4: Carboxymethyl Cellulose and Bile Salt Network Formation with Aqueous Graphene Solution: Julie Muretta1; Katherine Kent1; Stephen Sofie1; Joseph Seymour1; ‘Montana State University
I-5: Thermal Diffusivity of Cu-Cu/RGO Composites: Hyo-Soo Lee1; Jae-Ha Kim1; Tae-Hoon Park1; ‘KITECH

Design, Processing, and Development of Structural Materials – Poster Session
Program Organizers: Tomoko Sano, U.S. Army Research Laboratory; Mitra Taheri, Drexel University
Tuesday AM Room: Exhibition Hall Location: DLL Convention Center

J-11: An Analysis of Correlation between Intergranular Fracture and Plastic Deformation in Tungsten Using Nanoindentation: Yeonjoo Oh1; Keunho Lee1; Hyun-Min Sung1; Nojun Kwak1; Heung Nam Han1; ‘Seoul National University; 2LG Production engineering Research Institute
J-12: Microstructure and Mechanical Properties of Ta Particulate Dispersed Cu-based Bulk Metallic Glass Composite by Spark Plasma Sintering: Jong Hwa Lin1; Dong Sun Seo1; Jin Kyu Lee1; ‘Kongju National University

Emerging Interconnect and Pb-free Materials for Advanced Packaging Technology – Poster Session
Program Organizers: Albert T. Wu, National Central University; Carol Handwerker, Purdue University; Fiqiri Hodaj, Grenoble Institute of Technology
Tuesday AM Room: Exhibition Hall Location: DLL Convention Center

D-8: Thermal Aging Property of Sn-(x)wt%Sb Solder for Automotive Power Module: Junhyuk Sun1; Minkyung Kim1; Dong-Yurl Yu1; Young-Bae Park2; Junghwan Bang1; ‘KITECH/MicroJoining Center; 2Andong National University /Materials Science and Engineering
D-9: Thermal Shock Reliability of Nanocomposite Sn-Ag-Cu Solder: Kyoung-Ho Kim1; Jongsuk Yoon1; Songhee Yim1; Bum-Gyu Baek1; Sehoon Yoo1; ‘Korea Institute of Industrial Technology; ‘KD One
D-10: Interfacial Reaction Mechanism Between Sn-Ag-Bi-In-(Co) Solder and Polycrystalline Copper Pad: Guo Fu1; Jing Han1; Shihai Tan1; Yu Tian1; ‘Beijing University of Technology

Failure Analysis and Prevention – Poster Session
Program Organizers: Andrew Havics, pH2, LLC; Pierre Dupont, Schaeffler Belgium Spr/Bvba; Burak Akyuz, ATS, Inc.
Tuesday AM Room: Exhibition Hall Location: DLL Convention Center

Session Chair: Andrew Havics, pH2, LLC

K-1: Failure Analysis of Ultrasonic Spot Welds of Aluminum Cables to Brass Terminals Using Analytical Electron Microscopy: C. Virgil Solomon1; Brandon Hart1; ‘Youngstown State University

Fifty Years of Metallography and Materials Characterization – Poster Session
Program Organizers: Ryan Deacon, United Technologies Research Center; Daniel Dennies, Consulting Metallurgical Engineer; George Vander Voort, Consultant - Struers Inc
Tuesday AM Room: Exhibition Hall Location: DLL Convention Center

K-3: Automated Optical Microstructural Characterization of Thermal Spray Coatings: Veeraraghavan Sundar1; Elizabeth Jenkins1; ‘UES Inc.
K-4: Advances in Automated Optical 3D Materials Characterization: Veeraraghavan Sundar1; Satya Ganti1; Bryan Turner1; ‘UES Inc.
Gas/Metal Reactions, Diffusion and Phase Transformation during Heat Treatment of Steel – Poster Session
Program Organizers: Liang He, Air Products and Chemicals Inc.; Xuekun Li, Tsinghua University; Daniel Baker, General Motors

Tuesday AM
October 10, 2017
Room: Exhibition Hall
Location: DLL Convention Center

G-37: Influence of Different Cooling Microstructure on Surface Cracks of HSLA Steel Plate by DHCR: Banggun Wang1; Fengleng Wang2; Xiebin Zhu3; 1Anhui Polytechnic University

G-38: Study on the Precipitation Behavior of Maraging Stainless Steel: Gaitie Wu1; Gang Wang1; Shaopeng Wei1; Junying Yang1; Yiming Rong2; 1Institute of Manufacturing Engineering, Tsinghua University; 2South University of Science and Technology of China

Glass, Amorphous, and Optical Materials: Common Issues within Science & Technology – Poster Session
Program Organizers: Gang Chen, Ohio University; Steve Martin, Iowa State University

Tuesday AM
October 10, 2017
Room: Exhibition Hall
Location: DLL Convention Center

C-3: Crystallization Mechanism of Li2O/K2O Modified Sodium-phosphate Glasses as Solid Electrolyte: Parmajit Jha1; O. P. Pandey1; K. Singh1; 1Chandigarh University, Gharuan, Mohali; 2Thapar University, Patiala

C-4: Structures of Aluminosilicate Oxyfluoride Glasses from Molecular Dynamics Simulations: Junjie Zhao1; Xiaotong Chen1; Jinchun Du1; Qian Xu3; Zhou Luo1; Xusheng Qiao1; Xianping Fan1; 1University of North Texas; 2Massachusetts Institute of Technology

C-5: The Structure and Properties of Glasses in the Li2O-ZnO-P2O5 System: Han Zhang1; 1MST

Hybrid Organic-Inorganic Materials for Alternative Energy – Poster Session
Program Organizers: Andrei Jitianu, Lehman College, City University of New York; Lisa Klein, Rutgers University; Lia Stanciu, Purdue University; Mihaela Jitianu, William Paterson University

Tuesday AM
October 10, 2017
Room: Exhibition Hall
Location: DLL Convention Center

E-1: Polymer-batteries for the Supply in Safe and Environment-friendly Energy: Atomistic Approach via the Ab-initio Methods: Asif Iqbal Bhatti1; 1Grenoble INP Phelma

E-2: Sr2+7+Ca2+4La2+2Fe2+3/CoyO2+d Intergrowth Oxides as Cathodes for Intermediate-temperature Solid Oxide Fuel Cells: Padmasree Padmadas1; Ke-Yu Lai2; Antonio Fuentes3; Arumugam Manthiram4; 1Cinvestav Saltillo; 2The University of Texas at Austin

E-3: The Effects of Ni-doping and Hydrogenation of TiO2 Nanotubes on Water Splitting: Yu-Ting Huang1; Chien-Cheng Lin2; Kun-Lin Lin2; Yi-Ching Huang3; 1Department of Materials Science and Engineering, National Chiao Tung University; 2National Nano Device Laboratories, National Applied Research Laboratories

E-4: Synthesis and Characterization of SnO2 Nanowire Based High Performance MnOx-NiO Supercapacitors: Lingtao Jiang1; Salim Caliskan2; Jung Kun Lee1; 1University of Pittsburgh

In-situ Characterization of Energy Materials – Poster Session
Program Organizers: Scott Speakman, PANalytical; Prashant Kumta, University of Pittsburgh

Tuesday AM
October 10, 2017
Room: Exhibition Hall
Location: DLL Convention Center

E-5: Characterization of Lithium-ion Batteries by In-situ Electrochemical Impedance Spectroscopy: Xueyuan Zhang1; 1Gamry Instruments

E-6: Data-driven Approaches for Predicting Thermoelectric Properties: A’ona Fumanchuk1; Ankur Agrawal2; Alok Choudhary2; 1Northwestern University

E-7: In Situ Raman Characterization of CZTS Phase Formation from Sulfurization of Sol-gel Oxide Precursors in ppm-level H2S-Containing Atmosphere: Osaka Awasadallah1; Zhe Cheng2; 1Florida International University

Innovative Processing and Synthesis of Ceramics, Glasses and Composites – Poster Session
Program Organizers: Narottam Bansal, NASA Glenn Research Center; Jitendra Singh, Retired, U.S. Army Research Laboratory; Takashi Goto, Tohoku University

Tuesday AM
October 10, 2017
Room: Exhibition Hall
Location: DLL Convention Center
Session Chair: Narottam Bansal, NASA Glenn Research Center

C-6: Growth of One-dimensional BaTiO3 Nanoparticles by Hydrothermal Reaction: Yongtae Park1; Ji Eun Wang1; Changyoun Baek1; Kumjin Park2; Do Kyung Kim3; 1KAIST; 2Samsung Electro-Mechanics

C-7: Kinetic Investigations of Phaseformation Processes in the Ba(Ca,Sr)O-Al2O3-SiO2 System which Contains BaO,CaO,SrO,Al2O3-SiO2 Were Carried Out Combustor of MHD Generator: Iyoukha Nickolai1; 1Academic Ceramic Center

C-8: Researches Regarding the Structure Investigations on New Materials of the Composite Type: Alexandru Antoniu Cernaianu Stoianovici1; 1COREF

C-9: Synthesis of C Axis Oriented ZnO Nanostructured Thin Films by Laser Enhanced Electrospay-CVD: Satoshi Suehiro1; Teichi Kimura2; Seiji Takahashi3; 1Japan Fine Ceramics Center
Interfaces, Grain Boundaries and Surfaces from Atomistic and Macroscopic Approaches – Poster Session

Program Organizers: Dominique Chatain, CNRS, Aix-Marseille University; John Blended, Purdue University; Wayne Kaplan, Technion - Israel Institute of Technology

Tuesday AM
October 10, 2017
Room: Exhibition Hall
Location: DLL Convention Center

F-8: The Largest Database of Elemental Crystal Surface Energies from High-throughput Density Functional Theory: Richard Tran1; Zihan Xu1; Balachandran Radhakrishnan1; Joseph Montoya; Wenhai Sun; Donald Winston; Kristin Persson2; Shyue Ong1; 1Department of Nanoengineering, University of California, San Diego; 2Energy Technologies Area, Lawrence Berkeley National Laboratory; 1Department of Materials Science and Engineering, Massachusetts Institute of Technology

F-9: Application of a Grain Boundary-aware Crystal Plasticity Model to Bicrystal Nanoindentation and Polycrystalline Uniaxial Tensile Deformation: Yang Su1; Philip Eisenlohr1; Thomas Bieler1; Martin Crimp1; 1Michigan State University

F-10: Cation Disorder at Interfaces in Pyrochlores: Matthew Janish1; Terry Holesinger1; Cortney Kreller1; James Valdez1; Yongqiang Wang1; Blas Uberuaga1; 1Los Alamos National Laboratory

F-11: Hollowing of Al-Au Nanoparticles by Reactive Interdiffusion: Nimrod Gazi1; Andriy Gusak1; Leonid Klinger1; Eugen Rabkin1; 1Technion - Israel Institute of Technology; 1Cherkasy National University

F-12: Inferring Mesoscale Grain Boundary Structure-property Models from the Macroscopic Properties of Polycrystals via Inverse Problem Theory: Oliver Johnson1; Christian Kurniawan1; 1UNIST(Ulsan National Institute of Science and Technology)

F-13: Microstructure Evolution in Ni Materials: Annealing-Detwinning due to Thermal Fluctuation of Incoherent Twin Boundary: Chandra Singh1; Hao Sun1; 1University of Toronto

F-15: The Effect of Grain Boundary Curvature of a Three-dimensional Polycrystalline Material: Elastic Stress and strain Field Distribution under Thermal Loading: Myeongin Lee1; Youngkjun Son1; Sihwa Sung1; Sukbin Lee1; 1UNIST(Ulsan National Institute of Science and Technology)

F-16: Thermodynamic Modelling of Precipitate Stabilization through Interface Solute Segregation: Sourabh Kadambi1; Srikanth Patala1; 1North Carolina State University

F-17: Two- and Three-dimensional Simulation of Two-phase Microstructure during Coarsening with Diffusion-controlled Monte Carlo Model: Gaewun Son1; Hyesoo Chung1; Minji Kim1; Sukbin Lee1; 1Ulsan National Institute of Science and Technology

F-18: Anti-Thermal Motion Mechanisms of Ψ(31 3) Grain Boundaries in FCC Metals: Ian Chesser1; Jonathan Humbleton1; Elizabeth Holm1; 1Carnegie Mellon University

F-19: An Atomic Approach to Dopant Segregation and Embrittlement at the Grain Boundaries of Molybdenum and its Alloys: Hui Zheng1; Richard Tran1; Balachandran Radhakrishnan1; Shyue Ong1; 1Department of Nanoengineering, University of California, San Diego

F-20: Identifying Interatomic Potentials for the Accurate Modeling of Interfacial Segregation and Structural Transitions: Yang Hu1; Jennifer Schuler1; Timothy Rupert1; 1UCI

F-21: Measuring Grain Boundary Mobility Using a Microfabricated Sun-Bauer Style Bicrystal: Xiaoting Zhong1; Amanda Krause1; Christopher Marvel1; Martin Harmer1; Gregory Rohrer1; 1Carnegie Mellon University; 2Lehigh University

International Symposium on Ceramic Matrix Composites – Poster Session

Program Organizers: Narottam Bansal, NASA Glenn Research Center; Jitendra Singh, Retired, U.S. Army Research Laboratory; Jacques Lamont, CNRS; Sung Choe, Naval Air Systems Command

Tuesday AM
October 10, 2017
Room: Exhibition Hall
Location: DLL Convention Center

C-10: Effect of TiO2 Addition on the Slag Corrosion Resistance of MgAl2O4-CaAl4O7-CaAl12O19 Composite: Lei Xu1; Min Chen1; Nan Wang1; 1School of Materials and Metallurgy, Northeastern University

C-11: Joining of W-25Re Alloy to C/C Composite Using Titanium Interlayer and its Stability under High Temperature: Jung Hoon Koo1; Joo-Hyung Kim1; Dong Seok Kim1; Seong Taek Lim1; Do Kyung Kim1; 1KAIST; 2Agency for Defense Development

C-12: Study on Preparation and Microstructure of ZrB2 Composite Coating: Lijuan Zhou1; Chuncheng Wei1; Tianqi Wang1; Yunxia Zhao1; 1Shandong University of Technology

C-13: Study on the Sintering Process of Nickel Ferrite Spinel Based Ceramic: Yihan Liu1; 1Northeastern University

Joining of Advanced and Specialty Materials (JASM XIX) – Poster Session

Program Organizers: Boian Alexandrov, The Ohio State University; Mathieu Brochu, McGill University; Anming Hu, University of Tennessee; Darren Barbarak, A2Z WSI; Akio Hirose, Osaka University; Peng He, Harbin Institute of Technology; Zhiyong Gu, University of Massachusetts Lowell; Vikas Patel, ArcelorMittal USA

Tuesday AM
October 10, 2017
Room: Exhibition Hall
Location: DLL Convention Center

J-13: Development of Laser Welding Process for Parts of Orthodontics: Jong-O Kine1; Jae-Hoon Lee1; Seung-Woo Lee1; 1Korea Institute of Machinery & Materials

J-14: Interfacial Characterization of Brazed Hexagonal Boron Nitride (h-BN): Maricco Rosales1; Conrado Afonso1; 1UFSCar

J-15: High Cr-Ni Superalloy Welded Joints Microstructure Evolution Submitted to Heat-treatment: Julio Spadotto1; Ivan Guillermo Solórzano1; 1PUC-Rio
J-28: Strain State Effects of Sensitization-induced β Precipitates in AA5456: Daniel Foley1; Mitra Taheri1; 1Drexel University
J-29: Study of Constant and Variable Blank Holding Force Techniques in Hydroforming of Cryorolled Al-Mg Alloy Sheets by FE Simulation: Fitsum Feyissa1; Ravi Digavalli1; 1Indian Institute of Technology Delhi
J-30: Study on Refinement and Homogenization of Microstructures of Aluminum Alloys Billet by Pulse and Magnetic Treatment: Kyungyun Kim1; Myokla Slazhniev1; Hyunsuk Sim1; Sewon Kim1; 1Dongsan Tech
J-31: Ultrasonic Vibration Assisted Laser Surface Melting Of Al 2024 Alloys and Its Influence on Microstructural Evolution: Sourabh Biswas1; Seyyed Habib Alavi1; Sanidip Harinkar1; 1Oklahoma State University
J-32: Vertical Section Phase Diagram of Mg (1-X) Sr0.5 ZnX Alloy Using Solidification Cooling Curves: Vignesh Nallasivam1; Ravi K R2; 1PSG College of Technology; 2PSG Institute of Advanced Studies
J-33: Auto-AL Recycling: A Grave-to-gate Analysis: Sean Kelly1; Diran Apelian1; 1Worcester Polytechnic Institute
J-34: Crack Propagation from a Notched Hole under Uni-axial Fatigue Loading of AA7075-T6 Sheet: Malika Khodja1; Hamida Fekirini1; Ulyane Carle1; Gary Corderley1; Grega Sodnik1; 1University of Ljubljana; 2University of Ljubljana; 3University of Ljubljana
J-35: Effect of Casting Porosity on Compressive Mechanical Property of as-Cast Magnesium Alloys: Hua Qian1; Arup Dutta1; Amit Arora1; Yijie Makhopadhyay1; 1IIT Gandhinagar
J-36: Effect of Stress State on the Fracture Behavior of Commercial Diecast Magnesium Alloys: Huayan Yang1; Xiaofeng Yang1; Wenfeng Zhao1; Xuemin Fan1; Zhiwei Huang1; 1Central South University
J-37: Effect of Strain Rate on the Mechanical Behaviour of Commercial Diecast Magnesium Alloys: Huayan Yang1; Xiaofeng Yang1; Wenfeng Zhao1; Xuemin Fan1; Zhiwei Huang1; 1Central South University
J-38: Formability of Tailor Welded Blanks Made by Friction Stir Welding: Effect of Flow Rate and Flow Profile: Ronit Dey1; Amit Arora1; Yijie Makhopadhyay1; 1IIT Gandhinagar
J-39: Fracture and Fatigue Crack Growth Behavior of As-cast vs. Forged Ti-4Al-4Nb-1Mo: Matthew Dahar1; Sesh Tamirisakandala1; John Lewandowski1; 1Case Western Reserve University
J-40: Hot Deformation/Forging and Mechanical Behaviour of 3rd Generation Al-Li Alloy: Henry Neilson1; David Schwam1; John Lewandowski1; 1Case Western Reserve University
J-41: In-situ Manufacturing Techniques for Aluminum Matrix Nanocomposites: Ifigo Anza1; Jeremy Fedors1; Eunkyung Lee1; Brajendra Mishra1; 1Worcester Polytechnic Institute
J-42: Low Temperature Thermal Conductivity of Pure Mg and Binary Magnesium Alloys: Tao Yang1; Hang Chi1; Mingyi Zheng1; Zitong Li1; Citrad Uher1; 1Shanghai Jiao Tong University; 2University of Michigan; 3Harbin Institute of Technology
J-43: Influence of Metallic Coatings on the Microstructural Development of the Metallurgical Bond for Cast-in Ferrous Inserts: Carl Soderholm1; Chiara Bertuccelli1; Lorella Ceschini1; Diran Apelian1; 1Worcester Polytechnic Institute; 2University of Bologna
J-44: Shear Band Corrosion Susceptibility in Al 6061 Extruded by Equal Channel Angular Extrusion (ECAP): Ramaitou Ly1; 1Texas A&M University
Materials Selection and Surface Analyses for
Corrosion Prevention and Detection – Poster Session
Program Organizers: Matthew Asmussen, Pacific Northwest National Laboratory; Ajit Mishra, Haynes International; Sudhakar Mahajanam, PinnacleART; Eric Schindelholz, Sandia National Laboratory; Xueyuan Zhang, Gamry Instruments; Guang-Ling Song, Xiamen University; Luis Garfrais, Wood Group Kenny; Raul Rebak, General Electric

Tuesday AM
October 10, 2017
Room: Exhibition Hall
Location: DLL Convention Center

Session Chairs: Ajit Mishra, Haynes International; Matthew Asmussen, Pacific Northwest National Laboratory

Mechanochemical Synthesis and Reactions in
Materials Science II – Poster Session
Program Organizers: Antonio Fuentes, Cinvestav del IPN; Laszlo Takacs, University of Maryland Baltimore County; Challapalli Suryanarayana, University of Central Florida; Jacques Huot, Universite du Quebec a Trois-Rivieres

Tuesday AM
October 10, 2017
Room: Exhibition Hall
Location: DLL Convention Center

Session Chair: Jing Zhang, Indiana University - Purdue University Indianapolis

Modeling and Simulation in Additive Manufacturing:
Materials Design, Property Prediction, and Process Control – Poster Session
Program Organizers: Jing Zhang, Indiana University - Purdue University Indianapolis; Lei Chen, Mississippi State University; Li Ma, National Institute of Standards and Technology; Xinghua Yu, Oak Ridge National Laboratory; Yeon-Gil Jung, Changwon National University; Yanzhou Ji, The Pennsylvania State University; Long Qing Chen, Penn State University

Tuesday AM
October 10, 2017
Room: Exhibition Hall
Location: DLL Convention Center

Session Chair: Jing Zhang, Indiana University - Purdue University Indianapolis

A-14: A Computer Vision Approach to Defect Analysis in Additive Manufacturing Build Components: Andrew Kitashara; Brian DeCost; Elizabeth Holm; Carnegie Mellon University

A-15: Research on Structure Optimization of Cooling Channel of Copper Staves: Fengguang Li; Hubei University of Automotive Technology
Multifunctional Oxides – Poster Session

Program Organizers: Xiaqing Pan, University of California, Irvine; Chonglin Chen, University of Texas at San Antonio; Quanxi Jia, University at Buffalo – The State University of New York; Judith Driscoll, University of Cambridge

Tuesday AM
October 10, 2017
Room: Exhibition Hall
Location: DLL Convention Center

C-14: Multiferroic Behaviour and Magnetolectric Coupling in Fe/Ni codoped Bi3.15Nd0.85Ti3O12 Ceramics: Sumit Bhardwaj1; Sanjev Kumar2; R. K. Kotnala3; 1PEC University of Technology, Chandigarh; 2National Physical Laboratory

C-15: Optimization of Properties of Al2O3-spinel Castables for RH Snorkel Working Lining: Hongjia Guo1; 1China’s Shanghai Baoshan Iron and Steel Co., Ltd.

Multiscale Modeling of Microstructure Deformation in Material Processing – Poster Session

Program Organizers: Lukasz Madej, AGH University of Science and Technology; Krzysztof Muszka, AGH University of Science and Technology; Danuta Szelaiga, AGH University of Science and Technology

Tuesday AM
October 10, 2017
Room: Exhibition Hall
Location: DLL Convention Center

F-31: A Continuum Model of Deformation in API X70 Steel Coated with Nanolamate Metallic Systems for High Energy Environments: Mohammed Anazi1; Hussein Zhibi1; 1Washington State University

F-32: Analysis of the Stress-strain State of the Reactors In The Process of Titanium Tetrachloride Reduction: Oleksandr Bagriichuk1; Volodymyr Khupovka1; 1PEC University of Technology, Chandigarh; 2National Physical Laboratory

F-33: Development of a Shape Memory Actuator for Aircraft Engine Turbine Blades: Richard Blocher1; Luis Bravo2; Anindya Ghoshal1; Muthuvel Murugan2; Peter Anderson1; 1The Ohio State University; 2Army Research Laboratory

F-34: Simulating and Representing the 3D Geometrically Necessary Dislocations (GNDs) Structure Evolution during Plane Deformation for Commercial Al-Alloys: Khaled Adam1; David Field1; 1Washington State University

Next Generation Biomaterials – Poster Session

Program Organizers: Roger Narayan, UNC/NCSU Joint Department of Biomedical Engineering; Jie Huang, University College London; Vidul Davé, Johnson & Johnson; Sanjiv Lwalani, Lynntech, Inc.; Marc in het Panhuis, University of Wollongong; Mohan Edirisinghe, University College London

Tuesday AM
October 10, 2017
Room: Exhibition Hall
Location: DLL Convention Center

B-1: Comparison of Characterization Techniques for Inclusions in Fine, Superelastic Nitinol Wire: Janet Ghur1; John Pepper2; John Lewandowski1; 1Case Western Reserve University; 2ASM International

B-2: Dual Delivery of Biomacromolecules and Drug from Nanofibrous Tissue Engineering Scaffolds: Yu Zhou1; Min Wang2; 1The University of Hong Kong

B-3: Hydroxyapatite Paste Doped with Drug Encapsulated Calcium Phosphosilicate Nanoparticles for Enhanced Osteogenic Activity in Bone Tissue Engineering: Christopher Gigliotti1; Andrea Mastro1; Lauren Zarzar1; James Adair1; 1Pennsylvania State University

B-4: Magnetic Heating Behavior of Multi-component Ferrite NPs and its FEM Simulation: Celal Edip Ergun1; Oguz Soydas1; Elvan Aydin1; 1Istanbul Technical University

B-5: Synthesis Characterization of SiO2-TiO2-CaO-SrO-Na2O-P2O5 Glasses for Coating Titanium Metallic Implants: Kiel Skelly1; Anthony Weir1; 1Alfred University

B-6: Fabrication of Hydrogel Hybrid Membranes Using Bijeis Approach: Haoran Sun1; Min Wang1; 1The University of Hong Kong

B-7: Antibacterial Efficacy of Silver, Silicon Co Substituted Apatite Against Pseudomonas Aeruginosa: Poon Nian Lim1; Bow Ho2; Eng San Thian3; 1National University of Singapore; 2Singapore Precision Medical Centre Pte Ltd

B-8: Physical Anisotropy of Biomaterials to Modulate Cell Morphogenesis In Vivo for Tendon Regeneration: Zayong Wang1; Bryan Koh2; Won Jae Lee3; Wilson Wang3; Minghui Hong1; Poon Nian Lim2; Lisa Park2; Michael Kim3; Eng San Thian3; 1Hong Kong University; 2National University of Singapore; 3PWG Genetics Pte Ltd

B-9: Structural Investigations of Transition Metal Doped Apatites and Potential for Biomedical Applications: Arjak Bhattacharjee1; Tom Baikie1; Timothy White1; Indranil Manna1; Kantes Balani1; 1Indian Institute of Technology; 2Nanyang Technological University; 3Indian Institute of Technology

Non Beam-based Additive Manufacturing Approaches for Metallic Parts – Poster Session

Program Organizer: Olaf Andersen, Fraunhofer IFAM

Tuesday AM
October 10, 2017
Room: Exhibition Hall
Location: DLL Convention Center

A-16: Binder Jet Printing of Partial Denture Metal Framework from Metal Powder: Amir Mostafaei1; Erica Stevens1; John Ference1; David Schmidt1; Markus Chmielus1; 1University of Pittsburgh
A-17: Detailed Microstructural and Electrochemical investigation of 3D Printed and Arc Melted 316L Stainless Steel: Muhammad Jahangir Khan Lodhi1; Waseem Haider1; Kashif Mairaj Deen2; Ameeq Farooq3; 1Central Michigan University; 2University of British Columbia; 3University of the Punjab

A-18: High Velocity Hybrid Thermal Spray Systems for 3-D Coatings: Dale Moody1; Peter Foy1; 1Plasma Powders and Systems Inc.

A-19: Large-scale Additive Manufacturing of Steel Structures: Michael Kottman1; Bryce Mikol1; Paul Denney1; Badri Narayanan1; 1Lincoln Electric

Phase Transformations and Microstructural Evolution in Ti and Its Alloys – Poster Session
Program Organizers: Carl Boehlert, Michigan State University; Yufeng Zheng, Ohio State University; Vahid Khademi, Michigan State University

Tuesday AM Room: Exhibition Hall Location: DLL Convention Center
October 10, 2017

F-36: Mechanical Properties of Ti-Mn-Fe-Al beta Type Alloys: Masahiko Ikeda1; Masato Ueda1; 1Kansai University

Phase Transformations in Ceramics: Science and Applications – Poster Session
Program Organizers: Waltraud Kriven, University of Illinois at Urbana-Champaign; Pankaj Sarin, Oklahoma State University; Ricardo Castro, University of California, Davis; Yu Zhong, Florida International University

Tuesday AM Room: Exhibition Hall Location: DLL Convention Center
October 10, 2017

C-16: Effect of Silicon on Microstructure Development between Al2O3/ SiO2/ZrO2 at 1450°C: Yu-Hsiang Chen1; Kun-Lin Lin1; Chien-Cheng Lin1; 1Department of Materials Science and Engineering, National Chiao Tung University; 2National Nano Device Laboratories, National Applied Research Laboratories

C-17: Lamp Furnace for In-situ Diffraction and Total Scattering Studies in Controlled Atmospheres: Pankaj Sarin1; Daniel Lowry1; Sanjat Ghose2; 1Oklahoma State University; 2Brookhaven National Laboratory

J-54: Microstructure and Texture of Electromagnetic Formed OFHC Copper and Glidcop Al-15: Kurt Diehl1; Daudi Waryoba1; 1Penn State University, DuBois

Rare Earth Metals, Compounds, and Alloys: Synthesis, Processing, Emerging Applications, Recent Advances, Future Challenges – Poster Session
Program Organizers: Yellapu Murty, MC Technologies LLC; Eric Klier, U.S.Army Research Laboratory; Jack Lifton, Jack Lifton LLC

Tuesday AM Room: Exhibition Hall Location: DLL Convention Center
October 10, 2017

J-55: Effect of Processing Method on Thermal Conductivity of Mg-Ce-Zn-Zr Alloy: Lingfei Hu1; Guangxin Wu1; Jieyu Zhang1; 1Shanghai University

Recent Advances in Computer-aided Materials Design – Poster Session
Program Organizers: Huan Tran, University of Connecticut; Ghanshyam Pilania, Los Alamos National Laboratory; Alexey Kolmogorov, Binghamton University, State University of New York; Mina Yoon, Oak Ridge National Laboratory; Son Hoang, University of Connecticut

Tuesday AM Room: Exhibition Hall Location: DLL Convention Center
October 10, 2017

F-37: Computational Investigation of High-coercivity Low-dysprosium Nd-Fe-B Magnets: Catherine Galligan1; Matthew Tianen1; Yongmei Jin1; 1Michigan Technological University

F-38: Data Visualization Tools For Microstructure Discovery in the ASM Microstructure Library: Junrong Huang1; Brian DeCost1; Elizabeth Holm1; 1Carnegie Mellon University

F-39: Formation Energy and Migration Behavior of Complex Point Defect in 0-Ga2O3: Yvette Anguiano1; Sung Cho1; Rohan Mishra1; 1Washington University in St. Louis
F-40: HyperStructure: A Semi-automated Tool for Microstructure Informatics. Toby Francis¹; Brian DeCost¹; Elizabeth Holm¹; 'Carnegie Mellon University

F-41: Investigating the Thermal Conductivity of BAs Using Ab Initio Molecular Dynamics. Szu-Chia Chien¹; Wolfgang Windl¹; 'The Ohio State University

Responsive Functional Nanomaterials – Poster Session

Program Organizers: Ziqi Sun, Queensland University of Technology; Jiahua Zhu, The University of Akron; Wexian Li, Shanghai University; Dawei Wang, University of New South Wales; Wenping Sun, University of Wollongong; Liangzhi Kou, Queensland University of Technology; Wenzhuo Wu, Purdue University

Tuesday AM Room: Exhibition Hall
October 10, 2017 Location: DLL Convention Center

I-7: Preparation and Characterization of LiFePO4/C Composite for Lithium-ion Battery Cathode. Yemin Hu¹; 'Shanghai University

Semiconductor Heterostructures: Theory, Growth, Characterization, and Device Applications – Poster Session

Program Organizer: John Ayers, University of Connecticut

Tuesday AM Room: Exhibition Hall
October 10, 2017 Location: DLL Convention Center

D-11: Application of the Electric Circuit Model (ECM) for Strained Epitaxy to Continuously-graded Layers with Exponential Profiles. Tedi Kujofsa¹; John Ayers¹; 'University of Connecticut

D-12: Characterization of Phase Relationships and Crystallinity in Cu2ZnSnS4 and Related Materials. Elizabeth Pogue¹; Angus Rockett²; 'University of Illinois; 'Colorado School of Mines

D-13: Raman Study on Growth of Cu2ZnSnS4 Thin Films from Non-hydrazine Solutions. Indu Gupta¹; Bhaskar Mohanty¹; 'Thapar University

D-14: Thermal Cycle Annealing and Its Effect on the Threading Dislocation Density in GaAs/Si (001). Tedi Kujofsa¹; John Ayers¹; 'University of Connecticut

D-15: X-ray Dynamical Diffraction Analysis of an Al(0.6)Ga(0.6)/As/GaAs/In(0.15)Ga(0.85)As Separate Confinement Heterostructure (SCH) Laser Grown on a GaAs (001) Substrate. Fahad Althowibi¹; John Ayers¹; 'University of Connecticut

Shaping & Forming of Advanced High Strength Steels II – Poster Session

Program Organizers: Kester Clarke, Colorado School of Mines; Tyson Brown, General Motors Corporation; Myoung-Gyu Lee, Korea University; Amy Clarke, Colorado School of Mines; Kip Findley, Colorado School of Mines; Mark Stoudt, National Institute of Standards and Technology

Tuesday AM Room: Exhibition Hall
October 10, 2017 Location: DLL Convention Center

G-39: Constitutive Study and Modelling of High Temperature Flow Stress for YQ450NQR1 High Strength Micro-alloyed Steel Containing Vanadium. Kun Dou¹; Qiaoyun Li¹; 'State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing

Surface Properties of Biomaterials – Poster Session

Program Organizers: Jason Langhorn, DePuy Synthes Joint Reconstruction; Susmita Bose, Washington State University; Amit Bandyopadhyay, Washington State University; Mangal Roy, Indian Institute of Technology; Venu Varanasi, Texas A & M Health Science Center

Session Chair: Amit Bandyopadhyay, Washington State University

Tuesday AM Room: Exhibition Hall
October 10, 2017 Location: DLL Convention Center

B-10: Mechanical Properties and In Vivo Biocompatibility Characterization of Laser Processed Ti6Al4V – Calcium Phosphate Composites. Jose Avila¹; Kevin Stenberg¹; Susmita Bose¹; Amit Bandyopadhyay¹; 'Washington State University

B-11: Surface Modification of Ti Implants by Ag-doped HA Coating for Load-bearing Bone Tissue Engineering Scaffold. Naboneeta Sarkar¹; Sam Robertson¹; Amit Bandyopadhyay¹; Susmita Bose¹; 'Washington State University

B-12: Surface Properties of Antimicrobial Copper and Its Alloys. Monika Wiałkowicz¹; Piotr Ouch¹; Beata Smyrak¹; Andrzej Mamala¹; Tadeusz Knych¹; Anna Rozanska¹; Dorota Romaniszyn¹; Agnieszka Chmielarczyk¹; Małgorzata Bulanda¹; 'AGH University of Science and Technology; 'Jagiellonian University Medical College

B-13: Titanium-Tantalum Alloy Implants for Surface Modified Load-bearing Application. Indranath Mitra¹; Kevin Stenberg¹; Susmita Bose¹; Amit Bandyopadhyay¹; 'Washington State University

B-14: Tricalcium Phosphate Scaffolds with Controlled Release of Vitamin D3 for Bone Tissue Engineering Applications. Ashley Vu¹; Naboneeta Sarkar¹; Susmita Bose¹; 'Washington State University
H-13: Ceramic Coated Metal Bioimplants by Flame Assisted Flash Sintering: Amir Tavakoli1; Kirk Norasak1; Andrew Hunt2; 1Gimat LLC

H-14: Properties of Self-lubricating and Wear-resistant Coatings at Elevated Temperatures: Chaunbing Huang; Hao Lan; Shige Fang; Tianian Zhang; Weigang Zhang; 1Institute of Process Engineering, Chinese Academy of Sciences; 2Institute of Process Engineering, Chinese Academy of Sciences

Synthesis, Characterization, Properties and Applications of Functional Porous Materials – Poster Session
Program Organizers: Lan Li, Boise State University; Kevin Huang, University of South Carolina; Winnie Wong-Ng, National Institute of Standards and Technology

J-56: Infiltration Studies in Porous Aluminum Formed via Space Holder Method: Cindy Waters1; Daryll Scott; Amy Elliott; 1NCA&T State University; 2Manufacturing Demonstration Facility - Oak Ridge National Laboratory

J-57: Lower Dielectric Constant and Low Loss Insulating Films: Huayang Su; 1Industrial Technology Research Institute

The 9th International Symposium on Green and Sustainable Technologies for Materials Manufacturing and Processing – Poster Session
Program Organizers: Surojit Gupta, University of North Dakota; Jun-ichi Tatami, Yokohama National University; Tatsuki Kagawa, National Institute of Advanced Industrial Science and Technology (AIST); Mituyuajy Singh, Ohio Aerospace Institute, NASA Glenn Research Center; Marsha Bischel, Armstrong World Industries, Inc., PA; Makio Naito, Osaka University, Japan; Hisayuki Suematsu, Nagasaki University of Technology, Japan; Yiquan Wu, Alfred University, NY

J-58: Development of Fiber-reinforced Ceramic Shell for Investment Casting: Rui Guo; 1Hubei University of Automotive Technology

J-59: Effect of Post Process Heat Treatment on Microstructure and Mechanical Properties of Friction-stir-processed Cu-Be Alloy: Yeongseok Lim1; Kwangjin Lee2; 1Chonbuk national university, Korea; 2Korea institute of industrial technology

J-60: Extension of the ‘Inorganic Gel Casting’ Process to the Manufacturing of Borosilicate Glass Foams: Acacio Rincon Romero1; Michele Secco1; Sergio Tamburini1; Enrico Bernardo1; 1University of Padova; 2National Research Council (CNR-IERI)

J-61: Mechanism of Solvent-free Cannizzaro Reaction of Benzaldehydes in Presence of Calcium Hydroxide: Yuri Matsumoto1; Yoshinara Mitoma1; 1Prefectural University of Hiroshima

J-62: Novel ‘Inorganic Gel Casting’ Process for the Manufacturing of Soda-lime Glass Foams: Acacio Rincon Romero1; Enrico Bernardo1; 1University of Padova

J-63: Study on Energy Utilization of High Phosphorus Oolitic Hematite by Different Ironmaking Technologies: Hui San1; 1Beijing Shenuwu Environment & Energy Technology Co., Ltd.

Thermal Protection Materials and Systems – Poster Session
Program Organizers: Sylvia Johnson, NASA Ames Research Center; Jeff DeMange, University of Toledo; Thomas Reimer, German Aerospace Center; Wolfgang Fischer, Airbus Safran Launchers GmbH; Erica Corral, The University of Arizona

H-15: Plasmatron Tests of the ZURAM Carbon-phenolic Ablator: Thomas Reimer1; Christian Zuber1; Alessandro Turchi2; Bernd Helber1; Thierry Magin2; 1DLR; 2VKI

Titanium Powder Metallurgy – Poster Session
Program Organizers: Gnanavinthan Thavanyagam, The University of Waikato; M. Ashraf Imam, George Washington University; Susan Akbowitz, Alcoa Titanium & Engineered Products, Powder Materials Operations; James Paramore, United States Army Research Laboratory

J-65: Effect of the Alumina Content on the Interfacial Reactions between Titanium and Calcium/Zirconia/Alumina Composites: Meng-Wei Lu; Kun-Lin Lin1; Chien-Cheng Lin1; 1Department of Materials Science and Engineering, National Chiao Tung University; 2National Nano Device Laboratories, National Applied Research Laboratories

J-66: Interfacial Reactions between Titanium and Titanium Dioxide/Calcium Oxide/Yttria Composites: Kuan-Ting Lin1; Kun-Lin Lin1; Chien-Cheng Lin1; 1Department of Materials Science and Engineering, National Chiao Tung University; 2National Nano Device Laboratories, National Applied Research Laboratories
Ultra High Performance Metals, Metal Alloys, Intermetallics, and Metal Matrix Composites for Aerospace, Defense, and Automotive Applications – Poster Session

Program Organizers: Ali Yousefiani, Boeing Research and Technology; Troy Topping, California State University, Sacramento; Robert Dillon, Jet Propulsion Laboratory

Tuesday AM Room: Exhibition Hall
October 10, 2017 Location: DLL Convention Center

J-67: Effect of Reinforcing Particles on Local Mechanical Property and Nanoscratch Induced Deformation Behavior in an Ultrafine Grained Precipitation Hardened Al Composite: Blake Fullenwider; Kaka Ma;
1Colorado State University

J-68: First-principles Calculations of Stacking Fault Energies in Quinary High-entropy Alloy Systems: Alexandra Scheer; Joshua Strother; Chelsey Hargather; 1New Mexico Institute of Mining and Technology
INDEX

A
Aaldenberg, E .. 63
Abass, M .. 44
Abbas, K .. 97
Abbott, T .. 153
Abdeljawad, F ... 126
Abdel-Salam, M ... 52
Abdolrahim, N ... 53
Abdul-Jabbar, N ... 52
Aabkowitz, S .. 88, 159
Aaboud, M .. 148
Abrahamson, J ... 102
Abstetar, B .. 112
Abe Al-Rub, R ... 55
Abueidda, D .. 55
Abdu-Farha, F ... 69
Abu-Odeh, A ... 86
Abu-Zahra, N ... 61
Acarn, P .. 143
Acoff, V ... 78
Acheampong, S .. 109
Achimovicová, M 140
Achuthankutty, A .. 145
Ackelid, U .. 34, 35, 56, 57, 72, 73, 90, 91, 112, 113, 146, 147
Ackerson, T .. 62
Acoff, V ... 78
Adachi, T ... 109
Adair, J ... 156
Adams, B .. 42, 62
Adapa, K ... 56
Addamo, K .. 71
Adeosun, S .. 48
Adesina, O ... 56, 143
Afonso, C .. 152
Agarwal, A .. 60, 97, 126, 140, 143, 145, 150, 155
Agarwal, S .. 82
Aggarwal, I ... 75
Agha, A .. 69
Agnew, S ... 37
Agrawal, A ... 85, 86, 117, 119, 151
Agrawal, D ... 49, 68, 85, 107, 157
Ágren, J ... 143
Aguirre-Medel, S .. 134
Agulló-López, F ... 76
Agnunsoye, J ... 140
A Hackett, G .. 102
Ahlfors, M .. 73
Ahmad, A .. 110
Ahmad, I ... 49
Ahmad, R .. 126, 154
Ahmad, T ... 100, 126, 128
Ahmed, A ... 44
Ahmed, N .. 142
Ahmed, S ... 104
Ainlabi, E ... 92, 101
Akolkar, R ... 139
Akpan, E ... 48
Akram, J ... 72
Aksoy, D ... 60
Aktyuz, B .. 42, 62, 78, 79, 96, 118, 135, 150
Alam, M ... 41, 45
Alam, T ... 106, 143
Alavi, S ... 87, 153
Albert, D .. 38
Albu, M ... 107
Alderman, O ... 43
Aldikacti, G .. 139
Al-harbi, H ... 104
Al-Hashem, M ... 142
Ali, A .. 110
Ali, H .. 64
Aliya, D ... 42, 118
Allard, L .. 79
Allcock, H .. 105
Allen, J ... 98
Allison, J ... 40, 143
Al-Maharbi, M .. 118
Al-Mangour, B .. 35, 57, 72
Almer, J ... 101
Al-Meshari, A .. 129
Almesneyd, Y ... 104
Alomari, A ... 123
Alrawahi, Z .. 87
AlWej, V .. 123
Al Al-Rifaie, M .. 103
Al-Sahli, A ... 79
Al-Shabibi, A .. 118
Althowibi, F ... 158
Alvarado-Orozco, J 56
Amador, U ... 140
Amaya, H ... 79
Amendola, R ... 102
Amerinatanz, A ... 35, 58
Amezawa, K ... 137
Aminforoughi, B .. 113
Amoroso, J ... 45, 65, 81, 101, 123, 124, 138, 139, 154
Amsler, M ... 88
Anasori, B ... 156
Anazi, M ... 37
Anber, E ... 108
Anderko, A ... 108
Andersen, J ... 103
Andersen, O ... 105, 106, 128, 142, 156
Anderson, A ... 113
Anderson, C ... 130
Anderson, E ... 33, 101
Anderson, I ... 96, 117
Anderson, J ... 89
Anderson, K ... 107, 129, 136
Anderson, M ... 108
Anderson, N ... 59, 119
Anderson, P ... 58, 141, 156
Anderson, R ... 52, 131
Ando, T .. 45
Andreaco, A ... 132
Andreski, B .. 57
Andrianov, A ... 109
Ang, C .. 82, 114
Angelici Avincola, V 70, 121
Ang, H .. 153
Angle, J ... 48, 67
Anguiano, Y ... 157
INDEX

Aning, A 133, 149
Aniszewska, J 146
An, K65
Anknler, J78
Ansari, F 109
Ansari, H80
Anthony, D119
Antony samy, A 103
Anu, N84
An, X107
Anza, I153
Anżel, I58, 97
Apocalyptic, M80
Apblett, A 52, 101, 145
Apelian, D 54, 81, 100, 122, 123, 153
Apetre, N141
Aposer, N134
Apte, P68
Arakawa, K99
Araki, M126
Arey, B63
Arif, R135
Arnold, A110
Arnold, B 42, 62, 78
Arnold, M55
Arora, A153
Arqueros, L133
Arroyave, R 34, 35, 48, 67, 72, 84, 86, 106, 126, 128, 141, 143
Arroyave, R117
Arthurs, N56
Arzoumanid, A74
Asadi, A140
Asadi, E143, 153
Asadikya, M 58, 68, 73, 114
A Salvador, P102
Asbani, B93
Asfahani, R36
Asgar, H 84, 104, 109
Asif, S74
Aslam, A100
Asle Zaeem, M 37, 39, 122, 123, 127, 136, 144
Asmusen, M 82, 102, 125, 155
Asphahani, A81, 87
Asta, M64
Atamanuk, K142
Atria, J119
Attari, V 117, 126
Atuanya, C140
Atwater, M 131, 150
Atulliff, J118
Aurora, P49
Auroy, P75
Averallone, J119
Averback, R103
Avila, J 87, 158
Awaad, M117
Awadallah, O151
Awadelkarim, O115
Aydellot, E117
Aydin, E 84, 156
Aydogan, E41, 45
Ayers, J158
Ayoko, G86
Ayoub, S55
Azadfar, M 103, 155
Babaie, E105
Babu, N63
Babu, S 34, 35, 56, 72, 73, 90, 91, 112, 113, 126, 132, 146, 147
Bachhav, M101
Bachmann, F141
Backman, L39
Badylak, S105
Bae, G51
Baek, B150
Baek, C151
Baek, J43
Bagh, C97
Bajriculik, O156
Bahrami, A66
Bahr, D126
Baig, N 35, 82, 85, 103
Bai, J63
Baikie, T156
Bailey, N96
Bair, J123
Bai, X 41, 54
Bai, Y131
Baker, C75
Baker, D 97, 119, 151
Baker, E137
Baker, R80
Balachandran, S154
Balachandran, U104
Balani, K156
Balatsky, A33
Baláž, M140
Baláž, P140
Bal, B 87, 109
Bale, C 84, 128
Bale, H98, 141
Balk, J74
Balk, T 37, 59, 74, 92
Balmain, J114
Balogun, Y131
Banadaki, A116
Banda, M136
Bandi, B36, 121
Bandyopadhyay, A 51, 87, 109, 158
Banerjee, D 51, 75, 106, 107
Banerjee, J63
Banerjee, R 72, 84, 106, 107, 143
Banerjee, S52
Bang, J150
Banobre, A42, 78
Bansal, N 97, 98, 120, 121, 136, 137, 151, 152
Barn, M153
Barborak, D 45, 64, 80, 99, 121, 138, 152
Barbosa, N 89, 112, 132, 146
Bartolo, L 40, 41, 61, 77, 95, 116
Bartolucci, S142
Bartout, J33
Bartsch, C134
Barui, S105
Bari, V133
Barlat, F51
Barmak, K107
Barnard, H137
Barnes, R91
Barnett, B 125, 147
Barnhart, B35
Barnhart, J34
Baron, K61
Barr, P132
Barr, C37, 93
Barrett, C 95, 113, 120
Bartolo, L 40, 41, 61, 77, 95, 116
Bartolucci, S142
Bartrout, J33
Bartsch, C134
Barui, S105
Basak, A57
Baskaya, U139
Baskes, M 122, 136
Basu, B 67, 105
Batmunkh, M50
Bauchy, M 39, 60, 63, 79
INDEX
<table>
<thead>
<tr>
<th>Name</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bouilly, J</td>
<td>54</td>
</tr>
<tr>
<td>Bouman, C</td>
<td>82, 136</td>
</tr>
<tr>
<td>Bourrell, D</td>
<td>90</td>
</tr>
<tr>
<td>Boyce, B</td>
<td>60</td>
</tr>
<tr>
<td>Boyd, D</td>
<td>75</td>
</tr>
<tr>
<td>Boyer, P</td>
<td>105, 128</td>
</tr>
<tr>
<td>Boyette, B</td>
<td>48</td>
</tr>
<tr>
<td>Boylan, F</td>
<td>81</td>
</tr>
<tr>
<td>Boyle, T</td>
<td>113</td>
</tr>
<tr>
<td>Bracker, G</td>
<td>97</td>
</tr>
<tr>
<td>Brady, M</td>
<td>41, 92, 102</td>
</tr>
<tr>
<td>Braescu, L</td>
<td>62</td>
</tr>
<tr>
<td>Braeuhaus, D</td>
<td>135</td>
</tr>
<tr>
<td>Brahme, A</td>
<td>104</td>
</tr>
<tr>
<td>Branagan, D</td>
<td>36, 58, 74, 92, 115, 133, 148</td>
</tr>
<tr>
<td>Brand, M</td>
<td>55, 113</td>
</tr>
<tr>
<td>Bratland, P</td>
<td>36, 147</td>
</tr>
<tr>
<td>Braun, J</td>
<td>39, 102</td>
</tr>
<tr>
<td>Braun, P</td>
<td>144</td>
</tr>
<tr>
<td>Braun, R</td>
<td>64</td>
</tr>
<tr>
<td>Bravo, L</td>
<td>156</td>
</tr>
<tr>
<td>Brennan, M</td>
<td>113</td>
</tr>
<tr>
<td>Brennan, P</td>
<td>70</td>
</tr>
<tr>
<td>Brennan, R</td>
<td>57, 85, 107</td>
</tr>
<tr>
<td>Brenne, F</td>
<td>113</td>
</tr>
<tr>
<td>Brenner, D</td>
<td>39</td>
</tr>
<tr>
<td>Brewer, G</td>
<td>131</td>
</tr>
<tr>
<td>Brewer, L</td>
<td>90, 112</td>
</tr>
<tr>
<td>Briancin, J</td>
<td>140</td>
</tr>
<tr>
<td>Bridges, D</td>
<td>64, 65</td>
</tr>
<tr>
<td>Briggs, S</td>
<td>37, 45, 81, 138</td>
</tr>
<tr>
<td>Brinkman, K</td>
<td>139</td>
</tr>
<tr>
<td>Briot, N</td>
<td>37, 59</td>
</tr>
<tr>
<td>Britz, D</td>
<td>97</td>
</tr>
<tr>
<td>Brochu, M</td>
<td>45, 56, 64, 72, 80, 99, 121, 138, 152</td>
</tr>
<tr>
<td>Broderick, T</td>
<td>81, 143</td>
</tr>
<tr>
<td>Brody, H</td>
<td>68</td>
</tr>
<tr>
<td>Brongers, M</td>
<td>132</td>
</tr>
<tr>
<td>Bronson, T</td>
<td>33</td>
</tr>
<tr>
<td>Brooke, E</td>
<td>80</td>
</tr>
<tr>
<td>Brothers, E</td>
<td>78</td>
</tr>
<tr>
<td>Brothers, M</td>
<td>40</td>
</tr>
<tr>
<td>Brown, A</td>
<td>105</td>
</tr>
<tr>
<td>Brown, D</td>
<td>101, 116, 132</td>
</tr>
<tr>
<td>Brown, E</td>
<td>96</td>
</tr>
<tr>
<td>Browning, N</td>
<td>44</td>
</tr>
<tr>
<td>Browning, P</td>
<td>110</td>
</tr>
<tr>
<td>Brown, J</td>
<td>58</td>
</tr>
<tr>
<td>Brown, R</td>
<td>47</td>
</tr>
<tr>
<td>Brown, T</td>
<td>51, 69, 86, 158</td>
</tr>
<tr>
<td>Brown, T</td>
<td>43, 63, 102, 119, 120</td>
</tr>
<tr>
<td>Bruckman, L</td>
<td>117</td>
</tr>
<tr>
<td>Bruning, R</td>
<td>108</td>
</tr>
<tr>
<td>Brundo, C</td>
<td>33, 55, 101, 146</td>
</tr>
<tr>
<td>Brussell, F</td>
<td>110</td>
</tr>
<tr>
<td>Buck, E</td>
<td>37</td>
</tr>
<tr>
<td>Bui, T</td>
<td>71</td>
</tr>
<tr>
<td>Bukináková, Z</td>
<td>140</td>
</tr>
<tr>
<td>Bukkapatnam, S</td>
<td>34</td>
</tr>
<tr>
<td>Bulanda, M</td>
<td>51, 158</td>
</tr>
<tr>
<td>Bumgardner, C</td>
<td>114</td>
</tr>
<tr>
<td>Bunn, J</td>
<td>90, 142</td>
</tr>
<tr>
<td>Buntain, R</td>
<td>122</td>
</tr>
<tr>
<td>Buongiorno Nardelli, M</td>
<td>61</td>
</tr>
<tr>
<td>Burciaga-Diaz, O</td>
<td>155</td>
</tr>
<tr>
<td>Burda, C</td>
<td>50</td>
</tr>
<tr>
<td>Burke, M</td>
<td>56, 146</td>
</tr>
<tr>
<td>Burkhartt, I</td>
<td>56</td>
</tr>
<tr>
<td>Burkins, M</td>
<td>130</td>
</tr>
<tr>
<td>Burnett, T</td>
<td>46</td>
</tr>
<tr>
<td>Burns, M</td>
<td>33, 36, 147</td>
</tr>
<tr>
<td>Burton, B</td>
<td>144</td>
</tr>
<tr>
<td>Busse, L</td>
<td>75</td>
</tr>
<tr>
<td>Bustillos, J</td>
<td>145</td>
</tr>
<tr>
<td>Buterbaugh, I</td>
<td>43</td>
</tr>
<tr>
<td>Butler, B</td>
<td>88, 147</td>
</tr>
<tr>
<td>Butler, T</td>
<td>71</td>
</tr>
<tr>
<td>Butt, M</td>
<td>126, 154</td>
</tr>
<tr>
<td>Buzolin, R</td>
<td>123, 154</td>
</tr>
<tr>
<td>Byun, T</td>
<td>41, 45</td>
</tr>
<tr>
<td>Cafo, M</td>
<td>120</td>
</tr>
<tr>
<td>Cacciotti, I</td>
<td>33</td>
</tr>
<tr>
<td>Cady, C</td>
<td>40</td>
</tr>
<tr>
<td>Cai, Q</td>
<td>92</td>
</tr>
<tr>
<td>Cai, X</td>
<td>92</td>
</tr>
<tr>
<td>Cakmak, E</td>
<td>34</td>
</tr>
<tr>
<td>Caldwell, M</td>
<td>124</td>
</tr>
<tr>
<td>Calhoun, C</td>
<td>69</td>
</tr>
<tr>
<td>Caliskan, S</td>
<td>127, 151</td>
</tr>
<tr>
<td>Callahan, J</td>
<td>40, 61</td>
</tr>
<tr>
<td>Callahan, P</td>
<td>46, 139</td>
</tr>
<tr>
<td>Callaway, E</td>
<td>121</td>
</tr>
<tr>
<td>Calvert, E</td>
<td>88</td>
</tr>
<tr>
<td>Calvez, L</td>
<td>119</td>
</tr>
<tr>
<td>Campbell, C</td>
<td>40, 49, 61, 68, 72, 77, 95, 116, 143</td>
</tr>
<tr>
<td>Campbell, M</td>
<td>108</td>
</tr>
<tr>
<td>Campion, I</td>
<td>33</td>
</tr>
<tr>
<td>Cao, J</td>
<td>97, 99, 148</td>
</tr>
<tr>
<td>Cao, L</td>
<td>131, 145</td>
</tr>
<tr>
<td>Cao, P</td>
<td>39</td>
</tr>
<tr>
<td>Cao, W</td>
<td>145</td>
</tr>
<tr>
<td>Cao, Y</td>
<td>66</td>
</tr>
<tr>
<td>Capo, J</td>
<td>97</td>
</tr>
<tr>
<td>Caputo, M</td>
<td>36</td>
</tr>
<tr>
<td>Caravaca, E</td>
<td>33</td>
</tr>
<tr>
<td>Carden, W</td>
<td>79, 135</td>
</tr>
<tr>
<td>Carlo, F</td>
<td>114</td>
</tr>
<tr>
<td>Carlson, K</td>
<td>139, 145</td>
</tr>
<tr>
<td>Carney, E</td>
<td>78</td>
</tr>
<tr>
<td>Carpenter, J</td>
<td>55</td>
</tr>
<tr>
<td>Carrier, P</td>
<td>91</td>
</tr>
<tr>
<td>Carrier, J</td>
<td>35</td>
</tr>
<tr>
<td>Carroll, J</td>
<td>60, 91</td>
</tr>
<tr>
<td>Carter, A</td>
<td>65</td>
</tr>
<tr>
<td>Carter, J</td>
<td>40, 117, 120, 137</td>
</tr>
<tr>
<td>Carter, W</td>
<td>105</td>
</tr>
<tr>
<td>Carty, W</td>
<td>38, 59, 75, 120</td>
</tr>
<tr>
<td>Carver, J</td>
<td>33</td>
</tr>
<tr>
<td>Carver, K</td>
<td>90, 113</td>
</tr>
<tr>
<td>Casalena, L</td>
<td>141</td>
</tr>
<tr>
<td>Case, R</td>
<td>36</td>
</tr>
<tr>
<td>Casler, A</td>
<td>118</td>
</tr>
<tr>
<td>Castaneda, H</td>
<td>110, 155</td>
</tr>
<tr>
<td>Castaneda-Lopez, H</td>
<td>73, 103</td>
</tr>
<tr>
<td>Castro, R</td>
<td>107, 129, 144, 157</td>
</tr>
<tr>
<td>Catalini, D</td>
<td>41</td>
</tr>
<tr>
<td>Cathelinaud, M</td>
<td>119</td>
</tr>
<tr>
<td>Cavalli, M</td>
<td>53</td>
</tr>
<tr>
<td>Cebron, D</td>
<td>85</td>
</tr>
<tr>
<td>Cepeda-Sánchez, N</td>
<td>155</td>
</tr>
<tr>
<td>Cepeda-Sánchez, N</td>
<td>140, 155</td>
</tr>
<tr>
<td>Cernaianu Stoianovici, A</td>
<td>151</td>
</tr>
</tbody>
</table>
Dempsey, R 120
De Neufville, J 108
Deng, G 131
Deng, K 69, 86
Deng, L 43, 124
Deng, Y 86
Denney, P 142, 157
Dennies, D 42, 62, 79, 96, 97, 118, 135, 150
d’Entremont, A 91
de Pablo, J 40
De Pond, P 91
De Portu, G 41
De Rango, D 149
Desai, T 94
Desbordes, M 54
Deschamps, J 110
Deshpande, A 107
de Sousa Oliveira, L 108
de Souza, R 98
De Souza, R 44, 64, 99
Detrois, M 95
Devallance, D 114
Devanathan, R 60, 71
Devaraj, A 107
Dever, C 149
DeVito, M 34
Devkota, J 131
Dexter, M 58
Deymier, P 43
Dey, R 153
Diak, B 100
Diao, C 113
Diao, H 61
Diaz, A 112
Diaz Fernandez, D 115
Diaz-Guillén, J 140, 155
Dibiase, R 68
Dickens, T 34
Dickey, E 49, 120
Didenko, T 42
Diehl, K 157
Diemer, R 128
Dieselberg, M 118
Digavalli, R 153
Dikin, D 126
Diky, V 95
Dillon, P 71
Dillon, R 54, 71, 89, 160
Dillon, S 116
Dima, A41, 85
Dinda, G 56, 132
Ding, C 102, 133
Ding, J 113
Dingreville, R 39, 60
Ding, S86
Ding, W 81, 100, 122, 153
Ding, Z85
Diniz, M 153
Dinwiddie, R 33, 106, 113
Dirmyer, M 55
Divan, R 142
Dlouhy, I 109, 155
Dook, J85
Dodamani, S62
Domack, M 136
Dombrowski, D 146
Dominguez-Rodriguez, A 98
Domich, V 102, 117
Donahue, C 94
Donaldson, O59
Dong, B 94, 116, 134
Dong, F 117
Dong, J88
Dong, S 137
Dong, X 122
Dong, Y 34, 41, 51, 73, 87, 88
Dongyang, M 88, 155
Donovan, B66
Donthu, S78
Dooley, S 134
Dorfan, M 52, 70, 87, 110, 159
Dorri, A 114
Dorri, M 109
Dorri Moghadam, A 73, 91, 114, 125, 147
Dorris, S 104
dos Reis, R74
Dotsenko, A57
Douve, H 119
Dou, K 158
Dowden, P83
Downey, J 136
Doynov, N 121, 138
Dozie-Nwachukwu, S 84
Draper, S70
Draxin, J 75, 97, 116
Dregia, S80
Dreizin, E 103
Driscoll, D 134
Driscoll, J 47, 66, 83, 156
D Rollett, A 102
Drury, D63
Dryepondt, S 57, 82, 101, 113
Duan, C64
Duan, H 97, 99, 133, 148
Duan, Y 45, 144
Duchek, M 148
Dudeck, K33
Dudziak, T70
Duff, M64
Du, H 66, 119
Du, J 39, 43, 59, 120, 124, 136, 151
Du, K 148
Duley, W 45, 153
Dunand, D 54, 68, 106, 112, 130, 141, 142
Duncan, A91
Dunin-Borkowski, R66
Dunlap, B 136
Dunn, A 127
Dunn, B47
Dunn, H57
Dunstan, M 88, 90, 159
Duong, T 126
Dupont, P 42, 62, 78, 79, 96, 118, 135, 150
Durcholz, N 131
Durejko, T 89, 146
Durón-Sifuentes, C 155
Durucu, E84
Du, S62
Dutková, E 140
Dutta, I 46, 65, 82, 102, 124, 139, 154
Dutta, M 133
Duty, C 112
Duval, W78
Du, X 82, 99
Du, Y 125
Du, Z 129
Duz, V 88, 107
Dyar, C 119
Dyer, A79
Dyer, M43
<table>
<thead>
<tr>
<th>Name</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dykeman, D</td>
<td>85</td>
</tr>
<tr>
<td>Džugan, J</td>
<td>90</td>
</tr>
<tr>
<td>E</td>
<td></td>
</tr>
<tr>
<td>Earlam, M</td>
<td>108</td>
</tr>
<tr>
<td>Easley, T</td>
<td>135</td>
</tr>
<tr>
<td>Easton, M</td>
<td>153</td>
</tr>
<tr>
<td>Eberhart, M</td>
<td>123</td>
</tr>
<tr>
<td>Echavarria-Hidalgo, F</td>
<td>57, 132</td>
</tr>
<tr>
<td>Echlin, M</td>
<td>79</td>
</tr>
<tr>
<td>Eckel, Z</td>
<td>137</td>
</tr>
<tr>
<td>Eckert, H</td>
<td>75</td>
</tr>
<tr>
<td>Edirisinghe, M</td>
<td>47, 67, 84, 105, 127, 156</td>
</tr>
<tr>
<td>Edmonds, D</td>
<td>74</td>
</tr>
<tr>
<td>Edmondson, P</td>
<td>82, 101, 138</td>
</tr>
<tr>
<td>Edwards, D</td>
<td>78</td>
</tr>
<tr>
<td>Edwards, R</td>
<td>62</td>
</tr>
<tr>
<td>Edwards, T</td>
<td>124</td>
</tr>
<tr>
<td>Efaw, C</td>
<td>114, 125</td>
</tr>
<tr>
<td>Eff, M</td>
<td>81</td>
</tr>
<tr>
<td>Eftink, B</td>
<td>41, 45</td>
</tr>
<tr>
<td>Eggert, R</td>
<td>130</td>
</tr>
<tr>
<td>Eimura, T</td>
<td>99</td>
</tr>
<tr>
<td>Einarsrud, M</td>
<td>83</td>
</tr>
<tr>
<td>Eisenlohr, P</td>
<td>141, 152</td>
</tr>
<tr>
<td>Eikert, T</td>
<td>55</td>
</tr>
<tr>
<td>Elkins-Daukes, N</td>
<td>63</td>
</tr>
<tr>
<td>Ektov, A</td>
<td>144</td>
</tr>
<tr>
<td>Elahinia, M</td>
<td>35, 58, 147</td>
</tr>
<tr>
<td>El-Awady, J</td>
<td>52, 95, 121</td>
</tr>
<tr>
<td>El-Hadad, S</td>
<td>52</td>
</tr>
<tr>
<td>Elhadj, S</td>
<td>134</td>
</tr>
<tr>
<td>El Kadiri, H</td>
<td>95, 120</td>
</tr>
<tr>
<td>Elliott, A</td>
<td>33, 106, 146, 159</td>
</tr>
<tr>
<td>Ellis, D</td>
<td>35</td>
</tr>
<tr>
<td>El Marssi, M</td>
<td>93</td>
</tr>
<tr>
<td>Elmer, J</td>
<td>132</td>
</tr>
<tr>
<td>Elmi Hosseini, S</td>
<td>138</td>
</tr>
<tr>
<td>Elsayed, H</td>
<td>48, 111</td>
</tr>
<tr>
<td>Elwany, A</td>
<td>34, 35, 72, 126, 141</td>
</tr>
<tr>
<td>Elward, J</td>
<td>85</td>
</tr>
<tr>
<td>Embrey, L</td>
<td>150, 155</td>
</tr>
<tr>
<td>Emdadi, A</td>
<td>39</td>
</tr>
<tr>
<td>Emery, J</td>
<td>60</td>
</tr>
<tr>
<td>Emmelmann, C</td>
<td>56</td>
</tr>
<tr>
<td>Enbothula, S</td>
<td>73</td>
</tr>
<tr>
<td>Engblom, M</td>
<td>128</td>
</tr>
<tr>
<td>England, R</td>
<td>34</td>
</tr>
<tr>
<td>Enloe, C</td>
<td>36, 58, 74, 92, 115, 133, 148</td>
</tr>
<tr>
<td>Enriquez, E</td>
<td>83</td>
</tr>
<tr>
<td>Enriquez Gutierrez, R</td>
<td>113</td>
</tr>
<tr>
<td>Enriquez, J</td>
<td>134</td>
</tr>
<tr>
<td>Enz, J</td>
<td>56</td>
</tr>
<tr>
<td>Enz, P</td>
<td>63</td>
</tr>
<tr>
<td>Eo, D</td>
<td>90</td>
</tr>
<tr>
<td>Epperson, J</td>
<td>118, 135</td>
</tr>
<tr>
<td>Epting, W</td>
<td>137</td>
</tr>
<tr>
<td>Erb, D</td>
<td>145</td>
</tr>
<tr>
<td>Erfanian-Naziffoosi, H</td>
<td>84</td>
</tr>
<tr>
<td>Ergun, C</td>
<td>84, 156</td>
</tr>
<tr>
<td>Eriksson, G</td>
<td>84</td>
</tr>
<tr>
<td>Ernst, F</td>
<td>97, 116, 139</td>
</tr>
<tr>
<td>Esham, K</td>
<td>141</td>
</tr>
<tr>
<td>Eslamimanesh, A</td>
<td>108</td>
</tr>
<tr>
<td>Espinosa-Arbelaez, D</td>
<td>56</td>
</tr>
<tr>
<td>Esquivel, E</td>
<td>123</td>
</tr>
<tr>
<td>Esquivel, J</td>
<td>54</td>
</tr>
<tr>
<td>Esser, B</td>
<td>44, 54</td>
</tr>
<tr>
<td>Estournes, C</td>
<td>85</td>
</tr>
<tr>
<td>Etesami, S</td>
<td>153</td>
</tr>
<tr>
<td>Evans, J</td>
<td>41</td>
</tr>
<tr>
<td>Evans, T</td>
<td>114, 141</td>
</tr>
<tr>
<td>Evdokimov, A</td>
<td>121</td>
</tr>
<tr>
<td>Fadayomi, O</td>
<td>139</td>
</tr>
<tr>
<td>Fahrenholtz, W</td>
<td>39, 67, 116, 120</td>
</tr>
<tr>
<td>Faierson, E</td>
<td>34</td>
</tr>
<tr>
<td>Falodun, O</td>
<td>66, 88</td>
</tr>
<tr>
<td>Faltens, T</td>
<td>40</td>
</tr>
<tr>
<td>Fan, C</td>
<td>59</td>
</tr>
<tr>
<td>Fang, S</td>
<td>159</td>
</tr>
<tr>
<td>Fang, Y</td>
<td>107, 154</td>
</tr>
<tr>
<td>Fang, Z</td>
<td>88, 90</td>
</tr>
<tr>
<td>Fan, H</td>
<td>66, 147</td>
</tr>
<tr>
<td>Fan, L</td>
<td>116, 125</td>
</tr>
<tr>
<td>Fan, T</td>
<td>96</td>
</tr>
<tr>
<td>Fan, X</td>
<td>43, 148, 151</td>
</tr>
<tr>
<td>Fan, Y</td>
<td>54</td>
</tr>
<tr>
<td>Fan, Z</td>
<td>39, 81, 100, 122, 123, 153</td>
</tr>
<tr>
<td>Farhadi, F</td>
<td>49</td>
</tr>
<tr>
<td>Farjami, S</td>
<td>46, 124</td>
</tr>
<tr>
<td>Farkas, N</td>
<td>36</td>
</tr>
<tr>
<td>Farooq, A</td>
<td>157</td>
</tr>
<tr>
<td>Farotade, G</td>
<td>88, 89</td>
</tr>
<tr>
<td>Farrow, A</td>
<td>33, 55, 146</td>
</tr>
<tr>
<td>Fassl, L</td>
<td>118</td>
</tr>
<tr>
<td>Fathi Sola, J</td>
<td>40</td>
</tr>
<tr>
<td>Fatoba, O</td>
<td>92, 114</td>
</tr>
<tr>
<td>Fattebert, J</td>
<td>104</td>
</tr>
<tr>
<td>Faucett, C</td>
<td>121</td>
</tr>
<tr>
<td>Faucett, D</td>
<td>98, 121</td>
</tr>
<tr>
<td>Favcett, R</td>
<td>81</td>
</tr>
<tr>
<td>Feathers, M</td>
<td>92</td>
</tr>
<tr>
<td>Feaugas, X</td>
<td>114</td>
</tr>
<tr>
<td>Fedkin, M</td>
<td>39</td>
</tr>
<tr>
<td>Fedors, J</td>
<td>153</td>
</tr>
<tr>
<td>Feigelson, B</td>
<td>75, 97</td>
</tr>
<tr>
<td>Fekety, C</td>
<td>88</td>
</tr>
<tr>
<td>Fekirini, H</td>
<td>153</td>
</tr>
<tr>
<td>Feng, B</td>
<td>38</td>
</tr>
<tr>
<td>Feng, J</td>
<td>57</td>
</tr>
<tr>
<td>Feng, L</td>
<td>131</td>
</tr>
<tr>
<td>Feng, M</td>
<td>102</td>
</tr>
<tr>
<td>Feng, R</td>
<td>82</td>
</tr>
<tr>
<td>Feng, W</td>
<td>93</td>
</tr>
<tr>
<td>Feng, Z</td>
<td>64, 65, 80, 116</td>
</tr>
<tr>
<td>Fenn, D</td>
<td>33</td>
</tr>
<tr>
<td>Fenno, C</td>
<td>105</td>
</tr>
<tr>
<td>Fensin, S</td>
<td>90, 120, 136</td>
</tr>
<tr>
<td>Ference, J</td>
<td>156</td>
</tr>
<tr>
<td>Fergus, J</td>
<td>40, 61</td>
</tr>
<tr>
<td>Ferguson, C</td>
<td>100</td>
</tr>
<tr>
<td>Ferguson, G</td>
<td>147</td>
</tr>
<tr>
<td>Fernandez, A</td>
<td>52</td>
</tr>
<tr>
<td>Feroze, M</td>
<td>126</td>
</tr>
<tr>
<td>Ferri, K</td>
<td>65</td>
</tr>
<tr>
<td>Ferro, G</td>
<td>62</td>
</tr>
<tr>
<td>Feyissa, F</td>
<td>153</td>
</tr>
<tr>
<td>Fezzaa, K</td>
<td>114</td>
</tr>
<tr>
<td>Fuentes, A</td>
<td>155</td>
</tr>
<tr>
<td>Field, D</td>
<td>36, 71, 153, 156</td>
</tr>
<tr>
<td>Field, K</td>
<td>81, 123</td>
</tr>
<tr>
<td>Field, R</td>
<td>143</td>
</tr>
<tr>
<td>Findlay, K</td>
<td>36, 37, 51, 58, 65, 69, 86, 123, 158</td>
</tr>
<tr>
<td>Finland, B</td>
<td>121</td>
</tr>
<tr>
<td>Fink, C</td>
<td>99</td>
</tr>
<tr>
<td>Finnis, M</td>
<td>68</td>
</tr>
<tr>
<td>Fiore, S</td>
<td>37, 92</td>
</tr>
<tr>
<td>Firdosy, S</td>
<td>143</td>
</tr>
<tr>
<td>Firrao, D</td>
<td>62</td>
</tr>
<tr>
<td>Fischer, W</td>
<td>53, 159</td>
</tr>
<tr>
<td>Fischione, P</td>
<td>46, 114</td>
</tr>
<tr>
<td>Fisher, B</td>
<td>91</td>
</tr>
<tr>
<td>Fisher, C</td>
<td>103, 144</td>
</tr>
<tr>
<td>Fisk, Z</td>
<td>55</td>
</tr>
<tr>
<td>Fitzpatrick-Schmidt, K</td>
<td>48</td>
</tr>
<tr>
<td>Fitzsimmons, M</td>
<td>83</td>
</tr>
<tr>
<td>Name</td>
<td>Page(s)</td>
</tr>
<tr>
<td>---------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Ghauri, F</td>
<td>110</td>
</tr>
<tr>
<td>Ghazisaeidi, M</td>
<td>108, 141</td>
</tr>
<tr>
<td>Gheribi, A</td>
<td>84, 106</td>
</tr>
<tr>
<td>Ghelinia, A</td>
<td>46</td>
</tr>
<tr>
<td>Ghose, S</td>
<td>157</td>
</tr>
<tr>
<td>Ghoshal, A</td>
<td>156</td>
</tr>
<tr>
<td>Ghosh, D</td>
<td>136</td>
</tr>
<tr>
<td>Ghosh, S</td>
<td>39</td>
</tr>
<tr>
<td>Gibala, R</td>
<td>40, 61</td>
</tr>
<tr>
<td>Gieske, M</td>
<td>36</td>
</tr>
<tr>
<td>Gigiotti, C</td>
<td>156</td>
</tr>
<tr>
<td>Gilchrist, J</td>
<td>63</td>
</tr>
<tr>
<td>Gild, J</td>
<td>105</td>
</tr>
<tr>
<td>Gil, J</td>
<td>123</td>
</tr>
<tr>
<td>Gill, A</td>
<td>65</td>
</tr>
<tr>
<td>Gillard, A</td>
<td>88, 89</td>
</tr>
<tr>
<td>Ginzburg, V</td>
<td>82</td>
</tr>
<tr>
<td>Giri, A</td>
<td>39, 61, 62, 66, 102, 117, 129</td>
</tr>
<tr>
<td>Girina, O</td>
<td>36</td>
</tr>
<tr>
<td>Girin, O</td>
<td>154</td>
</tr>
<tr>
<td>Glagolenko, I</td>
<td>101</td>
</tr>
<tr>
<td>Glatzel, U</td>
<td>88, 89</td>
</tr>
<tr>
<td>Glazoff, M</td>
<td>138</td>
</tr>
<tr>
<td>Gleeson, B</td>
<td>70, 114, 132</td>
</tr>
<tr>
<td>Glenk, A</td>
<td>61</td>
</tr>
<tr>
<td>Glukhov, P</td>
<td>147</td>
</tr>
<tr>
<td>Gnaepel-Herold, T</td>
<td>69</td>
</tr>
<tr>
<td>Gobin, D</td>
<td>91</td>
</tr>
<tr>
<td>Gochez, R</td>
<td>129</td>
</tr>
<tr>
<td>Goel, K</td>
<td>40</td>
</tr>
<tr>
<td>Goel, S</td>
<td>73</td>
</tr>
<tr>
<td>Goethe, J</td>
<td>101</td>
</tr>
<tr>
<td>Goeuriot, D</td>
<td>68</td>
</tr>
<tr>
<td>Gogotsi, Y</td>
<td>88</td>
</tr>
<tr>
<td>Goins, P</td>
<td>77, 141, 145</td>
</tr>
<tr>
<td>Golden, R</td>
<td>129</td>
</tr>
<tr>
<td>Goldston, J</td>
<td>125</td>
</tr>
<tr>
<td>Golubev, I</td>
<td>138, 153</td>
</tr>
<tr>
<td>Gomez, E</td>
<td>43</td>
</tr>
<tr>
<td>Gomez-Garcia, D</td>
<td>98</td>
</tr>
<tr>
<td>Gong, C</td>
<td>98, 121</td>
</tr>
<tr>
<td>Gong, J</td>
<td>92</td>
</tr>
<tr>
<td>Gong, W</td>
<td>131</td>
</tr>
<tr>
<td>Gonzales, M</td>
<td>119</td>
</tr>
<tr>
<td>Gonzalez, L</td>
<td>66</td>
</tr>
<tr>
<td>Gonzalez Szwacki, N</td>
<td>38, 75</td>
</tr>
<tr>
<td>Goodman, D</td>
<td>82</td>
</tr>
<tr>
<td>Goodwin, F</td>
<td>37, 110, 148, 149</td>
</tr>
<tr>
<td>Gopalan, R</td>
<td>124</td>
</tr>
<tr>
<td>Gopalan, V</td>
<td>93</td>
</tr>
<tr>
<td>Gokalo, O</td>
<td>100</td>
</tr>
<tr>
<td>Gordillo, M</td>
<td>46</td>
</tr>
<tr>
<td>Gorriss, M</td>
<td>57</td>
</tr>
<tr>
<td>Goswami, R</td>
<td>102</td>
</tr>
<tr>
<td>Goto, A</td>
<td>146</td>
</tr>
<tr>
<td>Gotor, F</td>
<td>125</td>
</tr>
<tr>
<td>Goto, T</td>
<td>75, 97, 120, 136, 151</td>
</tr>
<tr>
<td>Gould, J</td>
<td>121, 123</td>
</tr>
<tr>
<td>Govender, G</td>
<td>81, 100, 122, 153</td>
</tr>
<tr>
<td>Govindan, S</td>
<td>73, 124</td>
</tr>
<tr>
<td>Grabowski, B</td>
<td>44, 61, 98</td>
</tr>
<tr>
<td>Graca, P</td>
<td>127</td>
</tr>
<tr>
<td>Graef, M</td>
<td>82</td>
</tr>
<tr>
<td>Graeve, O</td>
<td>111</td>
</tr>
<tr>
<td>Graham, J</td>
<td>76, 138</td>
</tr>
<tr>
<td>Grande, T</td>
<td>64, 83</td>
</tr>
<tr>
<td>Grant, G</td>
<td>41</td>
</tr>
<tr>
<td>Grauhardt, E</td>
<td>125</td>
</tr>
<tr>
<td>Gray, G</td>
<td>90</td>
</tr>
<tr>
<td>Gray, M</td>
<td>110</td>
</tr>
<tr>
<td>Greaney, A</td>
<td>44, 108, 141</td>
</tr>
<tr>
<td>Greeley, D</td>
<td>112</td>
</tr>
<tr>
<td>Gregoire, B</td>
<td>52</td>
</tr>
<tr>
<td>Gregory, O</td>
<td>114</td>
</tr>
<tr>
<td>Grego, T</td>
<td>42</td>
</tr>
<tr>
<td>Grell, W</td>
<td>90</td>
</tr>
<tr>
<td>Grensing, F</td>
<td>36</td>
</tr>
<tr>
<td>Gribble, N</td>
<td>102</td>
</tr>
<tr>
<td>Griebel, A</td>
<td>105</td>
</tr>
<tr>
<td>Griffin, B</td>
<td>116</td>
</tr>
<tr>
<td>Griffin, J</td>
<td>53</td>
</tr>
<tr>
<td>Griffiths, S</td>
<td>112</td>
</tr>
<tr>
<td>Grimes, R</td>
<td>130</td>
</tr>
<tr>
<td>Grin, J</td>
<td>60</td>
</tr>
<tr>
<td>Grogg, W</td>
<td>57</td>
</tr>
<tr>
<td>Gross, T</td>
<td>63</td>
</tr>
<tr>
<td>Grujber, J</td>
<td>136</td>
</tr>
<tr>
<td>Grzesiak, D</td>
<td>57, 72</td>
</tr>
<tr>
<td>Guangsheng, W</td>
<td>148</td>
</tr>
<tr>
<td>Guan, Q</td>
<td>95</td>
</tr>
<tr>
<td>Gueninchauff, N</td>
<td>98, 141</td>
</tr>
<tr>
<td>Guermeur, C</td>
<td>88</td>
</tr>
<tr>
<td>Guertera, L</td>
<td>131, 150</td>
</tr>
<tr>
<td>Gu, G</td>
<td>39</td>
</tr>
<tr>
<td>Guidoijn, R</td>
<td>47</td>
</tr>
<tr>
<td>Gui, L</td>
<td>97, 99, 148</td>
</tr>
<tr>
<td>Guillen, D</td>
<td>139</td>
</tr>
<tr>
<td>Gui, Q</td>
<td>125</td>
</tr>
<tr>
<td>Gumieniuk, R</td>
<td>60</td>
</tr>
<tr>
<td>Guinburger, M</td>
<td>40</td>
</tr>
<tr>
<td>Guo, F</td>
<td>134</td>
</tr>
<tr>
<td>Guo, J</td>
<td>34</td>
</tr>
<tr>
<td>Guo, L</td>
<td>67</td>
</tr>
<tr>
<td>Guo, Q</td>
<td>93</td>
</tr>
<tr>
<td>Guo, R</td>
<td>93, 115, 133, 149, 159</td>
</tr>
<tr>
<td>Guo, S</td>
<td>44, 114</td>
</tr>
<tr>
<td>Guo, W</td>
<td>61, 65</td>
</tr>
<tr>
<td>Guo, X</td>
<td>103</td>
</tr>
<tr>
<td>Guo, Y</td>
<td>135</td>
</tr>
<tr>
<td>Gupta, A</td>
<td>158</td>
</tr>
<tr>
<td>Gupta, M</td>
<td>52, 54, 83</td>
</tr>
<tr>
<td>Gupta, N</td>
<td>33, 55, 72, 83, 125, 140, 146, 155</td>
</tr>
<tr>
<td>Gupta, R</td>
<td>53, 54, 103</td>
</tr>
<tr>
<td>Gupta, S</td>
<td>52, 70, 88, 111, 125, 131, 145, 159</td>
</tr>
<tr>
<td>Gupta, V</td>
<td>45</td>
</tr>
<tr>
<td>Gurlo, A</td>
<td>66</td>
</tr>
<tr>
<td>Gurung, K</td>
<td>73</td>
</tr>
<tr>
<td>Gusak, A</td>
<td>152</td>
</tr>
<tr>
<td>Guss, G</td>
<td>91</td>
</tr>
<tr>
<td>Gutiérrez, C</td>
<td>66</td>
</tr>
<tr>
<td>Gutuuf, P</td>
<td>69</td>
</tr>
<tr>
<td>Gu, X</td>
<td>107</td>
</tr>
<tr>
<td>Gu, Y</td>
<td>88, 90, 95, 121</td>
</tr>
<tr>
<td>Gujer, E</td>
<td>43</td>
</tr>
<tr>
<td>Gu, Z</td>
<td>45, 64, 80, 99, 121, 138, 152</td>
</tr>
<tr>
<td>Gxowa, Z</td>
<td>100</td>
</tr>
<tr>
<td>H</td>
<td>79</td>
</tr>
<tr>
<td>Haase, R</td>
<td>144</td>
</tr>
<tr>
<td>Haberl, B</td>
<td>143</td>
</tr>
<tr>
<td>Haber, R</td>
<td>143</td>
</tr>
<tr>
<td>Hachett, G</td>
<td>45</td>
</tr>
<tr>
<td>Hackenberg, R</td>
<td>55, 146</td>
</tr>
<tr>
<td>Hackett, G</td>
<td>136, 137</td>
</tr>
<tr>
<td>Hack, K</td>
<td>106, 128</td>
</tr>
<tr>
<td>Hadian, R</td>
<td>44</td>
</tr>
</tbody>
</table>
INDEX

Hadian, S .. 98
Haghshenas, M 81, 83
Hahn, S .. 39
Haidarschin, G 118
Haider, K .. 122
Haider, W 84, 104, 105, 109, 142, 157
Haiyan, L .. 55
Halbig, M .. 55, 64
Hales, S ... 71
Haley, J .. 81
Haley, R .. 103
Halkyard, J 68
Hall, T ... 34, 90, 92, 110
Ha, M ... 139
Hamid, M .. 127
Hamilton, R 35, 58, 147
Hamlyn, M 108
Hammer, N 105
Hammond, O 91
Hammond, V 62
Hampp, E .. 39
Handweker, C 117
Handwerker, C 89, 96, 117, 134, 150
Han, H ... 93, 148, 150
Hanisch, R 41
Han, J ... 117, 134, 148, 150
Hanke, L .. 67, 79
 Hankenson, K 105
Hansrahan, R 33
Han, S .. 136
Hanson, E .. 144
Hanson, W 46
Hantelmann, C 138
Hanusova, P 155
Han, X ... 86
 Hao, H ... 149
 Hao, X ... 88
 Hao, Y ... 51, 91
 Harder, B .. 52
 Hardin, T .. 104, 126
Hardwick, N 128
Hargable, C 48, 160
Harimkar, S 68, 87, 120, 153
Harmer, A 89
Harmer, M 59, 60, 70, 89, 94, 107,
 ... 117, 120, 124, 137, 152
Harper, H .. 33
Harp, J .. 101
Harrell, Z 83
 Harrington, T 39
 Harrison, R 139
 Harris, T .. 126
 Harryson, O 41
 Harrysson, O 34, 35, 56, 57, 72, 73,
 ... 90, 91, 112, 113, 146, 147
Hart, B .. 150
 Harter, J .. 44
 Hartfield-Wunsch, S 100
Hartmann, J 92
Hartwig, K 103
Hashiguchi, D 54
Hashimoto, S 137
Hashizume, S 36
Hassanein, A 138, 154
Hassani-Gangaraj, M 83, 91, 129
Hassan, M 79, 121, 139
Hassan, S .. 140
Hatcher, N 85
Hatch, G ... 50
Hatoya, K 99
Hattar, K .. 37, 45, 59, 60, 74, 92, 93, 113
Hattori, A .. 130
Hattori, R .. 119
Havics, A 42, 62, 78, 79, 96, 118,
 ... 135, 150
Hawkins, C 112
Hawk, J .. 62, 65, 95, 117
Hayashi, A 54
Hayes, B ... 57, 90
Hayes, P .. 106
Haynes, A .. 34
Hay, R .. 98, 116, 129, 144
Hayryn, K 118
Healy, J .. 94, 134
Heard, D .. 90
Hearn, W .. 112
Hebesberger, T 36
Hecckman, E 134
Hector Jr, L 51
Hefferan, C 36, 98, 121
Hegedüs, M 140
Heh, A .. 55, 72, 128
Heidenreich, B 53
Heikkinen, H 90
Heilemann, M 56
Helber, B .. 159
Helvajian, H 112
Hemiker, K 52
Hemphill, G 55
Henein, H .. 112
Hengschan, F 33, 72, 147
Hensel, E .. 55
Hensen, T .. 97
Hensley, D 79
Hepher, J ... 115, 120
Hepher, T .. 129
He, P ... 45, 64, 65, 80, 99, 121, 138, 152
Hernbstd, S 100
Herman, C 124
Hermansson, L 47
Hermiz, G .. 49
Hernandez, B 33
Hernandez, E 35
Hernández-García, H 66
Hernandez, K 71
Hernandez-Mujica, A 134
Hernandez-Rivera, E 141
Hernandez-Riviera, E 145
Hernandez-Serrivra, E 145
Hernandez, S 101, 146
Herndon, M 140
Hesebeck, M 118
Hespous, M 57, 132
Heuer, A ... 70, 97
He, W .. 99, 148
He, X ... 145
He, Y ... 37, 129, 130, 141
Hickel, T ... 61
Hidaka, Y .. 105
Higgins, B 145
Hildeman, G 68
Hilla, C .. 35
Hilmas, A .. 137
Hilmas, G .. 39
Hineman, M 118
Hinojos, A 58
Hintsala, E 37, 74, 122
Hippensteel, E 87
Hiraga, K .. 75
Hirai, N .. 48, 51, 85
Hirao, K ... 70
Hirose, A .. 45, 64, 65, 80, 96, 99,
 ... 121, 138, 152
Hirose, T ... 99
Hitchcock, D 73
Hlova, I .. 125
Kim, J 36, 58, 69, 74, 92, 115, 144, 150, 152, 154
Kim, K 71, 76, 89, 93, 105, 131, 150, 153
Kim, M 37, 77, 128, 150, 152, 156
Kim, P 108
Kim, S 43, 44, 46, 52, 63, 64, 93, 99, 102, 121, 137, 153
Kim, T 46
Kimura, T 120, 151
Kimura, Y 137
Kim, W 75, 116
Kim, Y 46, 71, 73, 89
King, A 50, 71
King, D 137
Kinsey, D 51
Kirbiš, P 58, 97
Kirchlechner, C 44
Kiriakous, E 86
Kirićena, V 123
Kiriha, S 45
Kirka, M 56, 57, 91, 112, 113, 126, 132
Kirk, M 59
Kirk, T 86
Kirsch, M 119
Kiser, M 36, 58, 74, 92, 115, 133, 148
Kish, J 102, 149
Kisielowski, C 46, 65
Kistler, E 114
Kistler, N 35
Kitahara, A 155
Kitayama, M 146
Kitchens, C 129
Klassen, R 83
Klaus, M 113
Klein, A 106
Klein, L 43, 63, 80, 151
Klein, M 113
Klier, E 50, 68, 85, 108, 130, 157
Klinger, L 152
Klouzek, J 124
Kmiec, S 63
Knapp, C 90, 113
Knych, T 51, 158
Kobayashi, R 112
Kobayashi, T 125
Kob, W 43
Koch, B 117
Koch, D 53
Koch, P 145
Koch, R 107
Kocic, L 115
Koenigstein, M 125
Koerner, H 33
Koester, S 107, 131
Kohanek, J 144
Koh, B 156
Koivuluoto, H 47
Koizumi, Y 72
Kolbasnikov, N 147
Kolbe, A 54
Kolednik, O 36, 89
Kolesnikov, A 91
Kolmogorov, A 85, 108, 130, 144, 157
Kolomysytin, I 108
Komarov, A 49
Komuda, A 42
Kondo, D 112
Kondoh, K 57, 88
Kong, J 152
Kononov, A 147
Konopka, J 124, 135
Koppa, P 33
Kopp, D 52, 88, 108, 131
Koptyug, A 72
Ko, R 137
Kordass, R 145
Korenyi-Both, A 51
Koreny, M 127, 150
Kirinko, P 73, 90, 91, 96
Koritala, R 104
Kornecki, M 85, 107
Korn, H 145
Korolkov, I 119
Koruza, J 93
Koseki, T 43, 119
Kosh, P 52
Kosmidou, M 59
Košmrjl, A 84
Kotanchek, T 38, 59
Kotnula, R 156
Kottman, M 142, 157
Kotyk, G 35
Kougo, T 48, 51, 85
Kou, H 95, 143
Koukkari, P 106
Koukkari, M 148, 154
Kou, L 50, 69, 86, 109, 130, 158
Kovács, A 66
Kovalchuk, M 132
Kovar, D 104, 142
Kovarik, L 44
Koyanagi, T 82
Kozicki, R 133
Kozina, T 42, 78
Kracum, M 107
Kraft, F 46
Kral, M 42
Kraly, Á 81, 100, 122, 153
Kran, M 143
Krause, A 89, 94, 120, 152
Kraynis, O 121
Kreider, S 149
Kreit, E 134
Kreller, C 152
Krents, T 73
Kriikku, E 91
Krishna, A 85
Krishnamurthy, K 123
Krishnan, N 60
Kriven, W 107, 129, 144, 157
Kroll, P 39, 60, 134
K R, R 153
Kruger, A 63, 102, 124, 139
Kruizenga, A 92
Krumdieck, S 84
Kruska, K 41
Kru, T 72, 112
Kruzic, J 141
Kryglyak, I 91, 148
Kube, R 36
Kubota, J 137
Kudara, H 51
Kudzal, A 35, 132
Kuhlman, S 115
Kuhm, S 81
Kujofsa, T 158
Kulkarni, A 144
Kulkarni, N 49, 67
Kullmer, G 34
Kulovits, A 90
Kumar, A 100
Kumar, B 67
Kumar, M 65
Kumar, N 65, 123
Kumar, S 156
Kumosha, M 90
Kumta, P 151
Ku, N 85, 93, 107
Kundu, A 59, 83, 94
<table>
<thead>
<tr>
<th>Name</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lim, S</td>
<td>152</td>
</tr>
<tr>
<td>Lim, Y</td>
<td>80, 159</td>
</tr>
<tr>
<td>Li, N</td>
<td>37, 53, 59, 74, 92</td>
</tr>
<tr>
<td>Lin, C</td>
<td>151, 157, 159</td>
</tr>
<tr>
<td>Lin, D</td>
<td>34, 95, 116</td>
</tr>
<tr>
<td>Lindberg, D</td>
<td>106, 128</td>
</tr>
<tr>
<td>Lind, J</td>
<td>98, 104</td>
</tr>
<tr>
<td>Lind, R</td>
<td>105</td>
</tr>
<tr>
<td>Lindwall, G</td>
<td>49, 67, 143</td>
</tr>
<tr>
<td>Lin, E</td>
<td>134</td>
</tr>
<tr>
<td>Lingerfelt, E</td>
<td>95</td>
</tr>
<tr>
<td>Lin, J</td>
<td>90</td>
</tr>
<tr>
<td>Lin, K</td>
<td>151, 157, 159</td>
</tr>
<tr>
<td>Link, G</td>
<td>49, 68, 85, 107, 157</td>
</tr>
<tr>
<td>Lin, L</td>
<td>113</td>
</tr>
<tr>
<td>Lin, P</td>
<td>96</td>
</tr>
<tr>
<td>Lin, S</td>
<td>136</td>
</tr>
<tr>
<td>Lin, X</td>
<td>107</td>
</tr>
<tr>
<td>Lin, Y</td>
<td>61, 74, 92, 95, 100, 115</td>
</tr>
<tr>
<td>Liotta, L</td>
<td>41</td>
</tr>
<tr>
<td>Li, P</td>
<td>82</td>
</tr>
<tr>
<td>Lipin, V</td>
<td>54</td>
</tr>
<tr>
<td>Lipke, D</td>
<td>120</td>
</tr>
<tr>
<td>Li, Q</td>
<td>103, 143, 158</td>
</tr>
<tr>
<td>Li, S</td>
<td>51, 73, 87, 91, 98, 115</td>
</tr>
<tr>
<td>Lis, A</td>
<td>96</td>
</tr>
<tr>
<td>List, F</td>
<td>90</td>
</tr>
<tr>
<td>Litster, S</td>
<td>102, 137</td>
</tr>
<tr>
<td>Liu, B</td>
<td>100</td>
</tr>
<tr>
<td>Liu, C</td>
<td>40, 46, 71, 107, 120, 131, 134, 145, 148</td>
</tr>
<tr>
<td>Liu, F</td>
<td>108</td>
</tr>
<tr>
<td>Liu, H</td>
<td>72, 90, 124, 149</td>
</tr>
<tr>
<td>Liu, J</td>
<td>34, 35, 41, 50, 69, 72, 103, 126, 130, 149</td>
</tr>
<tr>
<td>Liu, L</td>
<td>153</td>
</tr>
<tr>
<td>Liu, M</td>
<td>103</td>
</tr>
<tr>
<td>Liu, P</td>
<td>97, 103</td>
</tr>
<tr>
<td>Liu, Q</td>
<td>125</td>
</tr>
<tr>
<td>Liu, R</td>
<td>62</td>
</tr>
<tr>
<td>Liu, S</td>
<td>63, 64, 134</td>
</tr>
<tr>
<td>Liu, T</td>
<td>61, 74, 97, 99, 148</td>
</tr>
<tr>
<td>Liu, W</td>
<td>148</td>
</tr>
<tr>
<td>Liu, X</td>
<td>53, 80, 93, 131, 139, 145, 148</td>
</tr>
<tr>
<td>Liu, Y</td>
<td>37, 59, 62, 74, 76, 86, 92, 94, 103, 122, 133, 142, 148, 152, 153</td>
</tr>
<tr>
<td>Li, Z</td>
<td>45, 97, 107, 138, 153</td>
</tr>
<tr>
<td>Lloyd, I</td>
<td>140</td>
</tr>
<tr>
<td>Lloyd, J</td>
<td>77</td>
</tr>
<tr>
<td>Loaiza Lopera, Y</td>
<td>150</td>
</tr>
<tr>
<td>Locki, I</td>
<td>35</td>
</tr>
<tr>
<td>Lockyer-Bratton, S</td>
<td>52, 96</td>
</tr>
<tr>
<td>Lodhi, M</td>
<td>157</td>
</tr>
<tr>
<td>Loganathan, A</td>
<td>60, 140, 155</td>
</tr>
<tr>
<td>Logé, R</td>
<td>34</td>
</tr>
<tr>
<td>Lonergan, J</td>
<td>102, 124, 154</td>
</tr>
<tr>
<td>Longacre, A</td>
<td>142</td>
</tr>
<tr>
<td>Long, C</td>
<td>115</td>
</tr>
<tr>
<td>Long, D</td>
<td>120</td>
</tr>
<tr>
<td>Long, M</td>
<td>97, 99, 148</td>
</tr>
<tr>
<td>Lontine, D</td>
<td>98</td>
</tr>
<tr>
<td>Lookman, T</td>
<td>77</td>
</tr>
<tr>
<td>López, H</td>
<td>84</td>
</tr>
<tr>
<td>Lopez, M</td>
<td>55</td>
</tr>
<tr>
<td>Lordi, V</td>
<td>44, 84</td>
</tr>
<tr>
<td>Lord, M</td>
<td>52</td>
</tr>
<tr>
<td>Losko, A</td>
<td>33</td>
</tr>
<tr>
<td>Loto, C</td>
<td>91, 149, 154</td>
</tr>
<tr>
<td>Louthan, M</td>
<td>97</td>
</tr>
<tr>
<td>Love, L</td>
<td>105</td>
</tr>
<tr>
<td>Lowe, T</td>
<td>51</td>
</tr>
<tr>
<td>Lowry, D</td>
<td>107, 157</td>
</tr>
<tr>
<td>Loy, D</td>
<td>145</td>
</tr>
<tr>
<td>Loy-Kraft, G</td>
<td>41</td>
</tr>
<tr>
<td>Lozano-Perez, S</td>
<td>81</td>
</tr>
<tr>
<td>Lubomirsky, I</td>
<td>121</td>
</tr>
<tr>
<td>Lu, C</td>
<td>64</td>
</tr>
<tr>
<td>Lucas, P</td>
<td>43</td>
</tr>
<tr>
<td>Lucente, A</td>
<td>138</td>
</tr>
<tr>
<td>Luckenbaugh, T</td>
<td>62, 117</td>
</tr>
<tr>
<td>Lucon, E</td>
<td>90</td>
</tr>
<tr>
<td>Luebke, D</td>
<td>73</td>
</tr>
<tr>
<td>Luhmann, N</td>
<td>113</td>
</tr>
<tr>
<td>Luitjohan, K</td>
<td>143</td>
</tr>
<tr>
<td>Lu, K</td>
<td>65, 76, 94, 116, 123, 134, 145, 150</td>
</tr>
<tr>
<td>Lu, M</td>
<td>125, 159</td>
</tr>
<tr>
<td>Luo, A</td>
<td>100</td>
</tr>
<tr>
<td>Luo, D</td>
<td>69</td>
</tr>
<tr>
<td>Luo, J</td>
<td>39, 63, 107</td>
</tr>
<tr>
<td>Luo, Q</td>
<td>143</td>
</tr>
<tr>
<td>Luo, S</td>
<td>148</td>
</tr>
<tr>
<td>Luo, T</td>
<td>123</td>
</tr>
<tr>
<td>Luo, W</td>
<td>86</td>
</tr>
<tr>
<td>Luo, X</td>
<td>64</td>
</tr>
<tr>
<td>Luo, Y</td>
<td>148</td>
</tr>
<tr>
<td>Luo, Z</td>
<td>43, 151</td>
</tr>
<tr>
<td>Lu, P</td>
<td>66</td>
</tr>
<tr>
<td>Lupulescu, A</td>
<td>40, 61, 77, 95, 116</td>
</tr>
<tr>
<td>Luria, J</td>
<td>80, 142</td>
</tr>
<tr>
<td>Luther, S</td>
<td>99</td>
</tr>
<tr>
<td>Lu, W</td>
<td>107</td>
</tr>
<tr>
<td>Lu, X</td>
<td>43</td>
</tr>
<tr>
<td>Lü, X</td>
<td>83</td>
</tr>
<tr>
<td>Lu, Y</td>
<td>36, 56, 66, 97, 98, 119, 123</td>
</tr>
<tr>
<td>Lv, P</td>
<td>125</td>
</tr>
<tr>
<td>Lv, W</td>
<td>102, 133, 154</td>
</tr>
<tr>
<td>Lv, X</td>
<td>102, 133, 148</td>
</tr>
<tr>
<td>Lyon, C</td>
<td>43</td>
</tr>
<tr>
<td>Lyons, C</td>
<td>78</td>
</tr>
<tr>
<td>Ly, R</td>
<td>103, 153</td>
</tr>
<tr>
<td>Ly, S</td>
<td>91, 113</td>
</tr>
<tr>
<td>Ma, B</td>
<td>104</td>
</tr>
<tr>
<td>Ma, C</td>
<td>41</td>
</tr>
<tr>
<td>MacDonald, E</td>
<td>113</td>
</tr>
<tr>
<td>Macek Kržmanc, M</td>
<td>93</td>
</tr>
<tr>
<td>MacFarlan, P</td>
<td>146</td>
</tr>
<tr>
<td>Machaka, R</td>
<td>100, 122</td>
</tr>
<tr>
<td>Machrowicz, T</td>
<td>115</td>
</tr>
<tr>
<td>Mack, J</td>
<td>103</td>
</tr>
<tr>
<td>MacLean, S</td>
<td>78</td>
</tr>
<tr>
<td>MacManus-Driscoll, J</td>
<td>83</td>
</tr>
<tr>
<td>Macwan, A</td>
<td>99</td>
</tr>
<tr>
<td>Maczka, M</td>
<td>140</td>
</tr>
<tr>
<td>Madakashira, P</td>
<td>148</td>
</tr>
<tr>
<td>Maddala, D</td>
<td>48, 67</td>
</tr>
<tr>
<td>Maddali, S</td>
<td>120</td>
</tr>
<tr>
<td>Madej, L</td>
<td>104, 126, 127, 141, 156</td>
</tr>
<tr>
<td>Madigan, B</td>
<td>90, 112</td>
</tr>
<tr>
<td>Madison, J</td>
<td>78</td>
</tr>
<tr>
<td>Madrid, M</td>
<td>69</td>
</tr>
<tr>
<td>Maeda, S</td>
<td>85</td>
</tr>
<tr>
<td>Maeda, T</td>
<td>133</td>
</tr>
<tr>
<td>Ma, F</td>
<td>131</td>
</tr>
<tr>
<td>Magin, T</td>
<td>159</td>
</tr>
<tr>
<td>Magnier, A</td>
<td>113</td>
</tr>
<tr>
<td>Ma, H</td>
<td>37, 94, 119</td>
</tr>
<tr>
<td>Mahajanam, S</td>
<td>82, 102, 125, 155</td>
</tr>
<tr>
<td>Mahalingam, S</td>
<td>47</td>
</tr>
<tr>
<td>Mahata, A</td>
<td>122, 136</td>
</tr>
<tr>
<td>Mahato, D</td>
<td>42, 62, 133</td>
</tr>
<tr>
<td>Name</td>
<td>Page Numbers</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>Mahbooba, Z</td>
<td>73</td>
</tr>
<tr>
<td>Mahbub, R</td>
<td>102, 137</td>
</tr>
<tr>
<td>Mahida, P</td>
<td>92</td>
</tr>
<tr>
<td>Mahmoudi, M</td>
<td>35, 141</td>
</tr>
<tr>
<td>Mahmoud, M</td>
<td>49, 68, 85, 107, 108, 157</td>
</tr>
<tr>
<td>Mahshid, S</td>
<td>127</td>
</tr>
<tr>
<td>Maier, P</td>
<td>123</td>
</tr>
<tr>
<td>Mai, L</td>
<td>50</td>
</tr>
<tr>
<td>Maillet, E</td>
<td>137</td>
</tr>
<tr>
<td>Maiorov, B</td>
<td>33</td>
</tr>
<tr>
<td>Maiti, T</td>
<td>141</td>
</tr>
<tr>
<td>Ma, J</td>
<td>34, 35, 58, 72, 95, 114, 126, 141</td>
</tr>
<tr>
<td>Maja, M</td>
<td>88</td>
</tr>
<tr>
<td>Majila, A</td>
<td>124</td>
</tr>
<tr>
<td>Majta, J</td>
<td>127</td>
</tr>
<tr>
<td>Majumdar, B</td>
<td>61</td>
</tr>
<tr>
<td>Majumder, T</td>
<td>84</td>
</tr>
<tr>
<td>Ma, K</td>
<td>35, 54, 160</td>
</tr>
<tr>
<td>Makangara, J</td>
<td>63</td>
</tr>
<tr>
<td>Makhatha, E</td>
<td>92</td>
</tr>
<tr>
<td>Makhdoom, A</td>
<td>138</td>
</tr>
<tr>
<td>Makhdoom, M</td>
<td>128</td>
</tr>
<tr>
<td>Ma, L</td>
<td>103, 126, 134, 141, 155</td>
</tr>
<tr>
<td>Malak, R</td>
<td>86</td>
</tr>
<tr>
<td>Malatesta, K</td>
<td>84, 127</td>
</tr>
<tr>
<td>Maldonis, J</td>
<td>74, 116</td>
</tr>
<tr>
<td>Malhotra, R</td>
<td>58</td>
</tr>
<tr>
<td>Malic, B</td>
<td>93</td>
</tr>
<tr>
<td>Mallard, A</td>
<td>136</td>
</tr>
<tr>
<td>Mallouk, T</td>
<td>44</td>
</tr>
<tr>
<td>Malloy, L</td>
<td>93</td>
</tr>
<tr>
<td>Mallu, R</td>
<td>140</td>
</tr>
<tr>
<td>Maloy, S</td>
<td>41, 45, 65, 97, 123</td>
</tr>
<tr>
<td>Mamala, A</td>
<td>51, 158</td>
</tr>
<tr>
<td>Mameka, N</td>
<td>80</td>
</tr>
<tr>
<td>Mandal, K</td>
<td>41, 62, 78</td>
</tr>
<tr>
<td>Mandal, S</td>
<td>105, 117</td>
</tr>
<tr>
<td>Mandeville, K</td>
<td>132</td>
</tr>
<tr>
<td>Mangal, A</td>
<td>104, 116</td>
</tr>
<tr>
<td>Manga, V</td>
<td>43</td>
</tr>
<tr>
<td>Mangolini, L</td>
<td>44</td>
</tr>
<tr>
<td>Mani, B.</td>
<td>41</td>
</tr>
<tr>
<td>Manion, C</td>
<td>108</td>
</tr>
<tr>
<td>Maniruzzaman, M</td>
<td>74</td>
</tr>
<tr>
<td>Manjooran, N</td>
<td>104, 114, 127, 132, 142</td>
</tr>
<tr>
<td>Mankoci, S</td>
<td>87</td>
</tr>
<tr>
<td>Manna, I</td>
<td>156</td>
</tr>
<tr>
<td>Mannava, S</td>
<td>65</td>
</tr>
<tr>
<td>Mann, J.</td>
<td>57</td>
</tr>
<tr>
<td>Mannodi-Kanakkithodi, A</td>
<td>144</td>
</tr>
<tr>
<td>Manogharan, G</td>
<td>41</td>
</tr>
<tr>
<td>Manohar, M</td>
<td>92</td>
</tr>
<tr>
<td>Mansoor, B</td>
<td>53, 70, 71, 100</td>
</tr>
<tr>
<td>Mansour, R</td>
<td>137</td>
</tr>
<tr>
<td>Manthiram, A</td>
<td>151</td>
</tr>
<tr>
<td>Mantione, J</td>
<td>107</td>
</tr>
<tr>
<td>Mantovani, D</td>
<td>109</td>
</tr>
<tr>
<td>Mantri, S</td>
<td>84, 106, 143</td>
</tr>
<tr>
<td>Manzoor, M</td>
<td>100, 126</td>
</tr>
<tr>
<td>Manzoori, S</td>
<td>154</td>
</tr>
<tr>
<td>Mao, J</td>
<td>47</td>
</tr>
<tr>
<td>Mao, L</td>
<td>149</td>
</tr>
<tr>
<td>Mao, S</td>
<td>37</td>
</tr>
<tr>
<td>Mao, Y</td>
<td>45, 100</td>
</tr>
<tr>
<td>Mara, N</td>
<td>53, 119</td>
</tr>
<tr>
<td>Marashi, M</td>
<td>155</td>
</tr>
<tr>
<td>Marchese, J</td>
<td>140</td>
</tr>
<tr>
<td>Maria, J</td>
<td>49, 65, 102, 154</td>
</tr>
<tr>
<td>Mariani, R</td>
<td>55</td>
</tr>
<tr>
<td>Mari, E</td>
<td>43</td>
</tr>
<tr>
<td>Marin, A</td>
<td>109</td>
</tr>
<tr>
<td>Marin, E</td>
<td>109</td>
</tr>
<tr>
<td>Markel, I</td>
<td>46</td>
</tr>
<tr>
<td>Markocsan, N</td>
<td>52</td>
</tr>
<tr>
<td>Marksz, E</td>
<td>115</td>
</tr>
<tr>
<td>Marquis, E</td>
<td>101</td>
</tr>
<tr>
<td>Marrocchelli, D</td>
<td>121</td>
</tr>
<tr>
<td>Marsden, W</td>
<td>35, 82, 103</td>
</tr>
<tr>
<td>Marshall, K</td>
<td>82, 135</td>
</tr>
<tr>
<td>Marti, S</td>
<td>42, 78</td>
</tr>
<tr>
<td>Martin, A</td>
<td>110</td>
</tr>
<tr>
<td>Martin, A</td>
<td>37</td>
</tr>
<tr>
<td>Martin, D</td>
<td>112</td>
</tr>
<tr>
<td>Martinek, B</td>
<td>123</td>
</tr>
<tr>
<td>Martin, A</td>
<td>87</td>
</tr>
<tr>
<td>Martin, J</td>
<td>92, 143</td>
</tr>
<tr>
<td>Martin, L</td>
<td>83</td>
</tr>
<tr>
<td>Martin, M</td>
<td>44, 45, 64, 99, 121, 137</td>
</tr>
<tr>
<td>Martin, P</td>
<td>57</td>
</tr>
<tr>
<td>Martin, S</td>
<td>43, 63, 79, 151</td>
</tr>
<tr>
<td>Martin, Z</td>
<td>35</td>
</tr>
<tr>
<td>Martone, A</td>
<td>94, 116</td>
</tr>
<tr>
<td>Martukovitz, K</td>
<td>56, 57, 141</td>
</tr>
<tr>
<td>Marvel, C</td>
<td>59, 60, 79, 89, 107, 117, 120, 124, 137, 152</td>
</tr>
<tr>
<td>Marya, M</td>
<td>36, 56</td>
</tr>
<tr>
<td>Masaki, K</td>
<td>81, 99</td>
</tr>
<tr>
<td>Masete, S</td>
<td>101</td>
</tr>
<tr>
<td>Masi, L</td>
<td>40, 131, 132</td>
</tr>
<tr>
<td>Masina, B</td>
<td>56</td>
</tr>
<tr>
<td>Mason, D</td>
<td>38</td>
</tr>
<tr>
<td>Mason, P</td>
<td>49, 71, 129</td>
</tr>
<tr>
<td>Massey, C</td>
<td>82, 101</td>
</tr>
<tr>
<td>Massey, M</td>
<td>132</td>
</tr>
<tr>
<td>Mastorakos, I</td>
<td>53, 70</td>
</tr>
<tr>
<td>Mastro, A</td>
<td>156</td>
</tr>
<tr>
<td>Masuda, H</td>
<td>146</td>
</tr>
<tr>
<td>Ma, T</td>
<td>63</td>
</tr>
<tr>
<td>Matei, D</td>
<td>43</td>
</tr>
<tr>
<td>Matejkova, M</td>
<td>109</td>
</tr>
<tr>
<td>Mates, S</td>
<td>143</td>
</tr>
<tr>
<td>Mathaudhu, S</td>
<td>41</td>
</tr>
<tr>
<td>Mathe, N</td>
<td>56</td>
</tr>
<tr>
<td>Mathur, S</td>
<td>71, 76, 94, 116, 134, 150</td>
</tr>
<tr>
<td>Matikainen, V</td>
<td>47</td>
</tr>
<tr>
<td>Matli, P</td>
<td>54</td>
</tr>
<tr>
<td>Matlock, D</td>
<td>36, 119</td>
</tr>
<tr>
<td>Matsubara, A</td>
<td>49</td>
</tr>
<tr>
<td>Matsuda, I</td>
<td>38</td>
</tr>
<tr>
<td>Matsuda, T</td>
<td>45, 65, 81, 96</td>
</tr>
<tr>
<td>Matsui, T</td>
<td>137</td>
</tr>
<tr>
<td>Matsumoto, H</td>
<td>64</td>
</tr>
<tr>
<td>Matsumoto, Y</td>
<td>159</td>
</tr>
<tr>
<td>Matsunaga, C</td>
<td>111</td>
</tr>
<tr>
<td>Matte, P</td>
<td>62</td>
</tr>
<tr>
<td>Matthews, M</td>
<td>34, 91, 113</td>
</tr>
<tr>
<td>Matthewson, M</td>
<td>127, 143</td>
</tr>
<tr>
<td>Matthiesen, D</td>
<td>116</td>
</tr>
<tr>
<td>Mattox, T</td>
<td>93</td>
</tr>
<tr>
<td>Mattucci, M</td>
<td>45</td>
</tr>
<tr>
<td>Matvijcuk, M</td>
<td>88</td>
</tr>
<tr>
<td>Matyas, J</td>
<td>45, 65, 81, 101, 123, 124, 138, 139, 154</td>
</tr>
<tr>
<td>Maurer, J</td>
<td>142</td>
</tr>
<tr>
<td>Mauro, J</td>
<td>63</td>
</tr>
<tr>
<td>Mauzy, R</td>
<td>38</td>
</tr>
<tr>
<td>Maxwell, J</td>
<td>98</td>
</tr>
<tr>
<td>Maxwell, R</td>
<td>137</td>
</tr>
<tr>
<td>Ma, Y</td>
<td>47</td>
</tr>
<tr>
<td>Mayeshiba, T</td>
<td>61, 121</td>
</tr>
<tr>
<td>Mayo, M</td>
<td>73</td>
</tr>
<tr>
<td>Mayo, U</td>
<td>74</td>
</tr>
<tr>
<td>Mayville, A</td>
<td>38</td>
</tr>
<tr>
<td>Ma, Z</td>
<td>115</td>
</tr>
<tr>
<td>Maziarz, W</td>
<td>147</td>
</tr>
<tr>
<td>Maziasz, P</td>
<td>96</td>
</tr>
<tr>
<td>Mazumder, B</td>
<td>86</td>
</tr>
<tr>
<td>McArthur, B</td>
<td>143</td>
</tr>
<tr>
<td>McCabe, R</td>
<td>37, 55, 119, 146</td>
</tr>
<tr>
<td>Name</td>
<td>Page Numbers</td>
</tr>
<tr>
<td>--------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Möller, A</td>
<td>66</td>
</tr>
<tr>
<td>Moller, H</td>
<td>56</td>
</tr>
<tr>
<td>Momayez, M</td>
<td>145</td>
</tr>
<tr>
<td>Monheim, P</td>
<td>128</td>
</tr>
<tr>
<td>Moniz, L</td>
<td>33</td>
</tr>
<tr>
<td>Monnamme, T</td>
<td>114</td>
</tr>
<tr>
<td>Montalvo, J</td>
<td>146</td>
</tr>
<tr>
<td>Montero-Sistiaga, M</td>
<td>73</td>
</tr>
<tr>
<td>Montes-Arango, A</td>
<td>107</td>
</tr>
<tr>
<td>Montgomery, C</td>
<td>72</td>
</tr>
<tr>
<td>Montoya, J</td>
<td>152</td>
</tr>
<tr>
<td>Moody, D</td>
<td>40, 157</td>
</tr>
<tr>
<td>Moor, P</td>
<td>114</td>
</tr>
<tr>
<td>Moon, K</td>
<td>49</td>
</tr>
<tr>
<td>Moon, R</td>
<td>140</td>
</tr>
<tr>
<td>Moon, S</td>
<td>57</td>
</tr>
<tr>
<td>Moore, E</td>
<td>82, 84, 138, 154</td>
</tr>
<tr>
<td>Moore, G</td>
<td>101</td>
</tr>
<tr>
<td>Moorhead, W</td>
<td>97</td>
</tr>
<tr>
<td>Moradifar, P</td>
<td>116</td>
</tr>
<tr>
<td>Morales, J</td>
<td>118</td>
</tr>
<tr>
<td>Morales Rivas, L</td>
<td>46</td>
</tr>
<tr>
<td>Moran, T</td>
<td>80</td>
</tr>
<tr>
<td>Moreau, C</td>
<td>52, 70, 87, 110, 115, 159</td>
</tr>
<tr>
<td>Morgan, D</td>
<td>40, 45, 46, 61, 74, 77, 95, 101, 116, 121</td>
</tr>
<tr>
<td>Morgan, Z</td>
<td>117</td>
</tr>
<tr>
<td>Mori, H</td>
<td>99</td>
</tr>
<tr>
<td>Morikawa, K</td>
<td>131</td>
</tr>
<tr>
<td>Morikawa, Y</td>
<td>99</td>
</tr>
<tr>
<td>Mori, M</td>
<td>56, 117</td>
</tr>
<tr>
<td>Morita, K</td>
<td>75, 97</td>
</tr>
<tr>
<td>Morita, N</td>
<td>112</td>
</tr>
<tr>
<td>Morozova, I</td>
<td>138</td>
</tr>
<tr>
<td>Morral, J</td>
<td>67, 106</td>
</tr>
<tr>
<td>Morris, G</td>
<td>79</td>
</tr>
<tr>
<td>Morris, L</td>
<td>41</td>
</tr>
<tr>
<td>Morrison, R</td>
<td>120</td>
</tr>
<tr>
<td>Morrow, B</td>
<td>37, 106</td>
</tr>
<tr>
<td>Morsch, G</td>
<td>96, 137</td>
</tr>
<tr>
<td>Mosa, J</td>
<td>80</td>
</tr>
<tr>
<td>Mosbah, S</td>
<td>104</td>
</tr>
<tr>
<td>Moser, R</td>
<td>120</td>
</tr>
<tr>
<td>Mostafaei, A</td>
<td>35, 36, 58, 112, 156</td>
</tr>
<tr>
<td>Mostert, R</td>
<td>101</td>
</tr>
<tr>
<td>Mou, C</td>
<td>135</td>
</tr>
<tr>
<td>Mousseau, N</td>
<td>39</td>
</tr>
<tr>
<td>Moxson, J</td>
<td>88</td>
</tr>
<tr>
<td>Moxson, V</td>
<td>107</td>
</tr>
<tr>
<td>Moyer, B</td>
<td>108</td>
</tr>
<tr>
<td>Mphahlele, M</td>
<td>66</td>
</tr>
<tr>
<td>M, R</td>
<td>101</td>
</tr>
<tr>
<td>Mubarak, A</td>
<td>73</td>
</tr>
<tr>
<td>Muccillo, E</td>
<td>108</td>
</tr>
<tr>
<td>Muccillo, R</td>
<td>108</td>
</tr>
<tr>
<td>Muecklich, F</td>
<td>97</td>
</tr>
<tr>
<td>Mueller, B</td>
<td>145</td>
</tr>
<tr>
<td>Mueller, E</td>
<td>42, 67, 79, 118</td>
</tr>
<tr>
<td>Mueller, J</td>
<td>37</td>
</tr>
<tr>
<td>Mueller, T</td>
<td>116, 117</td>
</tr>
<tr>
<td>Mughal, M</td>
<td>139, 154</td>
</tr>
<tr>
<td>Mukherjee, A</td>
<td>92</td>
</tr>
<tr>
<td>Mukhopadhyay, G</td>
<td>62, 155</td>
</tr>
<tr>
<td>Mukhopadhyay, J</td>
<td>153</td>
</tr>
<tr>
<td>Mukhtar, K</td>
<td>154</td>
</tr>
<tr>
<td>Mu, L</td>
<td>69, 86</td>
</tr>
<tr>
<td>Mullen, S</td>
<td>131</td>
</tr>
<tr>
<td>Müller, M</td>
<td>128</td>
</tr>
<tr>
<td>Mullolland, M</td>
<td>92</td>
</tr>
<tr>
<td>Münller, P</td>
<td>36</td>
</tr>
<tr>
<td>Mumm, D</td>
<td>52, 70, 87, 110, 119</td>
</tr>
<tr>
<td>Mumtaz, H</td>
<td>154</td>
</tr>
<tr>
<td>Mundy, J</td>
<td>57</td>
</tr>
<tr>
<td>Munigole, T</td>
<td>71</td>
</tr>
<tr>
<td>Muñoz-Saldaña, J</td>
<td>56</td>
</tr>
<tr>
<td>Muntifering, B</td>
<td>37, 45</td>
</tr>
<tr>
<td>Muralidharan, K</td>
<td>43, 145</td>
</tr>
<tr>
<td>Murch, T</td>
<td>48, 49, 143</td>
</tr>
<tr>
<td>Murdoch, H</td>
<td>83, 125, 138</td>
</tr>
<tr>
<td>Muretta, J</td>
<td>57</td>
</tr>
<tr>
<td>Murguia, S</td>
<td>108</td>
</tr>
<tr>
<td>Murphy, D</td>
<td>96</td>
</tr>
<tr>
<td>Murphy, T</td>
<td>65, 123</td>
</tr>
<tr>
<td>Murty, Y</td>
<td>36, 50, 68, 85, 108, 130, 147, 157</td>
</tr>
<tr>
<td>Murugan, M</td>
<td>156</td>
</tr>
<tr>
<td>Muskovin, E</td>
<td>120</td>
</tr>
<tr>
<td>Musselman, K</td>
<td>45</td>
</tr>
<tr>
<td>Musselman, M</td>
<td>144</td>
</tr>
<tr>
<td>Muszka, K</td>
<td>104, 126, 127, 141, 156</td>
</tr>
<tr>
<td>Mutale, C</td>
<td>108</td>
</tr>
<tr>
<td>Muth, T</td>
<td>33</td>
</tr>
<tr>
<td>Mutombo, K</td>
<td>101, 144</td>
</tr>
<tr>
<td>Mu, Y</td>
<td>71</td>
</tr>
<tr>
<td>Muzyk, A</td>
<td>127</td>
</tr>
<tr>
<td>Myers, E</td>
<td>36</td>
</tr>
<tr>
<td>Myers, J</td>
<td>75, 122</td>
</tr>
<tr>
<td>Myers, Z</td>
<td>81</td>
</tr>
<tr>
<td>Nayef, K</td>
<td>93, 115, 133, 149</td>
</tr>
<tr>
<td>Naito, M</td>
<td>52, 70, 88, 111, 131, 145, 159</td>
</tr>
<tr>
<td>Naji, M</td>
<td>139</td>
</tr>
<tr>
<td>Nakamura, K</td>
<td>126</td>
</tr>
<tr>
<td>Nakamura, N</td>
<td>49</td>
</tr>
<tr>
<td>Nakamura, T</td>
<td>137</td>
</tr>
<tr>
<td>Nakaniishi, K</td>
<td>96</td>
</tr>
<tr>
<td>Nakano, T</td>
<td>112</td>
</tr>
<tr>
<td>Nakshman San, S</td>
<td>94</td>
</tr>
<tr>
<td>Nallasivam, V</td>
<td>153</td>
</tr>
<tr>
<td>Nambu, S</td>
<td>43, 119</td>
</tr>
<tr>
<td>Nam, D</td>
<td>73</td>
</tr>
<tr>
<td>Nam, S</td>
<td>115</td>
</tr>
<tr>
<td>Nandwana, P</td>
<td>34, 73, 106, 112</td>
</tr>
<tr>
<td>Napolitano, J</td>
<td>96</td>
</tr>
<tr>
<td>Napolitano, R</td>
<td>80</td>
</tr>
<tr>
<td>Naqvi, S</td>
<td>154</td>
</tr>
<tr>
<td>Naranjo, G</td>
<td>153</td>
</tr>
<tr>
<td>Narayanan, B</td>
<td>92, 142, 157</td>
</tr>
<tr>
<td>Narayan, G</td>
<td>87</td>
</tr>
<tr>
<td>Narayan, J</td>
<td>42, 78</td>
</tr>
<tr>
<td>Narayan, R</td>
<td>47, 67, 84, 105, 127, 156</td>
</tr>
<tr>
<td>Nardone, S</td>
<td>73</td>
</tr>
<tr>
<td>Narita, I</td>
<td>134</td>
</tr>
<tr>
<td>Narra, S</td>
<td>72</td>
</tr>
<tr>
<td>Na, S</td>
<td>71</td>
</tr>
<tr>
<td>Nascimento, M</td>
<td>97, 145</td>
</tr>
<tr>
<td>Nasik, A</td>
<td>139</td>
</tr>
<tr>
<td>Nasir, T</td>
<td>79</td>
</tr>
<tr>
<td>Nassar, A</td>
<td>72</td>
</tr>
<tr>
<td>Nastac, L</td>
<td>126</td>
</tr>
<tr>
<td>Nastasi, M</td>
<td>98, 123</td>
</tr>
<tr>
<td>Nataraj, V</td>
<td>92</td>
</tr>
<tr>
<td>Nath, M</td>
<td>153</td>
</tr>
<tr>
<td>Naumov, A</td>
<td>81, 138, 153</td>
</tr>
<tr>
<td>Nautiliyal, P</td>
<td>60, 97, 126, 140, 145, 150, 155</td>
</tr>
<tr>
<td>Naverovsky, A</td>
<td>108, 144</td>
</tr>
<tr>
<td>Ndefru, B</td>
<td>90</td>
</tr>
<tr>
<td>Nebreda, J</td>
<td>123</td>
</tr>
<tr>
<td>Neilsson, H</td>
<td>153</td>
</tr>
<tr>
<td>Name</td>
<td>Page Numbers</td>
</tr>
<tr>
<td>--------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Nejatpour, M</td>
<td>84</td>
</tr>
<tr>
<td>Nekhoroshev, E</td>
<td>106</td>
</tr>
<tr>
<td>Nelson, A</td>
<td>84, 101, 154</td>
</tr>
<tr>
<td>Nelson, E</td>
<td>138</td>
</tr>
<tr>
<td>Nelson, K</td>
<td>83, 91</td>
</tr>
<tr>
<td>Nelson, R</td>
<td>53</td>
</tr>
<tr>
<td>Nemati, A</td>
<td>104, 142</td>
</tr>
<tr>
<td>Nesbitt, J</td>
<td>70</td>
</tr>
<tr>
<td>Neugebauer, J</td>
<td>61, 98</td>
</tr>
<tr>
<td>Neupane, U</td>
<td>42</td>
</tr>
<tr>
<td>Neveau, M</td>
<td>105</td>
</tr>
<tr>
<td>Newaz, G</td>
<td>46, 66</td>
</tr>
<tr>
<td>Newell, D</td>
<td>132</td>
</tr>
<tr>
<td>Newkirk, J</td>
<td>59</td>
</tr>
<tr>
<td>Newman, J</td>
<td>55</td>
</tr>
<tr>
<td>Ngo, A</td>
<td>34</td>
</tr>
<tr>
<td>Nguyen, D</td>
<td>99</td>
</tr>
<tr>
<td>Nguyen, H</td>
<td>99</td>
</tr>
<tr>
<td>Nguyen, L</td>
<td>90</td>
</tr>
<tr>
<td>Nguyen, S</td>
<td>144</td>
</tr>
<tr>
<td>Nguyen, V</td>
<td>75</td>
</tr>
<tr>
<td>Ni, B</td>
<td>133</td>
</tr>
<tr>
<td>Nicholas, J</td>
<td>138</td>
</tr>
<tr>
<td>Nicholls, J</td>
<td>52</td>
</tr>
<tr>
<td>Nickolai, I</td>
<td>151</td>
</tr>
<tr>
<td>Ni, D</td>
<td>137</td>
</tr>
<tr>
<td>Nielsen, D</td>
<td>36</td>
</tr>
<tr>
<td>Nielsen, N</td>
<td>135</td>
</tr>
<tr>
<td>Nielsen, W</td>
<td>36</td>
</tr>
<tr>
<td>Niemi, J</td>
<td>128</td>
</tr>
<tr>
<td>Niendorf, T</td>
<td>113</td>
</tr>
<tr>
<td>Nieto, N</td>
<td>78</td>
</tr>
<tr>
<td>Niezgoda, S</td>
<td>40</td>
</tr>
<tr>
<td>Nigay, P</td>
<td>110, 136</td>
</tr>
<tr>
<td>Nimbalkar, S</td>
<td>49</td>
</tr>
<tr>
<td>Ni, N</td>
<td>65</td>
</tr>
<tr>
<td>Ning, K</td>
<td>65, 94, 123</td>
</tr>
<tr>
<td>Ning, S</td>
<td>149</td>
</tr>
<tr>
<td>Ning, X</td>
<td>148</td>
</tr>
<tr>
<td>Nishikawa, G</td>
<td>43</td>
</tr>
<tr>
<td>Nitta, K</td>
<td>137</td>
</tr>
<tr>
<td>Niu, C</td>
<td>108</td>
</tr>
<tr>
<td>Niu, W</td>
<td>97</td>
</tr>
<tr>
<td>Niu, Z</td>
<td>80, 145</td>
</tr>
<tr>
<td>Nizolek, T</td>
<td>119</td>
</tr>
<tr>
<td>Noebe, R</td>
<td>58</td>
</tr>
<tr>
<td>Noell, P</td>
<td>60</td>
</tr>
<tr>
<td>Noh, T</td>
<td>66</td>
</tr>
<tr>
<td>Noiseau, G</td>
<td>104</td>
</tr>
<tr>
<td>Nolen, D</td>
<td>135</td>
</tr>
<tr>
<td>Noordhoek, M</td>
<td>84, 138</td>
</tr>
<tr>
<td>Norasak, K</td>
<td>159</td>
</tr>
<tr>
<td>Norfolk, M</td>
<td>55, 128</td>
</tr>
<tr>
<td>Nourian-Avval, A</td>
<td>143</td>
</tr>
<tr>
<td>Novak, B</td>
<td>141</td>
</tr>
<tr>
<td>Novakowski, T</td>
<td>138, 154</td>
</tr>
<tr>
<td>Novakowski, P</td>
<td>46, 114</td>
</tr>
<tr>
<td>Nuggahalli, R</td>
<td>41, 62, 78</td>
</tr>
<tr>
<td>Nulwala, H</td>
<td>73, 105</td>
</tr>
<tr>
<td>Nune, K</td>
<td>51, 84, 91</td>
</tr>
<tr>
<td>Nürnberg, F</td>
<td>100</td>
</tr>
<tr>
<td>Nycz, A</td>
<td>142</td>
</tr>
<tr>
<td>Nylen, P</td>
<td>73</td>
</tr>
<tr>
<td>Nyrihal, O</td>
<td>90</td>
</tr>
<tr>
<td>Nyström, M</td>
<td>90</td>
</tr>
<tr>
<td>Nzhou, A</td>
<td>110, 136</td>
</tr>
<tr>
<td>O</td>
<td></td>
</tr>
<tr>
<td>Obadele, B</td>
<td>66, 88</td>
</tr>
<tr>
<td>Obayemi, J</td>
<td>84, 127</td>
</tr>
<tr>
<td>O'Caign, C</td>
<td>108</td>
</tr>
<tr>
<td>O'Brien, S</td>
<td>54</td>
</tr>
<tr>
<td>O'Connell, J</td>
<td>48</td>
</tr>
<tr>
<td>O'Connor, N</td>
<td>134</td>
</tr>
<tr>
<td>Odegard, G</td>
<td>139</td>
</tr>
<tr>
<td>O'Dell, S</td>
<td>114</td>
</tr>
<tr>
<td>Odette, G</td>
<td>41, 45, 101</td>
</tr>
<tr>
<td>O'Donnell, B</td>
<td>96</td>
</tr>
<tr>
<td>Odqvist, J</td>
<td>143</td>
</tr>
<tr>
<td>Odsanya, O</td>
<td>127</td>
</tr>
<tr>
<td>Odykirk, T</td>
<td>153</td>
</tr>
<tr>
<td>Ofori-Opoku, N</td>
<td>64</td>
</tr>
<tr>
<td>Ogawa, A</td>
<td>48, 51, 85</td>
</tr>
<tr>
<td>Ogibe, S</td>
<td>149</td>
</tr>
<tr>
<td>Ogura, T</td>
<td>99</td>
</tr>
<tr>
<td>O'Hara, R</td>
<td>132</td>
</tr>
<tr>
<td>O'Hayre, R</td>
<td>64</td>
</tr>
<tr>
<td>Ohfuji, H</td>
<td>81</td>
</tr>
<tr>
<td>Ohji, T</td>
<td>52, 70, 88, 111, 131, 145, 159</td>
</tr>
<tr>
<td>Oh, K</td>
<td>93</td>
</tr>
<tr>
<td>Ohodnicki, P</td>
<td>82, 119, 131, 132</td>
</tr>
<tr>
<td>Ohsato, H</td>
<td>115</td>
</tr>
<tr>
<td>Ohta, Y</td>
<td>146</td>
</tr>
<tr>
<td>Oh, Y</td>
<td>52, 63, 93, 150</td>
</tr>
<tr>
<td>Okawa, I</td>
<td>44, 99</td>
</tr>
<tr>
<td>Ojala, N</td>
<td>47</td>
</tr>
<tr>
<td>Ojima, M</td>
<td>119</td>
</tr>
<tr>
<td>Okada, J</td>
<td>39</td>
</tr>
<tr>
<td>Okano, H</td>
<td>36</td>
</tr>
<tr>
<td>O'Keefe, S</td>
<td>41</td>
</tr>
<tr>
<td>Okello, A</td>
<td>56, 126</td>
</tr>
<tr>
<td>Okeniyi, E</td>
<td>149</td>
</tr>
<tr>
<td>Okeniyi, Y</td>
<td>149, 154</td>
</tr>
<tr>
<td>Okerberg, B</td>
<td>125</td>
</tr>
<tr>
<td>Oke, S</td>
<td>66, 88</td>
</tr>
<tr>
<td>Olevsky, E</td>
<td>85</td>
</tr>
<tr>
<td>Oliveira, J</td>
<td>100</td>
</tr>
<tr>
<td>Olofinjana, A</td>
<td>41</td>
</tr>
<tr>
<td>Olson, D</td>
<td>66, 87</td>
</tr>
<tr>
<td>Olson, G</td>
<td>40, 68, 81, 85, 92, 113, 129, 148</td>
</tr>
<tr>
<td>Olson, K</td>
<td>33</td>
</tr>
<tr>
<td>Olson, T</td>
<td>134</td>
</tr>
<tr>
<td>Olizta, M</td>
<td>41</td>
</tr>
<tr>
<td>Olubambi, P</td>
<td>66, 88</td>
</tr>
<tr>
<td>O'Malley, R</td>
<td>139</td>
</tr>
<tr>
<td>Omotosho, O</td>
<td>149</td>
</tr>
<tr>
<td>Omrami, E</td>
<td>73, 91, 114, 125, 140, 147</td>
</tr>
<tr>
<td>Ong, K</td>
<td>42</td>
</tr>
<tr>
<td>Ong, S</td>
<td>152</td>
</tr>
<tr>
<td>Onoka, I</td>
<td>63</td>
</tr>
<tr>
<td>Onuki, Y</td>
<td>56</td>
</tr>
<tr>
<td>Onyeji, L</td>
<td>82</td>
</tr>
<tr>
<td>Oouchi, T</td>
<td>131</td>
</tr>
<tr>
<td>Ophus, C</td>
<td>74</td>
</tr>
<tr>
<td>Opila, E</td>
<td>39, 70, 107, 121, 129</td>
</tr>
<tr>
<td>Oppedal, A</td>
<td>119</td>
</tr>
<tr>
<td>Ordoñez, E</td>
<td>146, 150</td>
</tr>
<tr>
<td>Orloff, N</td>
<td>115</td>
</tr>
<tr>
<td>Ormond, P</td>
<td>38</td>
</tr>
<tr>
<td>Orlat, V</td>
<td>143</td>
</tr>
<tr>
<td>Osetsky, Y</td>
<td>138</td>
</tr>
<tr>
<td>Osenbrink, R</td>
<td>121</td>
</tr>
<tr>
<td>Osuch, P</td>
<td>51, 158</td>
</tr>
<tr>
<td>Otis, R</td>
<td>40, 77</td>
</tr>
<tr>
<td>Omtrinski, J</td>
<td>38</td>
</tr>
<tr>
<td>Otto, J</td>
<td>75</td>
</tr>
<tr>
<td>Ott, R</td>
<td>73</td>
</tr>
<tr>
<td>Oudriss, A</td>
<td>114</td>
</tr>
<tr>
<td>Ouzilane, P</td>
<td>106</td>
</tr>
<tr>
<td>Oveisi, E</td>
<td>110</td>
</tr>
<tr>
<td>Overman, N</td>
<td>41</td>
</tr>
<tr>
<td>Ozaltn, H</td>
<td>101</td>
</tr>
<tr>
<td>Ozcan, H</td>
<td>58</td>
</tr>
<tr>
<td>Ozkan, T</td>
<td>71</td>
</tr>
<tr>
<td>Ozmen, O</td>
<td>136</td>
</tr>
<tr>
<td>Ozturk, T</td>
<td>104, 124</td>
</tr>
<tr>
<td>Name</td>
<td>Page Numbers</td>
</tr>
<tr>
<td>--------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Pabbruwe, M</td>
<td>52</td>
</tr>
<tr>
<td>Pacheco, R</td>
<td>113</td>
</tr>
<tr>
<td>Pachuta, K</td>
<td>63</td>
</tr>
<tr>
<td>Packard, C</td>
<td>144</td>
</tr>
<tr>
<td>Padmadas, P</td>
<td>151</td>
</tr>
<tr>
<td>Pajares Chamorro, N</td>
<td>105</td>
</tr>
<tr>
<td>Pajarre, R</td>
<td>106</td>
</tr>
<tr>
<td>Pal, D</td>
<td>72</td>
</tr>
<tr>
<td>Palmer, B</td>
<td>153</td>
</tr>
<tr>
<td>Palmer, T</td>
<td>35, 44, 57, 58, 72, 90, 113</td>
</tr>
<tr>
<td>Palm, F</td>
<td>50</td>
</tr>
<tr>
<td>Palomares, R</td>
<td>33</td>
</tr>
<tr>
<td>Pal, S</td>
<td>41, 45</td>
</tr>
<tr>
<td>Pal, U</td>
<td>62, 155</td>
</tr>
<tr>
<td>Panahi, D</td>
<td>36</td>
</tr>
<tr>
<td>Panchenko, O</td>
<td>81, 153</td>
</tr>
<tr>
<td>Pan, D</td>
<td>148</td>
</tr>
<tr>
<td>Pandey, A</td>
<td>53, 70</td>
</tr>
<tr>
<td>Pandey, O</td>
<td>43, 151</td>
</tr>
<tr>
<td>Pang, Y</td>
<td>80</td>
</tr>
<tr>
<td>Pang, Z</td>
<td>146</td>
</tr>
<tr>
<td>Pan, J</td>
<td>122</td>
</tr>
<tr>
<td>Pan, Q</td>
<td>44</td>
</tr>
<tr>
<td>Pantano, C</td>
<td>63, 139</td>
</tr>
<tr>
<td>Pant, N</td>
<td>103</td>
</tr>
<tr>
<td>Pan, W</td>
<td>66</td>
</tr>
<tr>
<td>Pan, X</td>
<td>47, 66, 83, 156</td>
</tr>
<tr>
<td>Papac, M</td>
<td>64</td>
</tr>
<tr>
<td>Papagerakis, P</td>
<td>105</td>
</tr>
<tr>
<td>Pape, C</td>
<td>79</td>
</tr>
<tr>
<td>Papin, P</td>
<td>55</td>
</tr>
<tr>
<td>Pappula, L</td>
<td>101</td>
</tr>
<tr>
<td>Papiroty, I</td>
<td>142</td>
</tr>
<tr>
<td>Paquit, V</td>
<td>91</td>
</tr>
<tr>
<td>Paramanik, D</td>
<td>35</td>
</tr>
<tr>
<td>Paramasivam, T</td>
<td>97</td>
</tr>
<tr>
<td>Paramore, J</td>
<td>88, 90, 147, 159</td>
</tr>
<tr>
<td>Paranjape, H</td>
<td>141</td>
</tr>
<tr>
<td>Parise, J</td>
<td>43</td>
</tr>
<tr>
<td>Parish, C</td>
<td>101</td>
</tr>
<tr>
<td>Park, B</td>
<td>47</td>
</tr>
<tr>
<td>Park, C</td>
<td>54, 74</td>
</tr>
<tr>
<td>Park, D</td>
<td>65</td>
</tr>
<tr>
<td>Parkelj, T</td>
<td>115</td>
</tr>
<tr>
<td>Parker, J</td>
<td>82</td>
</tr>
<tr>
<td>Parker, S</td>
<td>101</td>
</tr>
<tr>
<td>Park, H</td>
<td>63, 71, 74, 89, 104</td>
</tr>
<tr>
<td>Park, I</td>
<td>84</td>
</tr>
<tr>
<td>Parkinson, D</td>
<td>.137</td>
</tr>
<tr>
<td>Park, J</td>
<td>.37, 46, 48, 65, 101</td>
</tr>
<tr>
<td>Park, K</td>
<td>.46, 151</td>
</tr>
<tr>
<td>Park, L</td>
<td>.156</td>
</tr>
<tr>
<td>Park, S</td>
<td>.57, 73, 148</td>
</tr>
<tr>
<td>Park, T</td>
<td>.150</td>
</tr>
<tr>
<td>Park, Y</td>
<td>.46, 94, 150, 151</td>
</tr>
<tr>
<td>Parrington, R</td>
<td>.42, 78</td>
</tr>
<tr>
<td>Parsons, C</td>
<td>.115</td>
</tr>
<tr>
<td>Pascal, E</td>
<td>.46</td>
</tr>
<tr>
<td>Pascucci, M</td>
<td>.38, 59, 75</td>
</tr>
<tr>
<td>Pasebani, A</td>
<td>.78</td>
</tr>
<tr>
<td>Pasebani, S</td>
<td>.78</td>
</tr>
<tr>
<td>Patala, S</td>
<td>.116, 152</td>
</tr>
<tr>
<td>Patel, D</td>
<td>.112</td>
</tr>
<tr>
<td>Patel, J</td>
<td>.123</td>
</tr>
<tr>
<td>Patel, V</td>
<td>.45, 64, 80, 99, 121, 138, 148, 152</td>
</tr>
<tr>
<td>Pathak, S</td>
<td>.53, 70</td>
</tr>
<tr>
<td>Patibandla, A</td>
<td>.145</td>
</tr>
<tr>
<td>Patil, S</td>
<td>.34, 84</td>
</tr>
<tr>
<td>Patterson, E</td>
<td>.115</td>
</tr>
<tr>
<td>Paudel, Y</td>
<td>.95</td>
</tr>
<tr>
<td>Paul, S</td>
<td>.127</td>
</tr>
<tr>
<td>Paulson, N</td>
<td>.95</td>
</tr>
<tr>
<td>Paul, T</td>
<td>.68, 120</td>
</tr>
<tr>
<td>Pauly, J</td>
<td>.97</td>
</tr>
<tr>
<td>Paunovic, V</td>
<td>.115</td>
</tr>
<tr>
<td>Pawlowski, A</td>
<td>.33</td>
</tr>
<tr>
<td>Payne, D</td>
<td>.80</td>
</tr>
<tr>
<td>Payton, E</td>
<td>.119</td>
</tr>
<tr>
<td>Payzant, E</td>
<td>.90</td>
</tr>
<tr>
<td>Paz Soldan Palma, J</td>
<td>.143</td>
</tr>
<tr>
<td>Paz y Puente, A</td>
<td>.145</td>
</tr>
<tr>
<td>Pearce, C</td>
<td>.63</td>
</tr>
<tr>
<td>Pecharsky, V</td>
<td>.50, 125</td>
</tr>
<tr>
<td>Pech-Canul, M</td>
<td>.46, 66</td>
</tr>
<tr>
<td>Pedraza, F</td>
<td>.52, 114</td>
</tr>
<tr>
<td>Peeler, D</td>
<td>.63, 102</td>
</tr>
<tr>
<td>Pehr, J</td>
<td>.72</td>
</tr>
<tr>
<td>Pekin, T</td>
<td>.74</td>
</tr>
<tr>
<td>Pellegrino Jr, J</td>
<td>.62</td>
</tr>
<tr>
<td>Pelton, A</td>
<td>.48, 67, 84, 106, 128, 143</td>
</tr>
<tr>
<td>Peng, L</td>
<td>.110</td>
</tr>
<tr>
<td>Peng, X</td>
<td>.99</td>
</tr>
<tr>
<td>Peng, Y</td>
<td>.65, 99</td>
</tr>
<tr>
<td>Peng, Z</td>
<td>.80, 107</td>
</tr>
<tr>
<td>Pentzer, E</td>
<td>.63</td>
</tr>
<tr>
<td>Peppler, J</td>
<td>.156</td>
</tr>
<tr>
<td>Peralta, X</td>
<td>.133</td>
</tr>
<tr>
<td>Perea, D</td>
<td>.146</td>
</tr>
<tr>
<td>Perepežko, J</td>
<td>.48</td>
</tr>
<tr>
<td>Perkins, C</td>
<td>.101</td>
</tr>
<tr>
<td>Perricone, M</td>
<td>.121</td>
</tr>
<tr>
<td>Perron, A</td>
<td>.33, 84, 104</td>
</tr>
<tr>
<td>Perry, N</td>
<td>.121</td>
</tr>
<tr>
<td>Persson, K</td>
<td>.152</td>
</tr>
<tr>
<td>Perzyński, K</td>
<td>.127</td>
</tr>
<tr>
<td>Peter, I</td>
<td>.122</td>
</tr>
<tr>
<td>Peter, N</td>
<td>.44</td>
</tr>
<tr>
<td>Petersen, S</td>
<td>.84, 128</td>
</tr>
<tr>
<td>Peterson, R</td>
<td>.146</td>
</tr>
<tr>
<td>Peter, W</td>
<td>.87</td>
</tr>
<tr>
<td>Petrillo, J</td>
<td>.40</td>
</tr>
<tr>
<td>Petrova, R</td>
<td>.38, 60, 75, 93</td>
</tr>
<tr>
<td>Petrovich, S</td>
<td>.54</td>
</tr>
<tr>
<td>Petuskey, W</td>
<td>.116</td>
</tr>
<tr>
<td>Peverini, O</td>
<td>.41</td>
</tr>
<tr>
<td>Peyre, P</td>
<td>.34</td>
</tr>
<tr>
<td>Pezzotti, G</td>
<td>.87, 109</td>
</tr>
<tr>
<td>Pfeif, E</td>
<td>.95</td>
</tr>
<tr>
<td>Pham, T</td>
<td>.99</td>
</tr>
<tr>
<td>Picard, Q</td>
<td>.80</td>
</tr>
<tr>
<td>Picard, Y</td>
<td>.41, 46, 121, 139</td>
</tr>
<tr>
<td>Picchler, A</td>
<td>.36</td>
</tr>
<tr>
<td>Pickerill, R</td>
<td>.74</td>
</tr>
<tr>
<td>Pickrell, G</td>
<td>.104, 114, 127, 132, 142</td>
</tr>
<tr>
<td>Pierce, D</td>
<td>.86</td>
</tr>
<tr>
<td>Pignol, A</td>
<td>.62</td>
</tr>
<tr>
<td>Pilania, G</td>
<td>.85, 108, 130, 144, 157</td>
</tr>
<tr>
<td>Pilchak, A</td>
<td>.119, 129, 141</td>
</tr>
<tr>
<td>Pilgrim, S</td>
<td>.40, 115</td>
</tr>
<tr>
<td>Pimenta, A</td>
<td>.153</td>
</tr>
<tr>
<td>Painaud, G</td>
<td>.54</td>
</tr>
<tr>
<td>Pinto, A</td>
<td>.146</td>
</tr>
<tr>
<td>Piraino, L</td>
<td>.105</td>
</tr>
<tr>
<td>Pirc, R</td>
<td>.93</td>
</tr>
<tr>
<td>Pirtoszek, T</td>
<td>.58, 97</td>
</tr>
<tr>
<td>Pisat, A</td>
<td>.47</td>
</tr>
<tr>
<td>Pistorius, P</td>
<td>.56, 91</td>
</tr>
<tr>
<td>Pityana, S</td>
<td>.56, 88, 101</td>
</tr>
<tr>
<td>Plancher, E</td>
<td>.69</td>
</tr>
<tr>
<td>Planter, R</td>
<td>.41</td>
</tr>
<tr>
<td>Plotkowski, A</td>
<td>.56, 113, 126, 132</td>
</tr>
<tr>
<td>Plotlowiak, A</td>
<td>.91, 126</td>
</tr>
<tr>
<td>Poczos, B</td>
<td>.108</td>
</tr>
<tr>
<td>Podany, P</td>
<td>.154</td>
</tr>
<tr>
<td>Poerschke, D</td>
<td>.52</td>
</tr>
<tr>
<td>Pogue, E</td>
<td>.158</td>
</tr>
<tr>
<td>Pokharel, R</td>
<td>.60, 104</td>
</tr>
</tbody>
</table>
INDEX

Ren, W .. 78
Ren, X ... 129
Ren, Y .. 34, 115, 128
Ren, Z ... 34, 41, 87, 88
Reschetnik, W 34
Reuter, K ... 105
Reutzel, T .. 72
Reynolds, A ... 91
Reynolds, D 133
Reynolds, W ... 61
Rhee, H ... 119
Rheinheimer, W 64, 89, 98, 111, 120
Riaz, F ... 100, 128, 138
Riaz, U ... 84, 104, 109
Ricucci, C .. 41
Rice, F ... 101
Rice, J ... 139
Richards, B .. 35
Richmire, S ... 81
Ricketts, R ... 33
Ricker, R .. 111
Riedow, J ... 111
Riekehr, S ... 56
Rietema, C ... 71
Rigg, P .. 106
Riman, R ... 52, 88, 108, 131
Rincon Romero, A 88, 111, 159
Rinderspacher, B 85
Rindler, J ... 34
Rios, O .. 33, 69, 84, 105
Rishel, L ... 101
Ritchie, P ... 107
Ritchie, R .. 79
Rivera-Diaz-del-Castillo, P 92
Rivera, K ... 114
R'Mili, M ... 98
Robert, C .. 142
Roberts, A ... 62, 117, 138
Roberts, N ... 119
Robertson, S .. 158
Roberts, S ... 71, 81
Robinson, A ... 101
Rock, C .. 35, 90, 112
Rockett, A .. 158
Rock, R .. 33
Rocks, S .. 140
Rodelas, J ... 42, 82, 100
Rodgers, T ... 141
Rodman, D ... 42
Rodriguez-Ibanez, J 74
Rodriguez, S ... 57
Roedel, J ... 111
Roehling, J ... 91, 104, 112
Roehling, T ... 91
Rogers, R .. 170
Rohatgi, P .. 73, 83, 91, 114, 125, 147
Rohrer, G47, 63, 83, 98, 120, 152
Roine, J .. 90
Rokkam, S ... 39, 40, 94
Rolchigo, M ... 91, 126
Rollett, A .. 34, 36, 56, 57, 59, 72, 73, 82, 89, 90, 98, 100, 104, 113, 114, 117, 124, 137, 139
Roll, M .. 93
Romaniszyn, D .. 51, 158
Romanov, V ... 117
Romero, G ... 125
Romero, J ... 81
Rondinella, A ... 109
Rong, J .. 149
Rong, Y .. 151, 153
Roosendaal, T 81
Rosales, M ... 152
Rosei, F .. 47
Rosenberger, A 132
Rosi, N .. 131
Rothchild, A .. 98
Roulleau, C .. 74
Rowenhorst, D 57, 90
Rowland, R .. 85, 88
Roy, A .. 143
Roy, M .. 34, 51, 87, 109, 158
Rozanska, A .. 51, 158
Rozas, A .. 135
Rozhin, A .. 135
Rozic, B .. 93
Rozman, K ... 95, 122
Rubenchik, A 113
Rubio Peregina, S 47
Rucker, W ... 63
Rudd, R .. 64
Rudzik, T ... 135
Ruggles-Wrenn, M 98
Rui, X .. 109
Rule, J .. 122
Rumana, A ... 36
Rumiche, F .. 79, 135
Runge, K ... 145
Runnerstrom, E 154
Runzao, L ... 148
Rupert, T .. 92, 95, 136, 152
Rupp, R ... 95
Russell, M .. 96, 118
Russell, R ... 124
Ruzyllo, J ... 116
Ryou, H .. 97
Ryu, G .. 49, 120
S
Saal, J .. 81, 85
Saatchi, A ... 73, 114
Sabarou, H ... 129, 143
Sabee, A .. 116
Sabolsky, K .. 63
Sabolsky, E ... 49, 63, 110, 114, 133, 136
Sabolsky, K .. 114, 133
Saboo, A ... 85, 92
Sachan, R ... 78
Sachdev, A ... 85
Sago, A .. 116
Sadagopan, S ... 86
Sadangi, R .. 57, 85, 122, 132
Sadayappan, K .. 81, 100, 122, 153
Sadek, A .. 73
Sadowski, B ... 75
Saedi, S .. 35
Safa, M ... 148
Saghaian, S ... 35
Sahai, N .. 87
Sahu, D ... 96
Saikata, K .. 142
Saied, D .. 99
Saida, K .. 99
Sainato, M ... 142
Saiz, E .. 44, 80
Saigalik, P ... 111
Sakata, M ... 112
Sakidja, R ... 53
Sakka, Y .. 75, 97
Sakthivel, T .. 127
Salasin, J ... 107
Salas, R .. 92
Salazar-Zertuche, M 155
Sažinas, R. ... 64
Scardelatto, S. 145
Scavino, G. ... 62
Schade, C. ... 96, 106
Schaefer, J. .. 105
Schaller, R. ... 82
Schafer, M. ... 33, 34, 147
Schafer, T. ... 84
Scheck, C. ... 90, 103
Scheer, A. ... 160
Scheich, G. ... 135
Scheck, T. ... 128
Schellenberg, G. 82
Schindelholz, E. 82, 102, 125, 155
Schlaegle, S. .. 36
Schmit, D. ... 87, 156
Schmitz, F. .. 48, 118
Schmitz, M. ... 86
Schneider, J. .. 80, 81, 87
Schoenfeld, W. 48, 96
Schoenitz, M. .. 103
Schoenung, J. 55, 113
Schöne, C. ... 145
Schroth, J. ... 110
Schubert, J. .. 47
Schuh, C. ... 80, 83, 91, 104, 120, 129
Schuler, J. ... 71, 152
Schulz, A. ... 66
Schulz, E. ... 48, 57
Schulze, W. .. 115
Schumacher, K. 136
Schuster, B. ... 77, 102, 117
Schwalbach, E. 56
Schwam, D. .. 153
Schwantz, J. .. 146
Schwarz, R. .. 67
Schweiger, M. 63, 102, 124
Schwenkenwein, M. 38, 67, 132
Schwarzler, S. 107
Sciame, L. ... 113
Sciapione Bertoli, U. 113
Scott, D. .. 159
Scott-Emuakpor, O. 132
Seal, S. ... 105, 127
Seaman, J. .. 63
Sebastian, J. 81
Sebeck, K. .. 37
Secco, M. ... 159
Seddio, S. .. 154
Seerane, M. .. 101
Sehirioglu, A 63
Seidel, J. ... 69
Seidensticker, J 101, 138
Seidman, D .. 54, 68, 112, 130, 141
Seifeddine, S 81, 100, 122, 123, 153
Seifert, H ... 46
Seifert, M. .. 78
Seif, M. .. 89, 90, 112, 132, 146
Selin, V. ... 109
Sellami, N .. 46, 94
Semiatin, L ... 129
Sen, I .. 34
Senor, D ... 45
Sen, S .. 110
Seo, D .. 150
Seo, J .. 44
Seo, S ... 93
Sepelhrband, P 80
Sepelak, V .. 140
Sereda, B .. 38, 91, 93, 147, 148
Sereda, D .. 38, 91, 93, 147, 148
Sergeyev, S ... 135
Sergueeva, A 36, 58, 74, 92, 115, 133, 148
Serrizawa, H 99
Sestito, J ... 126
Seymour, J .. 150
Shackelford, C 106
Shade, P .. 124
Shadman, A 133
Shadravan, A 36, 127
Shaffer, J ... 141
Shaffer, S ... 118
Shafirovich, E 125
Shahabi, F .. 39
Shahani, A .. 98
Shahba, A .. 39
Shahbeigi Roodposhti, P 68
Shah, R ... 106, 142
Shah, S ... 154
Shah, U ... 84, 104, 109
Shakoor, A .. 54
Shakouli, S .. 49
Shalomeev, V 123
Shamblin, J ... 33
Shamsaei, N 73, 89, 112, 132, 146
<table>
<thead>
<tr>
<th>Name</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shanbhag, S</td>
<td>.40</td>
</tr>
<tr>
<td>Shang, S</td>
<td>48, 143, 144</td>
</tr>
<tr>
<td>Shang, X</td>
<td>.103</td>
</tr>
<tr>
<td>Shankar, R</td>
<td>.124</td>
</tr>
<tr>
<td>Shankar, S</td>
<td>100, 122</td>
</tr>
<tr>
<td>Shan, W</td>
<td>.39</td>
</tr>
<tr>
<td>Shan, X</td>
<td>36, 147</td>
</tr>
<tr>
<td>Shan, Y</td>
<td>.138</td>
</tr>
<tr>
<td>Shao-Horn, Y</td>
<td>.121</td>
</tr>
<tr>
<td>Shao, S</td>
<td>53, 70, 71, 73, 93, 130</td>
</tr>
<tr>
<td>Shapiro, A</td>
<td>.71</td>
</tr>
<tr>
<td>Shapter, J</td>
<td>.50</td>
</tr>
<tr>
<td>Sharif, A</td>
<td>.133</td>
</tr>
<tr>
<td>Sharifi, P</td>
<td>.81</td>
</tr>
<tr>
<td>Sharma, P</td>
<td>.43</td>
</tr>
<tr>
<td>Shaw, B</td>
<td>.75</td>
</tr>
<tr>
<td>Shaw, L</td>
<td>55, 85</td>
</tr>
<tr>
<td>Shayesteh Moghaddam, N</td>
<td>.35</td>
</tr>
<tr>
<td>Shearer, C</td>
<td>.50</td>
</tr>
<tr>
<td>Shekhawat, D</td>
<td>.49</td>
</tr>
<tr>
<td>Shen, D</td>
<td>.134</td>
</tr>
<tr>
<td>Sheng, T</td>
<td>.39</td>
</tr>
<tr>
<td>Shen, J</td>
<td>.83</td>
</tr>
<tr>
<td>Shen, Y</td>
<td>48, 90, 120, 124, 148</td>
</tr>
<tr>
<td>Sheridan, J</td>
<td>.55</td>
</tr>
<tr>
<td>Sheridan, L</td>
<td>62, 112, 132, 146</td>
</tr>
<tr>
<td>Sherman, A</td>
<td>.36, 54</td>
</tr>
<tr>
<td>Sheth, N</td>
<td>.63</td>
</tr>
<tr>
<td>Shevchik, S</td>
<td>.91</td>
</tr>
<tr>
<td>Sheyko, S</td>
<td>.123</td>
</tr>
<tr>
<td>Shibata, A</td>
<td>.131</td>
</tr>
<tr>
<td>Shichao, C</td>
<td>.150</td>
</tr>
<tr>
<td>Shi, D</td>
<td>94, 127</td>
</tr>
<tr>
<td>Shi, F</td>
<td>.110</td>
</tr>
<tr>
<td>Shih, C</td>
<td>.82</td>
</tr>
<tr>
<td>Shih, M</td>
<td>.141</td>
</tr>
<tr>
<td>Shi, J</td>
<td>76, 129, 148</td>
</tr>
<tr>
<td>Shi, L</td>
<td>.86</td>
</tr>
<tr>
<td>Shim, D</td>
<td>.73</td>
</tr>
<tr>
<td>Shim, J</td>
<td>37, 136</td>
</tr>
<tr>
<td>Shimoda, N</td>
<td>.64</td>
</tr>
<tr>
<td>Shimoyama, A</td>
<td>.134</td>
</tr>
<tr>
<td>Shin, C</td>
<td>.154</td>
</tr>
<tr>
<td>Shin, D</td>
<td>.34</td>
</tr>
<tr>
<td>Shin, Y</td>
<td>149, 152</td>
</tr>
<tr>
<td>Short, M</td>
<td>.39</td>
</tr>
<tr>
<td>Shoulders, T</td>
<td>.60</td>
</tr>
<tr>
<td>Shreeram, D</td>
<td>.73</td>
</tr>
<tr>
<td>Shrestha, S</td>
<td>.96, 126</td>
</tr>
<tr>
<td>Shugart, K</td>
<td>48, 67, 116</td>
</tr>
<tr>
<td>Shunmugasamy, Y</td>
<td>.100</td>
</tr>
<tr>
<td>Shu, Y</td>
<td>.45</td>
</tr>
<tr>
<td>Shym, A</td>
<td>.33</td>
</tr>
<tr>
<td>Sickafus, K</td>
<td>.130</td>
</tr>
<tr>
<td>Siddel, D</td>
<td>.106</td>
</tr>
<tr>
<td>Siddique, I</td>
<td>.154</td>
</tr>
<tr>
<td>Siderenko, D</td>
<td>.92</td>
</tr>
<tr>
<td>Siedlecki, C</td>
<td>.105</td>
</tr>
<tr>
<td>Siefert, N</td>
<td>.110</td>
</tr>
<tr>
<td>Sierros, K</td>
<td>.133</td>
</tr>
<tr>
<td>Sietins, J</td>
<td>83, 125</td>
</tr>
<tr>
<td>Sietsma, J</td>
<td>.143</td>
</tr>
<tr>
<td>Sikder, P</td>
<td>.128</td>
</tr>
<tr>
<td>Sikora, A</td>
<td>.105</td>
</tr>
<tr>
<td>Sikorski, E</td>
<td>.138</td>
</tr>
<tr>
<td>Silva, F</td>
<td>56, 149</td>
</tr>
<tr>
<td>Simanjuntak, P</td>
<td>.53</td>
</tr>
<tr>
<td>Sim, H</td>
<td>.153</td>
</tr>
<tr>
<td>Simmons, J</td>
<td>.136</td>
</tr>
<tr>
<td>Simon, D</td>
<td>.47</td>
</tr>
<tr>
<td>Simon, G</td>
<td>.55</td>
</tr>
<tr>
<td>Simpson, M</td>
<td>.139</td>
</tr>
<tr>
<td>Sims, Z</td>
<td>.105</td>
</tr>
<tr>
<td>Simunovic, S</td>
<td>.142</td>
</tr>
<tr>
<td>Singer, J</td>
<td>.63</td>
</tr>
<tr>
<td>Singh, A</td>
<td>56, 92, 132</td>
</tr>
<tr>
<td>Singh, A</td>
<td>.137</td>
</tr>
<tr>
<td>Singh, C</td>
<td>.152</td>
</tr>
<tr>
<td>Singh, D</td>
<td>.149</td>
</tr>
<tr>
<td>Singh, G</td>
<td>44, 76, 82, 94, 116, 134, 150</td>
</tr>
<tr>
<td>Singh, J</td>
<td>97, 98, 120, 121, 136, 137, 151, 152</td>
</tr>
<tr>
<td>Singh, K</td>
<td>.63</td>
</tr>
<tr>
<td>Singh, L</td>
<td>.62</td>
</tr>
<tr>
<td>Singh, M</td>
<td>52, 70, 88, 111, 131, 133, 145, 159</td>
</tr>
<tr>
<td>Singh, N</td>
<td>41, 42, 62, 78</td>
</tr>
<tr>
<td>Singh, O</td>
<td>.78</td>
</tr>
<tr>
<td>Singh, S</td>
<td>46, 105</td>
</tr>
<tr>
<td>Singh, V</td>
<td>.36</td>
</tr>
<tr>
<td>Singh, Y</td>
<td>.96</td>
</tr>
<tr>
<td>Sinha, V</td>
<td>.119</td>
</tr>
<tr>
<td>Sinnott, S</td>
<td>40, 66</td>
</tr>
<tr>
<td>Sisson, Jr, R</td>
<td>.92, 119</td>
</tr>
<tr>
<td>Sisson, R</td>
<td>35, 48, 49, 92, 97, 130</td>
</tr>
<tr>
<td>Sistaninia, M</td>
<td>.89</td>
</tr>
<tr>
<td>Sivanandan, L</td>
<td>.63</td>
</tr>
<tr>
<td>Siyasiya, C</td>
<td>.101</td>
</tr>
<tr>
<td>Sizyuk, T</td>
<td>138, 154</td>
</tr>
<tr>
<td>Sjoblom, R</td>
<td>.63</td>
</tr>
<tr>
<td>Skelly, K</td>
<td>.156</td>
</tr>
<tr>
<td>Skinner, B</td>
<td>.110</td>
</tr>
<tr>
<td>Skszek, T</td>
<td>81, 153</td>
</tr>
<tr>
<td>Slager, A</td>
<td>.78, 96</td>
</tr>
<tr>
<td>Slazmhniew, M</td>
<td>.153</td>
</tr>
<tr>
<td>Smedskaier, M</td>
<td>.79</td>
</tr>
<tr>
<td>Smith, A</td>
<td>33, 55, 95, 132</td>
</tr>
<tr>
<td>Smith, C</td>
<td>60, 137</td>
</tr>
<tr>
<td>Smith, J</td>
<td>46, 55, 71, 101</td>
</tr>
<tr>
<td>Smith, N</td>
<td>46, 65, 82, 102, 124, 139, 154</td>
</tr>
<tr>
<td>Smith, P</td>
<td>.62</td>
</tr>
<tr>
<td>Smith, R</td>
<td>.101</td>
</tr>
<tr>
<td>Smith, T</td>
<td>.35, 56</td>
</tr>
<tr>
<td>Smyrak, B</td>
<td>51, 158</td>
</tr>
<tr>
<td>Sneed, L</td>
<td>.114</td>
</tr>
<tr>
<td>Sniry, Y</td>
<td>.57</td>
</tr>
<tr>
<td>Snow, C</td>
<td>.45</td>
</tr>
<tr>
<td>Snyder, M</td>
<td>.63</td>
</tr>
<tr>
<td>Snyder, S</td>
<td>34, 92, 110</td>
</tr>
<tr>
<td>Sobijy, K</td>
<td>.101</td>
</tr>
<tr>
<td>Soboyejo, W</td>
<td>39, 84, 110, 127, 136</td>
</tr>
<tr>
<td>Soderhjelm, C</td>
<td>122, 153</td>
</tr>
<tr>
<td>Sofie, S</td>
<td>134, 150</td>
</tr>
<tr>
<td>Sohn, H</td>
<td>.46</td>
</tr>
<tr>
<td>Sohn, S</td>
<td>.69</td>
</tr>
<tr>
<td>Sohn, Y</td>
<td>48, 57</td>
</tr>
<tr>
<td>Sokalski, V</td>
<td>.93</td>
</tr>
<tr>
<td>Sokhey, S</td>
<td>.62</td>
</tr>
<tr>
<td>Solis Bravo, G</td>
<td>.139</td>
</tr>
<tr>
<td>Solis-Ramos, E</td>
<td>.90</td>
</tr>
<tr>
<td>Solomon, C</td>
<td>36, 150</td>
</tr>
<tr>
<td>Solorzano, G</td>
<td>.146</td>
</tr>
<tr>
<td>Solorzano, I</td>
<td>.152</td>
</tr>
<tr>
<td>Soltanattar, S</td>
<td>.114</td>
</tr>
<tr>
<td>Soltani, N</td>
<td>.66</td>
</tr>
</tbody>
</table>
INDEX

T

Tack, T ... 68
Taheri, M 37, 41, 43, 44, 61, 62, 77, 78, 83, 95, 117, 150, 153
Tai, H ... 131
Tait, D .. 50
Takacs, L 83, 103, 125, 140, 155
Takagi, S 36
Takahashi, M 65
Takahashi, S 151
Tanamura, H 44, 99
Takano, A ... 44
Takaoka, T 133
Takashi, M 81
Takeuchi, A 131
Takeuchi, I 115, 130
Takeyama, M 112
Taleff, E ... 95
Tallman, A 77
Talamonis, A 43
Tamburini, S 159
Tamirisakandala, S 153
Tanaka, H .. 54
Tang, B .. 95, 143, 145
Tang, C .. 130
Tang, D .. 125
Tang, F .. 73, 91, 114, 132, 147
Tang, H .. 107
Tang, J .. 143
Tang, K .. 102
Tang, M 91, 98, 120
Tang, X ... 47
Tang, Y 107, 134
Tanigawa, H 99
Taniguchi, S 49
Tan, K .. 92
Tan, S .. 150
Tansu, N .. 63
Tan, Y .. 86
Tanzer, A .. 96
Tao, G 93, 119, 135
Tao, T .. 116
Tapia, G .. 34, 35, 72, 126, 141
Tapp, J ... 66
Taracea, G 40
Tariq, M ... 69, 86
Tari, V 104, 117, 139
Tasan, C .. 69, 107, 133
Task, M .. 114

Tatami, J 52, 70, 88, 111, 131, 145, 159
Tatman, E 62, 112, 146
Tatsumi, H .. 96
Taub, A .. 153
Taub, A .. 34
Tavakoli, A 120, 159
Tavazza, F .. 61
Taylor, G .. 108
Taylor, C 37, 45
Taylor, E 34, 92, 110
Taylor, H .. 88
Taylor, J 82, 89
Taylor, M .. 138
Taylor, P .. 108
Taylor, S .. 106
Teague, M 39, 77
Tegtmeyer, E 146
Teizer, W .. 105
Telang, A 65
Telesman, J 70
Teng, C .. 129
Tenkku, T .. 101
Terada, Y 137
Terayama, Y 64
Terban, M 49
Terrani, K 81, 82, 101, 114
Terrell, J 42, 62
Tešinsky, M 140
Tessmer, J 46, 121
Tevis, I ... 35
Texier–Mandoki, N 68
Teysseyre, S 65
Thadhani, N 119
Thakare, S 138
Thapa, A ... 140
Thatcher, Z 80
Thavanayagam, G 88, 159
Thekdì, A 49
Thian, E 47, 156
Thirumalai, N 95
Thomas, E 123
Thomas, S 94
Thomas, T 43
Thompson, D 73
Thompson, G 60, 93, 97, 98, 120, 134
Thompson, R 110, 135
Thompson, S 73, 74, 79
Thomson, J 81
Thornton, K 143, 144
Thorsson, L 73
Thrivikraman, G 67
Thumm, M 68
Thuo, M .. 35
Tianen, M 42, 157
Tian, Y .. 150
Tian, Z .. 99
Tidrow, S 78, 115, 133
Timofeeva, L 33
Timucin, D 113
Tolentino, M 56, 101
Tolb, M .. 103, 126
Tobi, Baben, M 106
Tochi, M .. 112
Toeppe, T 55, 145
Tohiraee, A 37
Toher, C .. 39
Tohji, K ... 85
Tohln, D .. 123, 154
Toloczek, M 45
Toman, J 36, 58, 112, 147
Tomar, V 60, 104
Tomko, J ... 66
Tomozawa, M 63
Tomura, Y 99
Toney, M .. 44
Tong, A .. 142
Tong, J .. 110
Tong, W .. 132
Tonks, M .. 39, 77
Tobepasi, C 123
Topping, T 54, 71, 89, 160
Torgerston, T 84
Torresani, E 85
Torres, O 144
Townsend, S 95
Tran, A .. 77
Tran, H .. 85, 108, 130, 144, 157
Tran, R .. 152
Trapaga Martinez, L 56
Trask, M .. 72
Traubert, T 79
Traverso, J 124
Traylor, R .. 74
Treadwell, L 113
Treleivcz, J 59
Trenkle, J ... 42, 96
Trice, R .. 52, 70, 87, 110, 159
Trimby, P 107
Tripathi, J 138, 154
Trivedi, H 119
Z
Zahrah, T 85, 88, 122
Zaitsev, Y 146
Zakar, F 78
Zakutayev, A 64
Zangiabadi, A 107
Zanotto, E 79
Zapata-Solves, E 65, 85, 98
Zarzar, L 156
Zavan, B 111
Zbib, H 53, 71, 127, 156
Zegdi, R 47
Zeleznik, N 58
Zell, E 104, 142
Zeltmann, S 83
Zeng, W 147
Zeng, X 100, 122
Zerova, A 63
Zhai, M 148
Zhai, Y 46
Zhang, B 39, 71, 129, 148
Zhang, C 97, 98, 103, 119, 123, 135, 143
Zhang, G 135
Zhang, H 34, 76, 94, 96, 115, 123, 134, 145, 149, 150, 151
Zhang, J 33, 72, 86, 103, 107, 120, 125, 126, 129, 141, 143, 148, 149, 153, 154, 155, 157
Zhang, K 81, 108
Zhang, L 83, 94, 95, 97, 115, 116, 127, 133, 148, 149
Zhang, M 77, 95
Zhang, N 136, 144
Zhang, P 49, 94, 110, 139
Zhang, Q 71, 135
Zhang, R 87, 144
Zhang, S 39, 64, 65, 67, 97, 148
Zhang, T 25, 72, 76, 82, 97, 101, 102, 119, 125, 135, 147, 148, 151, 155
Zhang, Y 39, 46, 66, 72, 76, 86, 88, 94, 95, 103, 107, 123, 130, 131, 133, 137, 138, 145, 147, 149
Zhang, Z 47, 148
Zhan, X 97, 139
Zhao, C 89, 114
Zhao, J 43, 48, 67, 68, 82, 84, 92, 106, 126, 128, 143, 151
Zhao, K 76, 94, 116, 134, 150
Zhao, L 127
Zhao, Q 71, 129, 131, 145, 148
Zhao, R 34
Zhao, S 138
Zhao, T 75
Zhao, X 117, 120, 148
Zhao, Y 103, 126, 152
Zhdanov, S 154
Zheng, D 103, 125, 155
Zheng, H 152
Zheng, M 93, 149, 153
Zheng, Q 60
Zheng, R 119, 135
Zheng, Y 106, 107, 129, 143, 157
Zhou, C 53, 131
Zhou, D 52
Zhou, G 130
Zhou, H 115, 137
Zhou, J 147
Zhou, L 57, 66, 152, 155
Zhou, N 39, 45, 153
Zhou, Q 73, 138, 147
Zhou, S 80, 135
Zhou, T 77
Zhou, W 110
Zhou, X 73, 87, 105
Zhou, Y 99, 106, 137, 149, 156
Zhuang, X 149
Zhu, C 149
Zhu, D 52, 70, 87, 110, 159
Zhu, H 64
Zhu, J 50, 69, 86, 109, 130, 149, 158
Zhu, L 93
Zhu, M 69, 86, 148, 149
Zhu, Q 64
Zhu, R 146, 148
Zhu, S 74, 123, 153
Zhu, W 119, 143
Zhu, X 93, 151
Zhu, Y 148
Ziabari, A 136
Zinkle, S 45, 71, 82, 101
Zinn, W 113
Ziomek-Moroz, M 82
Zlamaniec, J 96
Zok, F 52, 97, 98, 121
Zorkovská, A 140
Zou, C 95
Zou, G 153
Zuback, J 72
Zuber, C 54, 159
Zucker, R 64, 120
Zurita-Torres, E 131
Zurob, H 77
Zhong, Y 52, 58, 66, 68, 95, 107, 109, 129, 130, 143, 144, 145, 157
Zhong, C 53, 131
Zhong, D 52
Zhong, G 130
Zhong, H 115, 137
Zhong, J 147
Zhong, L 57, 66, 152, 155
Zhong, N 39, 45, 153
Zhong, Q 81, 108
Zhong, S 133, 148, 149
Zhong, W 89, 120, 152