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ABSTRACT 
 Ultrasonic nondestructive evaluation has conventionally been used to measure elastic 
properties and locate large flaws in many types of materials used for a number of different 
applications. Recent advances in acoustic spectroscopy have enabled ultrasound techniques that 
can be used to examine the microstructure of dense ceramic bodies. In this study, methodology is 
developed for nondestructively characterizing the microstructure of spark plasma sintered (SPS) 
silicon carbide using high frequency ultrasound acoustic spectroscopy. Several silicon carbide 
samples with varying microstructures were produced by varying the processing and sintering 
conditions. Comparison of the acoustic attenuation spectra of the silicon carbide samples with 
microstructural information from field emission scanning electron microscopy (FESEM) is used 
to determine a relationship between microstructural properties and ultrasound response. 
 
INTRODUCTION 

Silicon carbide ceramics are frequently used in many demanding applications due to their 
excellent mechanical and thermal properties. In order to ensure the performance of the material, 
testing should be performed on a finished part before being put into service. Conventional testing 
methods for ceramic parts are typically destructive processes that render the specific parts tested 
unfit for service. Nondestructive methods do exist and are able to determine some material 
properties without harming the tested part. This enables all parts to be tested to ensure quality 
before entering service. One common nondestructive evaluation method uses ultrasound to 
determine the elastic properties of a material and can locate large cracks or other flaws1. While 
this method is effective at locating large flaws, it does not provide any information about the 
underlying microstructure. 

This research was conducted in order to study the interaction of high frequency 
ultrasound and the microstructure of silicon carbide prepared via spark plasma sintering (SPS). 
Silicon carbide samples made with boron carbide and carbon additives were examined using 
nondestructive ultrasound techniques……………………….. 
 
EXPERIMENTAL 

In the effort to create SPS SiC samples with varied microstructures, different SPS 
sintering cycles were utilized. For this work, samples were made with variations in applied 
pressure, sintering temperature, and dwell time at the sintering temperature. To make these 
samples, silicon carbide powder was mixed with boron carbide and carbon additives by ball 
milling in ethanol for 24 hours in a polyethylene container with silicon carbide balls. Each 
sample used the same Saint Gobain SiC powder, 1.5% Fisher lamp black as the carbon additive, 
and 0.5% H.C. Starck HD20 as the B4C additive. After milling, the powders were sieved to 
remove the ball mill media, pan dried, ground to uniformity with a mortar and pestle, and left to 
dry in an oven at 115°C overnight.  

The samples were then densified in a Thermal Technology SPS 10-4 spark plasma 
sintering unit using 6.5 grams of powder in a graphite die lined with graphite foil. The pressure 
variation samples were sintered by first heating under vacuum to 1400°C at 200°C per minute 
under 10 – 50MPa uniaxial pressure and holding for 5 minutes………………………………. 



Table I. SPS conditions used for each sample.
Sample Applied Pressure 

(MPa) 
Sintering Temperature 

(°C)  
Dwell Time 

(min) 
Pressure Variations  

50MPa 50 1900 15 
40MPa 40 1900 15 
30MPa 30 1900 15 
20MPa 20 1900 15 
10MPa 10 1900 15 

Temperature Variations  
1900C 50 1900 5 
1925C 50 1925 5 
1950C 50 1950 5 
1975C 50 1975 5 
2000C 50 2000 5 

Dwell Time Variations  
5 min 50 2000 5 
15 min 50 2000 15 
25 min 50 2000 25 
35 min 50 2000 35 
45 min 50 2000 45 

 
RESULTS AND DISCUSSION 
 
Pressure Variations 

The densities and elastic properties of the pressure variation samples are shown below in 
Table 2. Figure 1 below shows FESEM images of the pressure variation samples. The samples 
all show similar size and shape of the SiC grains with relatively small, equiaxed grains and 
small, evenly distributed secondary phase particles of unreacted B4C and carbon. The main 
differences are in the amount of porosity observed in the samples sintered at lower pressures. 
Very little if any porosity is seen in the samples sintered at 50 and 40MPa. Those sintered at 30 
and 20MPa show a moderate amount of porosity and the sample sintered at 10MPa shows a 
significant level of porosity. This increase in porosity is also reflected in the differences in 
density between samples……………………………………………… 

Table 2: Pressure variation sample elastic properties. 

Sample cL (m/s) cS (m/s) Poisson Density (g/cm3) E (GPa) G (GPa) K (GPa) 
50MPa 11961 7422 0.187 3.16 413 174 220 
40MPa 11942 7437 0.183 3.14 411 174 216 
30MPa 11811 7365 0.182 3.09 396 168 208 
20MPa 11830 7376 0.182 3.08 396 168 208 
10MPa 11356 7053 0.186 2.94 347 146 184 



 
Figure 1. FESEM images of samples sintered with 50MPa (A), 40MPa (B), 30MPa (C), 20MPa 
(D), and 10MPa (E) of applied uniaxial pressure at 5000x magnification.  
 
 
CONCLUSIONS 

Several sets of silicon carbide samples were made using the spark plasma sintering 
method. The sintering parameters were varied in order to produce samples with varying 
microstructures. Ultrasonic testing was performed to measure elastic properties and to correlate 
measured attenuation coefficient spectra to microstructural characteristics. In samples that were 
sintered with varying amounts of applied pressure, it was shown that the attenuation coefficient 
increased at high frequencies with increasing porosity.……………..   
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