Better bodies with biomaterials:

How ceramic and glass contribute to the $110B global market for implantable biomaterials

PLUS ceramicSOURCE Buyers Guide
AND Ceramic Glass MANUFACTURING
GET IN LINE.
“the hog line”

Success at the end of the line begins with an EZG Refractory Mud Hog® at the front of the line. World-renowned for its longevity, customizable options, waste reduction and homogeneous mixing power.

- Full customization to suit unique applications
- Exclusive reversible vertical mixing paddle design prevents clogging and promotes uniform mixing
- Abrasion resistant bolt-in drum liners for maximum durability
- Low load, high dump ergonomic design for operator comfort

Want more efficient, safer and easier casting? Connect with our technical team to build your hog at ezgmfg.com.

1-800-417-9272 / ezgmfg.com / sales@ezgmfg.com
1833 N. Riverview Road, Malta, Ohio 43758

EZG Manufacturing is a division of EZ Grout Corporation. All EZG Manufacturing products are backed by our two-year warranty on parts unless otherwise stated and are now available for order.
Better bodies with biomaterials: How ceramic and glass contribute to the $110B global market for implantable biomaterials
Ceramic and glass biomaterials integrate with the human body in diverse ways to support human health. As aging populations and evolving healthcare approaches shift the medical landscape, increasing opportunities for both established and innovative technologies predict a strong future for ceramics and glass.

by April Gocha and Lisa McDonald

No.5 — Ceramic & Glass Manufacturing
Setting the standards: How standards enhance quality and promote reliability
Also inside!
- Industry news
- Japan Fine Ceramics Association and its international standardization activities for fine ceramics
- A short list of standards-developing organizations

Meeting
Highlights from Virtual Ceramic Expo 2020
Highlights from Virtual Ceramic Manufacturing Solutions Conference
Electronic Materials and Applications (EMA 2021)
45th International Conference and Exposition on Advanced Ceramics and Composites (ICACC21)

resources
Calendar
Classified Advertising
Display Ad Index
As seen on Ceramic Tech Today...

Pursuing the future of energy: A review on perovskite tandem solar cell development and fundamentals

Perovskite tandem solar cell technologies improved rapidly in the past six years, but there are still challenges keeping them from commercialization. A recent review article by two researchers at the University of Surrey in the U.K. provides an expansive look at this budding industry.

Also see our ACerS journals...

A review: Recent advances in sol-gel-derived hydroxyapatite nanocoatings for clinical applications

Review on calcium silicate-based bioceramics in bone tissue engineering

By P. Srinath, P. Abdul Azeem, and K. Venugopal Reddy International Journal of Applied Ceramic Technology

A review of acellular immersion tests on bioactive glasses—influence of medium on ion release and apatite formation

By A. Nammoets-Namn, L. Hupa, D. Rohanová, D. S. Brauer International Journal of Applied Glass Science

Sign up to get journal tables of contents and new content alerts. See this CTI post for more information: https://ceramics.org/August2020tips.

Read more at www.ceramics.org/perovskiterewiew
Toward an International Year of Glass

Glass helps us live safer and more sustainable lives, from offering a sound disposal method for nuclear waste to improving osseointegration of biomedical implants to allowing for high-speed internet access. Yet this material, which is key to so many applications, is often underappreciated in society and viewed only in terms of windows and kitchenware.

Educating the public about the importance of glass in modern society is a goal for many materials science organizations, but individual efforts only go so far. What if we could bring people together in a global initiative to raise awareness of this influential material?

That is the driving force behind a recent initiative spearheaded by the International Commission on Glass (ICG) to have 2022 declared the International Year of Glass.

Since 1959, the General Assembly of the United Nations designated specific years as United Nations International Years to acknowledge fields of international endeavor and the importance of their contributions to global society. Usually, one or more Member States propose these observances, or on occasion, specialized agencies of the United Nations such as UNESCO and UNICEF may put forth a proposal. The proposal for the International Year of Glass, though, originated from a completely different source.

International Year of Glass: From conception to a thousand endorsements

The idea for an International Year of Glass was first discussed at the 2018 Fall Annual Meeting of ICG in Yokohama, Japan, per a suggestion by ACerS Distinguished Life Member David Pye. In May 2019, ICG, The Corning Museum of Glass, The American Ceramic Society, and The Glass Art Society endorsed the idea in a presentation to the Office of the United States Mission of the United Nations in New York City, which was well received.

ICG president Alicia Durán formally introduced the initiative to the ACerS community in a “Letter to the Editor” published in the September 2019 Bulletin. At the time, she noted that “Extensive planning is now underway to inform international art and scientific glass-themed societies and museums of this endeavor to secure the United Nations declaration of the 2022 International Year of Glass.”

Since then, more than 1,100 organizations from over 70 countries have expressed support for the initiative. In an email, Durán says they are now forming an international steering committee to continue working and developing the initiative, and “Fundraising campaign, proposals of activities (international and national) and spreading these activities to the planet will be some of the tasks that we can face, and solve!!”

Coming next: November presentation to the United Nations

The next big task on the way to having 2022 designated the International Year of Glass is to receive formal approval from the UN. To do that, the International Year of Glass steering committee is preparing a presentation to be given in early November to the UN General Assembly.

Agustin Santos, the Spanish Ambassador to the UN, has guided the required resolution through the General Assembly, and he will present the proposal in November through a virtual presentation. The presentation will include introducing partner organizations and personalities in the International Year of Glass project, explaining the activities planned and concepts being developed, and how they link to the UN Agenda 2030.

Volkan Bozkir, the Turkish Ambassador and recently installed President of the Assembly, has already expressed his support and will do so during the presentation as well.

After the presentation, the resolution for approving the International Year will be presented at the 75th UN General Assembly planned for December 2020.

If you wish to become a supporting institution, you can register your interest on the official International Year of Glass website at http://iyog2022.org or email the steering committee at manager@iyog2022.org. You can follow updates on the initiative on the official LinkedIn page at https://www.linkedin.com/company/international-year-of-glass-2022.
Over the last two decades and more, a considerable effort has been invested in development of optically transparent ceramic and glass-ceramic materials for functioning as various optical elements. Fabrication techniques of ceramic components has the potential of being highly cost-effective, and exhibit improved uniformity of optical properties compared to their crystalline counterparts. The prospected uses range from transparent optical military armour up to optical laser components.

The book addresses in detail that entire scope, starting with the underlying theoretical basis through technical production details, relevant materials, and current and future prospected applications. Especially, it provides a survey and analysis of currently used and studied materials, and points out some goals for near future developments.

Chapter 1 describes the book rational topic and aims in view of some historic progress, a definition of the spectral regions of interest, definition of transparency factors, and fabrication means and costs.

Chapter 2 describes the basic physics underlying the interaction of light with matter. Fundamental features of light like polarization, interference, and interaction with matter involving reflection, refraction, absorption and scattering are related to the relevant material properties like refractive indices, and acoustic and optical waves. Special attention is devoted to energy states spectroscopy of dopant rare earth and transition metal ions.

Chapter 3 surveys in detail the issue of ceramic materials processing, with attention on those mostly adequate to obtain transparent parts of optical equipment.

Chapter 4 surveys the multitude of materials used and proposed to be used for production of transparent ceramics, all in view of available production techniques and aimed-at applications.

Chapter 5 elaborates on various possible applications of transparent ceramics, mostly for security windows, optical lenses, and laser parts, but also for some, perhaps less appreciated ones like colour filters, scintillation elements, dental parts, and many more.

The book offers the thus-far broadest and deepest account of transparent ceramics. Individuals wishing acquaintance with this still emerging field, for either teaching or performing of scientific research, will definitely benefit from learning and consulting this new book.

Roni Shneck is professor in the Department of Materials Engineering at Ben-Gurion University of the Negev, Israel.
The global market for high-strength glass increased from $28.9 billion in 2018 to $30.9 billion in 2019, and is estimated to reach $31.9 billion in 2020, corresponding to a compound annual growth rate (CAGR) of 5.0% during the two-year period. The market is forecast to rise at a CAGR of 6.1% from 2020 to 2025, reaching global revenues of $42.9 billion in 2025.

High-strength glass is a category of glass characterized by high tensile or compressive strength. Its origins can be traced back to the 1660s, when German-English officer and scientist Prince Rupert of the Rhine, Duke of Cumberland presented the first tempered glass with the shape of a teardrop to King Charles II of England. However, almost 200 years went by before the first industrial process for producing tempered glass was developed.

There are seven main sectors in which high-strength glass finds current and potential applications: aerospace and defense, construction, electronics and optoelectronics, energy, life sciences, mechanical/chemical, and transportation. Applications within the transportation sector currently account for the largest share of the market, at an estimated 53.4% of the total in 2020. High-strength glass for the construction sector represents a relatively smaller share at 21.5%, while electronics and optoelectronics is estimated to account for 7.6%. All the remaining applications represent a combined share of 17.4%.

Laminated and tempered soda-lime-silica glass currently represent the largest segment (85.4%) of the high-strength glass market, with projected sales of $27.2 billion by the end of 2020. Following that, aluminosilicate glass is estimated to be valued at $2.4 billion (7.5%), borosilicate glass at $1.6 billion (5.1%), and magnesium aluminosilicate glass at $632 million (2.0%).

Sales of high-strength glass are expected to continue rising at a single-digit rate during the next five years due to a number of relevant factors, including:

- Expected general moderate growth for most industry sectors in which high-strength glass finds application,
- Higher unit price for high-strength glass compared to traditional glass,
- Stronger demand in the construction sector due to architectural trends aimed at emphasizing natural lighting and energy savings,
- Stronger demand in the electronics and optoelectronics sector due to ongoing miniaturization and fabrication of devices with very thin profile,
- Larger use in the energy sector driven by the fabrication of solar cells and photothermal devices, and
- Emerging trends, such as higher demand for lightweight materials.

The Asia-Pacific region is currently the largest consumer of high-strength glass, with sales estimated to reach $13.1 billion by the end of 2020, corresponding to a share of 41.1% of the total. The United States represents the second-largest market (25.2%) with estimated sales of $8.0 billion while Europe is expected to reach slightly over $6.7 billion (21.1%).

About the author
Margareth Gagliardi is a research analyst for BCC Research. Contact Gagliardi at analysts@bccresearch.com.

Resource

<table>
<thead>
<tr>
<th>End Use</th>
<th>2018</th>
<th>2019</th>
<th>2020</th>
<th>2025</th>
<th>CAGR% 2020-2025</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transportation</td>
<td>15,692</td>
<td>16,547</td>
<td>17,043</td>
<td>21,855</td>
<td>5.1</td>
</tr>
<tr>
<td>Construction</td>
<td>6,121</td>
<td>6,667</td>
<td>6,863</td>
<td>9,671</td>
<td>7.1</td>
</tr>
<tr>
<td>Electronics and optoelectronics</td>
<td>2,198</td>
<td>2,329</td>
<td>2,436</td>
<td>3,546</td>
<td>7.8</td>
</tr>
<tr>
<td>Energy</td>
<td>2,019</td>
<td>2,266</td>
<td>2,380</td>
<td>3,713</td>
<td>9.3</td>
</tr>
<tr>
<td>Aerospace and defense</td>
<td>920</td>
<td>953</td>
<td>977</td>
<td>1,194</td>
<td>4.1</td>
</tr>
<tr>
<td>Mechanical/chemical</td>
<td>750</td>
<td>798</td>
<td>822</td>
<td>1,074</td>
<td>5.5</td>
</tr>
<tr>
<td>Life sciences</td>
<td>597</td>
<td>640</td>
<td>670</td>
<td>914</td>
<td>6.4</td>
</tr>
<tr>
<td>Others</td>
<td>652</td>
<td>690</td>
<td>711</td>
<td>890</td>
<td>4.6</td>
</tr>
<tr>
<td>Total</td>
<td>28,949</td>
<td>30,890</td>
<td>31,902</td>
<td>42,857</td>
<td>6.1</td>
</tr>
</tbody>
</table>
A Case for continuous membership

You were nominated to be an ACerS Fellow! ...but wait, you have not held continuous ACerS membership. I am sorry, you do not qualify for the Fellows distinction.

What if this situation happened to you? Do you count on renewing your ACerS membership only when you attend meetings? If you miss a meeting one year, you could experience a gap in membership and an interruption of important member benefits, such as the Bulletin and online access to ACerS’ four peer-review journals and Bulletin archives.

It also makes you ineligible to receive distinctions that require continuous membership, such as becoming an ACerS Fellow (five continuous years) or Emeritus member (35 continuous years). To be eligible for Fellow and Emeritus status, ACerS encourages you to renew your membership each year. For more information about Fellows, Emeritus, or other awards eligibility, visit https://ceramics.org/members/awards.

Volunteer Spotlight

ACerS Volunteer Spotlight profiles a member who demonstrates outstanding service to the Society.

Delia Brauer studied chemistry with environmental chemistry at Friedrich Schiller University Jena (Germany) and University of Northumbria at Newcastle (England) before executing a Ph.D. research project on degradable phosphate glasses and glass/polymer composites for medical applications at the Otto Schott Institute, Friedrich Schiller University Jena.

After postdoctoral research projects at the University of California, San Francisco; Imperial College London; Queen Mary University of London; and Nagoya Institute of Technology (Japan), Brauer returned to Friedrich Schiller University Jena as a junior professor in 2012. She was made a full professor of bioactive glasses in 2017.

Brauer leads an international group of students and postdoctoral researchers from various backgrounds. Her research focuses on inorganic glasses as biomaterials and on the interaction between glass and water.

She has edited one book and has contributed several chapters to publications. She is regularly invited to give talks at international conferences.

Brauer served as chair of Technical Committee 04 (Bioglasses) and member of Technical Committee 23 (Education) of the International Commission on Glass. The 2015 winner of the Gottardi Prize of the ICG, she was made a Fellow of the Society of Glass Technology (U.K.) in 2016. In 2020, together with Jessica Rimsza, she served as program co-chair of the first Virtual Glass Summit organized by ACerS.

We extend our deep appreciation to Brauer for her service to our Society!

In memoriam

Edward Aitken
David J. Barber
Daniel Reardon
Willard Renner
John Roberts
Stuart Weinland

Some detailed obituaries can also be found on the ACerS website, www.ceramics.org/in-memoriam.

Names in the News

Himanshu Jain, Lehigh University’s T.L. Diamond Distinguished Chair in Engineering and Applied Science and professor of materials science and engineering, was named winner of the 2020 Journal of Non-Crystalline Solids N.F. Mott Award, which recognizes a distinguished senior scientist with a history of outstanding contributions to the science of non-crystalline solids.

Larry Wagner joined Du-Co Ceramics as automation engineer-electrical.

AWARDS AND DEADLINES

ACerS 2020 Award winners

This year’s ACerS award winners can be seen on our YouTube channel https://youtu.be/7L9sRTTNVeI.

Congratulations to all the winners!

Upcoming awards nomination deadlines

For more information about each award, visit www.ceramics.org/awards or contact Erica Zimmerman at ezimmerman@ceramics.org.

Society awards: January 15

ACerS runs a thriving awards program that recognizes the contributions of deserving individuals and companies in the ceramics and glass community. Nominations are encouraged for candidates from groups that are underrepresented in ACerS awards relative to
their participation in the Society, including women, underrepresented minorities, industry scientists and engineers, and international members.

We urge you to submit nominations for our many Society and Division awards.

GOMD awards: January 21

The Glass & Optical Materials Division seeks nominations by Jan. 21, 2021, for the following awards:

- The Norbert J. Kreidl
- George W. Morey
- L. David Pye Lifetime Achievement
- Stookey Lecture of Discovery
- Varshneya-Mauro-Jain Guru-Chela Travel Fund

Bioceramics Division Awards

In 2020, the Bioceramics Division received ACerS Board approval for the creation of four awards with a July 1 nomination deadline:

- Bioceramics Young Scholar
- Global Young Bioceramicist
- Larry L. Hench Lifetime Achievement
- Tadashi Kokubo (sponsored by Nippon Glass Co., Ltd.)

The Division announced the first recipients for two awards.

STUDENTS AND OUTREACH

Register today for ACerS Annual Winter Workshop

ACerS Winter Workshop, hosted by the Ceramic and Glass Industry Foundation, will be held in conjunction with the ICACC 2021 virtual meeting on Thursday, Jan. 28 and Friday, Jan. 29, 2021. The Winter Workshop provides a combination of technical and professional development sessions designed specifically for students and young professionals. For more information and to register, visit https://ceramics.org/winter-workshop-2021.

ACerS Global Distinguished Doctoral Dissertation Award

This award recognizes a distinguished doctoral dissertation in the ceramics and glass discipline. The awardee must have been a member of the Global Graduate Researcher Network and have completed a doctoral dissertation as well as all other graduation requirements set by their institution for a doctoral degree within 12 months prior to the application deadline. The nomination deadline is Jan. 15, 2021. For more information, visit www.ceramics.org/doctoraldissertationaward.

PCSA student competition awardees

Congratulations to the following awardees from the 2020 PCSA student competitions:

ACerS PCSA Competition

- **2020 Artistic Creativity and Viewer’s Choice Award**
 - Macro innovations from micro observations
 - by Rachel Eckert,
 - Iowa State University

- **2020 Scientific Award**
 - Promethean Sierpinski
 - by Zach Abrams,
 - Charles E. Smith Jewish Day School

ACerS PCSA Lab Blooper Competition

- **2020 Artistic, Scientific, and Viewer’s Choice Award**
 - Murphy’s Law always obey
 - by Anna De Marzi,
 - University of Padova
CGIF welcomes new board members

The Board of Trustees of the Ceramic and Glass Industry Foundation welcomed four new Board members at its recent meeting.

Alex Cozzi
Manager, applied materials research
Savannah River National Laboratory
Aiken, S.C.

Nola K. Pearce
Vice president/Account executive
ETS Tech-Ops
Rochester, N.Y.

Leslie Fenwick Beiter
Regional account manager–ceramics
U.S. & Canada, Almatis, Inc.
Leetsdale, Pa.

John Kieffer
Professor, University of Michigan
Ann Arbor, MI

Jeff Kohli
Director of glass research
Corning Incorporated
Painted Post, N.Y.

Nola K. Pearce
Vice president/Account executive
ETS Tech-Ops
Rochester, N.Y.

Jeff Kohli
Director of glass research
Corning Incorporated
Painted Post, N.Y.

CGIF Board of Trustee Officers for 2020–2021 are chair Mary Stevenson, president of Deltech, Inc.; chair-elect Todd Steyer, chief engineer for materials & technologies at The Boeing Company; immediate past chair Thomas Arbanas, president of Du-Co Ceramics; treasurer Steve Houseman, president of Harrop Industries; and secretary Mark Mecklenborg, executive director of The American Ceramic Society.

There can be no doubt that this year was a rough one for all of us. Despite that, the CGIF has remained diligent in finding new ways of reaching students—the future of our industry. Now more than ever, your gift to the Ceramic and Glass Industry Foundation is vital to our success in attracting students to the ceramics and glass fields as we fill the talent pipeline for industry. Please visit our website at https://foundation.ceramics.org/give or donate via your cell phone by texting the word “give” to 614-914-2685.
ANNOUNCING A NEW WAY FOR YOUNGSTERS TO LEARN ABOUT MATERIALS SCIENCE!

The Ceramic and Glass Industry Foundation is proud to introduce our Mini Materials Demo Kit, a collection of seven simple demonstrations for use practically anywhere by parents, teachers, and students who are utilizing online and at-home teaching resources.

Demonstrations included:

- WHAT IS FLUORESCENCE?
- THE SCIENCE OF SILLY PUTTY®
- MAGIC COLOR BEADS AND UV LIGHT
- WHAT IS FIBER OPTICS?
- DOES HEATING AN ALUMINUM NAIL MAKE IT HARDER?
- HOW ARE GLASS FIBERS MADE?
- WHAT IS A SHAPE MEMORY ALLOY?

The Mini Materials Demo Kit provides interesting activities for the whole family to be done at home or in the classroom and can be purchased for only $49!

Contact Belinda Raines at braines@ceramics.org for more information and quantity discounts.

Still available is the full-size Materials Science Classroom Kit for middle and high school students and classroom teachers. Purchase or donate a Materials Science Classroom Kit to a school in your area for only $250 at ceramics.org/donateakit.
Titanium-reinforced bioceramic implant induces cranial regrowth in sheep

Researchers from several Swedish universities and institutes described in a recent paper a synthetic ceramic implant they created that could regenerate bone in large cranial defects in sheep.

Cranioplasty, or the surgical reconstruction of a defect in the skull, is a practice stretching back hundreds of years, but the technique only became common during the second half of the 20th century, due largely to warfare providing an impetus to improve our ability to cover large cranial defects.

To date, autologous bone grafts, or grafts made from bone obtained from other areas of the patient, are the standard for reconstructive treatment. Yet this approach is associated with frequent complications, in particular relatively high resorption, protrusion, and infection rates and a high rate of donor-site morbidities.

In the past few decades, researchers have extensively investigated alloplastic materials, or synthetic materials that substitute for tissue, as another option for cranioplasty grafts. Calcium phosphate ceramics are one group of materials that have played a central role in modern alloplastic cranioplasty research due to their biocompatibility and osteoconductivity, i.e., the ability of bone-forming cells in the grafting area to move across a scaffold and slowly replace it with new bone.

Calcium phosphate cements in particular have gained an edge over granular calcium phosphates because of advantages afforded by the cements’ self-hardening properties, which make molding the brittle ceramic into a desired shape easier. Often, the cements are combined with or overlaid on other materials such as biodegradable fibers or titanium mesh, respectively, to augment strength of the graft.

In recent years, several studies showed calcium phosphate ceramics that consist of several phases, such as beta-tricalcium phosphate (β-TCP) and hydroxyapatite, exhibit improved or new properties compared to ceramics with a single phase. For example, high protein adsorption and osteoinduction, or the ability to stimulate cells to change into bone-forming cells. More researchers are now exploring mixed-phase calcium phosphate ceramics, such as the collaborative group of researchers in Sweden.

For their study, the researchers from the University of Gothenburg, Uppsala University, and Karolinska University Hospital and Karolinska Institutet chose a powder mixture of β-TCP/dicalcium pyrophosphate and monocalcium phosphate monohydrate for their ceramic, which they mixed with glycerol to form a paste. They molded this bioceramic paste in the form of hexagonal tiles around an additively manufactured titanium frame.

The titanium-reinforced bioceramic implant and a control implant made only of titanium were placed in sheep skulls for testing. Following analysis of observations recorded at three months and 12 months, the researchers drew several notable conclusions, including:

- **Bone growth:** In the sheep skull, the bioceramic implant promoted a higher degree of bone formation, remodeling, and osseointegration compared to the titanium implant, leading to enhanced repair of the cranial defect. Outside the skeletal envelope, only the bioceramic implant promoted bone formation and maintained bone. Regardless of the location, the regenerated bone from the bioceramic had a composition similar to that of the native bone.

In the discussion section, the researchers note two main limitations of the study: the absence of a mechanical evaluation after bone regeneration, and the absence of cellular and molecular techniques to shed light on the underlying ceramic-to-bone transformation mechanisms. Despite these limitations, the researchers say the study provided proof-of-concept for this bioceramic’s potential to promote in situ bone regeneration and osseointegration.

The open-access paper, published in *Proceedings of the National Academy of Sciences*, is “In situ bone regeneration of large cranial defects using synthetic ceramic implants with a tailored composition and design” (DOI: 10.1073/pnas.2007635117).

To date, top-down approaches to nanostructure construction are used extensively in the semiconductor industry to fabricate integrated circuits, among other things. Specifically, lithographic techniques—or techniques by which a pattern is transferred onto a surface—are typically used.

Common lithographic techniques involve using beams of light, electrons, or ions to etch patterns onto a surface. However, though these techniques work well for fabricating nanostructures on most surfaces, they run into some challenges when used to pattern 2D materials, such as causing structural damage.

Scanning probe lithography (SPL) is one type of lithography that holds potential for effectively fabricating nanostructures in 2D materials. Instead of using a focused beam of particles to etch patterns in a sample, SPL methods use a physical tip to modify the surface through various physical and chemical interactions, such as scratching, nanoindentation, or heating.

Among SPL methods, thermal scanning probe lithography (t-SPL) has gained much attention in recent years. This method involves using a heated nanotip to modify the surface of a sample, and it has now reached a high level of technical maturity, with several dedicated tools to perform reliable t-SPL.

In the recent open-access study on t-SPL, the researchers made a significant change to the setup of their experiment to fully harness the thermal component of t-SPL.

Instead of placing the 2D materials directly on an inelastic substrate, they placed a polymer layer between the 2D layer and substrate. “The polymer we use is polyphthalaldehyde (PPA) with a glass transition temperature of ≈150°C. Above this temperature, … PPA does not melt but directly sublimes,” they write in the paper.

When they pressed the heated tip into the 2D material, sublimation of the underlying polymer layer allowed the tip to achieve a deeper indentation, thus making it easier to cut through the 2D material’s chemical bonds.

The researchers used the t-SPL method to create square patterns in a variety of molybdenum-based 2D materials, with pattern sizes ranging from 20 to 200 nm. “The smallest feature we were able to cut is about 20 nm, which is the smallest reported for a direct cutting method and is similar to the resolution in [electron beam lithography],” they write.

They also note their method is not limited to cutting monolayers but also can be used to cut certain multilayers and, “most interestingly,” heterostructures. They acknowledge graphene, even at monolayer thickness, could not be fractured “as the intra-layer bonding exceeds the force that can be applied with the t-SPL tool,” but they say this limitation “could be eventually overcome with a t-SPL cantilever that can apply larger contact forces.”

In an EPFL press release, first author Xia Liu, researcher and postdoc in the School of Engineering’s Microsystems Laboratory, says their technique could prove quite useful to the semiconductor industry.

“This generic technology will be very useful in nanoelectronics, nanophotonics, and nanobiotechnology, as it will help to make electronic components smaller and more efficient,” she says.

The open-access paper, published in Advanced Materials, is “Thermomechanical nanocutting of 2D materials” (DOI: 10.1002/adma.202001232).
When master artisans passed down recipes for historic pottery from generation to generation, they determined correct firing and other processing conditions by relying on senses and experiences that could in no way be captured, even when records were kept. So it is no wonder some of the beauty and utility of historic pottery is difficult to replicate today, even by skilled artisans and engineers.

As archeologists find more artifacts, archeometrists seek to unlock the secrets of ancient civilizations and their engineers and artisans. But how can these scientists uncover key mechanical and chemical information from such priceless, irreplaceable items? How can they figure out how they were produced? Examining shards is helpful when the tests can be destructive, but it only goes so far. Instead, scientists use models to estimate and attempt to reproduce such items.

Two recent open-access articles in International Journal of Ceramic Engineering & Science discuss models that were used to better understand ceramics from different parts of the world designed for very different purposes: commerce and decoration.

Amphorae: Understanding mechanical properties of standard transport containers

With the advent of regional trade, merchants needed containers in which to store and transport goods over long distances, especially by boat. And one type of ceramic container used often in antiquity for this purpose was amphorae. Amphorae are bullet-shaped vessels, typically with long necks and handles that are affixed near the mouth of the vessel on one end and attached to the body at the other. They are specifically designed to be stacked inside cargo holds of ships in multiple layers.

While the amphorae itself had some value, the real value lay in the vessel’s...
contents. As such, if the container broke and the contents of that vessel were lost—and potentially damaged other goods in the cargo hold as well—it could result in substantial losses to the producer and the ship owner.

In the first open-access paper, Anno Hein and Vassilis Kilikoglou from the Institute of Nanoscience and Nanotechnology in Greece assessed specific design features of different amphorae for their performance (e.g., failure potential), particularly during transport. Furthermore, they used simulations to provide information to help interpret typical damages observed in archaeological finds.

The researchers ran nondestructive testing such as X-ray tomography to determine wall thicknesses while performing mechanical testing on shards to get insights into mechanical strength, tangent moduli, and plastic deformation.

They used the limited experimental information as inputs and boundary conditions for finite element modeling of the stresses that build up at the contact points of the amphorae due to static vertical loading (e.g., the weight of one layer on the next), dynamic vertical loads (ships travel over waves), and dynamic horizontal loads (ships rocking side-to-side).

The results of the modeling include compressive and tensile stresses on the exterior and interior walls of the amphorae. Excessive compressive loads are found, but the authors surmise these loads result in elasto-plastic deformation, which is not catastrophic. Tensile stresses on the outer surfaces, on the other hand, can lead to crack initiation and eventual failure. Failed amphorae artifacts show damage in the areas predicted by the modeling.

The open-access paper, published in International Journal of Ceramic Engineering-
Ru celadon: Investigating the coloring of a masterwork of Chinese ceramics

Celadon is a pottery term that refers to both a transparent, greenish glaze and the wares to which the glaze is applied. Though the term is purely European, celadon originated in China, and today notable kilns such as the Longquan kiln in Zhejiang province are renowned for their celadon glazes.

Celadons come mostly in some shade of green, but shades of pale blue—naturally Ru celadon—are highly valued, and in historical times were reserved more or less exclusively for use in the Chinese Imperial court.

In the second open-access paper, Yen-Yu Chen (Chinese Culture University) and Yi-Wun Bai and Wen-Cheng J. Wei (National Taiwan University) investigated methods to reproduce the unique color and milky opalescence of ancient Ru celadon glazed ceramics.

The color of celadon is generated by two mechanisms: chemical coloring by iron species in calcium aluminosilicate compositions; and structural coloring by inhomogeneities, specifically crystallites and voids in the celadon glass. While there is some information available about the material composition of ancient celadon—both from analysis of ancient shards and from prior studies—the fabrication methods are not well understood. For example, it is believed the porcelain was fired in a reducing environment, but there is no way of knowing the composition of the gases or their temperature—the technology simply did not exist for those measurements 1,000 years ago.

In this article, the researchers created their own celadon by varying a range of experimental conditions, including composition relative to phase stability data for the complex chemical system and firing temperatures, environments, and holding times. They measured the model systems they created against a shard of ancient celadon ceramic for color, microstructure, and chemical content of the glass and crystallites.

In the end they came close to the ancient celadon color and opalescence, giving insight into ancient firing protocols. Their work supports the combination of the chemical coloring and structural coloring mechanisms. Specifically, the dual-phase nature of the glass contributes to Rayleigh scattering while crystallites and voids contribute to the “milky” color, while the ratio of Fe²⁺ and Fe³⁺ oxidation states of iron contribute to chemical coloration.

The open-access paper, published in *International Journal of Ceramic Engineering & Science*, is “Analysis of structural effects on coloring mechanism of Ru celadon porcelain” (DOI: 10.1002/ces2.10058).

Updated small-polaron transport model accounts for complex oxide systems

An interdisciplinary collaboration between Cornell University and Technion-Israel Institute of Technology (Israel) updated a model for ceramic conduction to more accurately calculate small-polaron transport in complex oxides.

For the past 60 years, researchers described the movement of polarons through a material using a small-polaron transport model developed by Heikes and Ure in the 1960s. However, Heikes and Ure developed the model based on binary compounds. When this model is used to describe conduction in higher-order oxides with multiple cations, it quickly runs into problems, as the researchers describe in their paper.

“For instance, in the binary spinel Fe₃O₄, all of the charge-conducting octahedral (Oh) sites are occupied by Fe cations, and charge transport occurs along pathways having an alternating arrangement of Fe²⁺/Fe³⁺,” they explain. “On replacing an Fe²⁺ cation with a Mn²⁺ cation, although the donor/acceptor pair arrangement is still present, the charge transport may be affected by the differences introduced by the hopping barriers or different spinstates between the Fe²⁺/Mn²⁺ cation pairs.”

To update the conventional small-polaron transport model, the researchers investigated conduction in a tightly defined sample of epitaxial thin films of the spinel MnFeₓO₄ grown by molecular-beam epitaxy.

Experiments on the MnFeₓO₄ spinels confirmed what the researchers suspected—that charge cannot hop between manganese and iron cations. “This creates a requirement for a contiguous elemental path and leads to an additional condition for charge transport to occur: separate, decoupled percolation networks need to be formed by both Fe and Mn cations,” they write.

They also observed a preference for polarons to travel along the manganese pathways rather than the iron pathways, and the presence of asymmetric hopping barriers between cross-hopping pairs.

“To account for these observations, we introduce a percolation parameter, a polaron distribution parameter, and a cross-hopping parameter to the conventional electronic conductivity equation that correct the model for higher-order spinels,” they write.

The updated model with these additional parameters showed “excellent overlap” with the experimental trends, thus “confirming the role of percolation pathways and cross-hopping in describing the charge transport in ternary spinels.”

The paper, published in *Advanced Materials*, is “Breakdown of the small-polaron hopping model in higher-order spinels” (DOI: 10.1002/adma.202004490).

An updated ceramic conduction model may help researchers custom-tailor the properties of metal oxides in energy technologies such as lithium-ion batteries, fuel cells, and electrocatalysts.
Ceramic matrix composites contain corrosive materials in thermal energy storage

In the recent September/October 2020 issue of the International Journal of Applied Ceramic Technology, two articles from different research groups in Germany explore creating carbon/carbon-silicon carbide (C/C–SiC) ceramic matrix composites (CMCs) for use as container materials in thermal energy storage systems.

Thermal energy storage systems offer an alternative to batteries and pumped hydro for storing energy generated from renewable sources. However, the molten salts and other closely related materials that are at the center of such systems are difficult to contain due to the highly corrosive nature of the liquid materials, moderately high operating temperatures, and substantial expansion during the transition from solid to liquid.

Producing container materials that can withstand the high temperatures, thermal expansion stresses, and corrosive materials for decades of operation are key to adoption of large-scale thermal energy storage. And as the research groups in Germany showed, C/C–SiC CMCs have the potential to serve as good container materials.

In the first open-access article, researchers from the German Aerospace Research Center and the University of Augsburg in Germany describe the design, fabrication, and characterization of a C/C–SiC container for an aluminum-silicon phase change alloy.

The first stages of their study focused on fabrication and compatibility testing of C/C–SiC test bars. They found the bars withstood the liquid aluminum-silicon alloy and maintained their physical properties with no discernable interactions, such as penetration of the alloy into the test bars. Though there are potential chemical reactions between the alloy and the CMC, the researchers found no evidence of substantial reactions, which echoes the findings of other researchers.

Following the test bars, they continued with the design and fabrication of the container. They decided on low-cost, scalable techniques for fabricating the four main components of their annular container and then used these techniques as boundary conditions for finite element analysis. They used finite element analysis to determine container wall thickness by balancing the strength needed to withstand stresses that arise during phase changes against heat conduction requirements to allow efficient energy transfer.

Unfortunately, pressure testing of the container revealed cracks at the interface of two of the parts, which most likely occurred during fabrication. Though the flaw prevented the full regimen of performance testing, and several issues require further experimentation, the researchers believe the container shows promise for thermal energy storage application.

The second article, by researchers from Chemnitz University of Technology in Germany, describes a different path to low-cost fabrication of C/C–SiC composites. The researchers prepared C/C–SiC using carbon fiber reinforced polymers as the starting material. The moldable precursor polymers are shaped and cross-linked, then pyrolyzed to C/C composites under argon atmosphere. Conversion to C/C–SiC is achieved by either liquid silicon infiltration or internal siliconization, the latter of which is accomplished by mixing silicon powder into the original polymer.

The researchers explored the effects of carbon fiber fraction (weight %), silicon fraction, and silicon loading method by measuring the processing parameters of mass loss, shrinkage, and porosity, and performance parameters of strength and elongation. The results are complex, but in short, the researchers concluded that the best mechanical properties were found to be at a fiber mass content of 40%, and a silicon amount higher than 14 wt% negatively influences the whole process.

Their results show that molding C/C–SiC composites from preceramic polymer-based mixtures has the potential to be a cost-effective method for fabrication of complex structures. Further research to optimize properties and processing parameters should improve the end-product performance and allow this method to compete with the more conventional fabrication methods, such as those employed by the authors of the first open-access paper.

The first open-access paper, published in International Journal of Applied Ceramic Technology, is “C/C–SiC component for metallic phase change materials” (DOI: 10.1111/ijac.13570).

The second paper, published in International Journal of Applied Ceramic Technology, is “Properties of C/C–SiC composites produced via transfer moulding and inner siliconization” (DOI: 10.1111/ijac.13548).
Polar rather than conductive battery cathodes lead to long-term cycling stability

An international team led by Jong-Su Yu from Daegu Gyeongbuk Institute of Science & Technology (Korea) and Khalil Amine from Argonne National Laboratory conducted a recent study to determine the respective importance of two key properties—polarity and conductivity—in improving the cycling stability of lithium-sulfur batteries.

Li-S batteries have a theoretical specific energy of more than 2,500 Wh/kg, which is much higher than the average specific energy of 100–265 Wh/kg for current Li-ion batteries. However, to date the experimental values of Li-S battery specific energy have been far below theoretical values.

The main mechanisms hindering Li-S battery performance are irreversible loss of sulfur from the cathode (the polysulfide “shuttle” effect) and unstable lithium deposition on the anode. These mechanisms are not the only challenges, however. Sulfur also has low electrical conductivity (5×10^{-30} S/cm at room temperature), which hinders the cycling efficiency of Li-S batteries.

To improve conductivity, researchers have experimented extensively with placing the cathode’s sulfur within highly conductive carbon host materials, such as hollow porous carbon, graphene, mesoporous carbon, and microporous carbon. Unfortunately, long-term cycling stability continues to be a problem because of the nonpolar covalent bonds that carbon forms with itself, which prevent polysulfides on the carbon surface from attaching strongly, and instead they diffuse away—leading to the notorious polysulfide “shuttle” effect.

Researchers have investigated employing oxide additives, polymers, or other inorganic materials on the carbon framework to enhance polysulfide confinement and mitigate the polysulfide shuttle effect. But these methods often require complicated and expensive synthesis processes, plus they limit the accommodation of sulfur by reducing available surface area.

Shuttling of polysulfide compounds (shown as yellow and blue chains) impairs the performance of lithium-sulfur batteries. Polar host materials for the cathode’s sulfur can mitigate this effect, and researchers found this ability makes up for the materials’ low conductivity.

Based on these challenges, the question of the best host material for sulfur in Li-S batteries remains wide open.

In the recent study, the researchers wanted to determine if it is better to pursue polarity or conductivity in the cathode to improve cycling if only one of these two properties can be maximized. To answer this question, they designed two cathodes, one made from platelet ordered mesoporous silica (pOMS) and one made from platelet ordered mesoporous carbon (pOMC).

“The two cathodes were designed to be exact replicas of one another apart from the use of either silica or carbon,” Amine says in an Argonne press release. “This way, we could determine whether a more polar cathode or a more conductive cathode improved the longevity of the battery.”

Upon testing, the researchers found that while the conductive carbon host with a higher specific surface area of 1,597 m² g⁻¹ showed better initial capacity, “the polar [silica host] with a lower surface area of 844 m² g⁻¹ reveals much more stable performance for long cycles and eventually outperforms the conductive counterpart after 500 cycles.”

In addition, the silica host also demonstrated outstanding low fading rates, even at high current density, and comparable and improved areal and volumetric capacities, respectively, compared to carbon hosts.

“These outstanding areal and volumetric capacities, as well as cycle stability, which have not been achieved by even state-of-the-art carbon hosts, clearly indicate that the polar [silica] host, despite nonconductivity, has high promising potential for energy storage in [Li-S batteries],” the researchers write in the paper.

Of course, electrical conductivity is still necessary to achieve good electrochemical performance. “However, the conductivity is not a big issue in the host itself since the poor conductivity of the host can be compensated by the conducting agent involved as a required electrode material during electrode preparation,” the researchers add.

In the conclusion, the researchers note they are currently investigating ways to improve electron pathways in the silica host while maintaining the high surface polar properties, such as by adding a thin conductive carbon coating to the silica to enhance conductivity.

There are few systems that can efficiently incorporate materials that provide structural support, filtration capacity, energy generation, energy storage, electrical conductivity, gas exchange, processing power, dynamic flexibility, and regenerative potential into one integrated, highly functional, and incredibly adaptable self-contained system. Yet the human body is a system that can provide all those functions and many more, and it does so through a unique collection of highly functional materials.
Better bodies with biomaterials

Collectively those materials enable everything our bodies do, and they often retain functionality throughout the human lifespan, which worldwide is an average of 73.2 years. However, the materials are not always perfect and sometimes fail due to overuse, injury, disease, or genetics—circumstances that are becoming more common as worldwide populations age due to population dynamics and increasing life expectancies.

Globally, the number of individuals over 65 years old surpassed that of children under 5 years old for the first time in history in 2018. And while an estimated one in 11 individuals (9%) around the world were over 65 years old in 2019, the older population is expected to increase to one in six (16%) by 2050.

These trends affect nearly every aspect of life, perhaps most notably healthcare. Individuals are living longer and are remaining active until later years of life, demanding enhanced strategies to maintain longer functionality of the body’s materials.

Humans have long turned to biomaterials in diverse forms to repair, replace, or enhance bodily materials (Figure 1), establishing a global market for implantable biomaterials that was estimated to be worth nearly $110 billion in 2019. While metals, polymers, ceramics, and glass all are used for biomaterial applications, ceramics and glass have a particular advantage, says Frank Anderson, vice president of Global Research and Development at CoorsTek (Golden, Colo.). “Many technical ceramics are inherently biocompatible, chemically resistant, and inert, which gives them a unique advantage over other implantable materials,” he says.

The global market for bioceramics was valued at $14.5 billion in 2016 and is predicted to reach a value of $20.2 billion by 2021, growing at a 6.9% compound annual growth rate (CAGR). The market is mainly dominated by alumina and zirconia, which account for 75% of the market due to primary use of these materials in bone and dental implants. Other bioceramics frequently found in implantable devices include hydroxyapatite and tricalcium phosphate, and bioactive glass also has clinical applications, and glass help repair, replace, and enhance all types of bodily materials.
collectible applications with rapidly expanding potential throughout the human body.

It should be noted that while these materials predominate many implantable applications within the human body, mainly due to their acceptance and time on the market, other ceramic and glass compositions are also suitable for many of these applications, and we might expect their purview to expand in future markets.

Collectively, ceramic and glass materials enable many different kinds of implantable medical products that not only significantly contribute to human health but also constitute robust industries with rich economic impact. Table 1 provides a sample of some companies that manufacture ceramic and glass biomaterials or implantable products.

The following sections highlight a handful of applications for ceramics and glass in the human body. Although the listed applications are not exhaustive, the diversity highlighted here should provide a flavor of the vast potential of ceramics and glass within the human body.

PACKAGING: GLASS PROTECTS BOTH BODY AND DEVICE

Ceramic and glass materials are incorporated into or play supporting roles in many electronic devices implanted into the human body, such as neurostimulators and pacemakers. In these applications, a bioinert and long-lasting barrier between the device components and the harsh environment of the body is imperative to protect both—precisely a job for ceramics and glass.

For instance, glass-sealed feedthroughs and packaging often encase the batteries for implantable pacemakers, where a hermetic seal preserves both function of the device and safety of the patient.

“Glass is used to seal the terminals of pacemaker batteries. It acts as an electrical insulation material for the metal conductors. At the same time, glass creates a reliably gas-tight barrier when hermetically sealed with the electrical contact pins,” says Jochen Herzberg, medical program manager of Schott’s Electronic Packaging business unit (Landshut, Germany).

“Specially selected glass types are resistant to the highly corrosive environment in the battery. And it doesn’t deteriorate
Better bodies with biomaterials

or get brittle over time like polymers or epoxies. It enables a higher reliability and a longer device lifetime.”

To manufacture the glass-to-metal sealed packages and feedthroughs, Schott presses finely ground glass powder into a ring shape that is then sintered and assembled with the metal conductors inserted in the middle of the ring and an outer metal casing. The three components then undergo a sealing process in a belt furnace to bond the materials together.

Although this manufacturing technique provides a hermetic seal for battery feedthroughs, there is another glass technology that comes into play when miniaturization or encapsulation of heat-sensitive components is required. For those applications, Schott has another solution with its Primoceler glass micro-bonding technology. This wafer-scale technology uses a laser to precisely and locally bond glass to glass, creating a vacuum-tight bond with no additional materials.

“If you want to encapsulate, for example, a miniature sensor inside of a glass package, this is possible by stacking base wafers with spacer glass and cover or etched lid wafers, thereby creating a cavity in which the sensor device will be encapsulated,” Herzberg says. “The stacked glass wafers are then laser-sealed, resulting in a gas-tight all-glass sensor package. One major advantage of Primoceler laser bonding technology is that it all happens at room temperature. So even if the sensor is very heat sensitive, which is usually the case, it can be packaged using the Schott Primoceler process. The extremely precise laser fuses

<table>
<thead>
<tr>
<th>Company (location)</th>
<th>Annual revenue (millions)*</th>
<th>Website</th>
<th>Role in value chain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Johnson & Johnson (Berkeley, Calif.)</td>
<td>$82,100</td>
<td>www.jnj.com</td>
<td>Develops, manufactures, and supplies diverse healthcare products, including medical devices such as orthopedic products.</td>
</tr>
<tr>
<td>Stryker</td>
<td>$14,900</td>
<td>www.stryker.com</td>
<td>Develops, manufactures, and supplies diverse healthcare products, including medical devices such as orthopedic products.</td>
</tr>
<tr>
<td>Kyocera Corp. (Kyoto, Japan) • Life & Environment Group, business segment that includes medical and healthcare</td>
<td>$15,404 $760</td>
<td>http://global.kyocera.com</td>
<td>Develops, manufactures, and supplies advanced materials to diverse markets; medical application is mainly ceramic hip implants.</td>
</tr>
<tr>
<td>Zimmer Biomet (Warsaw, Ind.)</td>
<td>$7,982</td>
<td>www.biomet.com</td>
<td>Develops, manufactures, and supplies orthopedic products, including artificial joints and dental prostheses.</td>
</tr>
<tr>
<td>Schott AG (Mainz, Germany)</td>
<td>$2,568</td>
<td>www.schott.com</td>
<td>Develops and manufactures diverse ceramic and glass products, including dental materials, medical device electronic components, implant packaging.</td>
</tr>
<tr>
<td>The Straumann Group (Basel, Switzerland)</td>
<td>$1,746</td>
<td>www.schott.com</td>
<td>Develops and manufactures diverse dental solutions, including implants, prostheses, technologies, and biomaterials.</td>
</tr>
<tr>
<td>Morgan Advanced Materials Plc (Windsor, U.K.)</td>
<td>$1,356</td>
<td>www.morganadvancedmaterials.com</td>
<td>Develops and manufactures ceramic components for medical applications, such as feedthroughs for implantable devices.</td>
</tr>
<tr>
<td>Wright Medical Group NV (Middlesex, U.K.)</td>
<td>$921</td>
<td>www.wright.com</td>
<td>Medical device, especially orthopedic surgical solutions and biologics.</td>
</tr>
<tr>
<td>CoorsTek (Golden, Colo.)</td>
<td>$1,000†</td>
<td>www.coorstek.com</td>
<td>Develops and manufactures technical ceramics for numerous industries, including orthopedic and implantable ceramics, (including ceramic hip implants), medical device components, and pharmaceutical components.</td>
</tr>
<tr>
<td>Ceramtec GmbH (Plochingen, Germany) • Medical products</td>
<td>$727 $304</td>
<td>www.ceramtec.com</td>
<td>Develops and manufactures ceramic orthopedic components (including ceramic hip implants), dental implants, and medical engineering devices.</td>
</tr>
<tr>
<td>Nobel Biocare (Zürich, Switzerland)</td>
<td>$2629†</td>
<td>www.nobellbiocare.com</td>
<td>Manufactures and supplies diverse dental solutions, including implants, prostheses, technologies, and biomaterials.</td>
</tr>
<tr>
<td>Rauscher GmbH (Prassig, Germany)</td>
<td>$67†</td>
<td>www.rauscher.com</td>
<td>Manufacturer of technical ceramics, including ceramic medical components.</td>
</tr>
<tr>
<td>DSM Biomedical (Exton, Pa.)</td>
<td>$65†</td>
<td>www.dsm.com/biomedical</td>
<td>Develops and manufactures biomaterials including bioceramics for diverse healthcare industries.</td>
</tr>
<tr>
<td>Collagen Matrix Inc. (Oakland, N.J.)</td>
<td>$15†</td>
<td>www.collagenmatrix.com</td>
<td>Manufactures collagen and mineral-based medical products for dental and orthopedic applications, including ceramic and bioglass bone grafts.</td>
</tr>
<tr>
<td>Mo-Sci (Rolle, Mo.)</td>
<td>$6†</td>
<td>www.mo-sci.com</td>
<td>Develops and manufactures high-tech glass, including bioactive glass for medical applications.</td>
</tr>
<tr>
<td>Lithoz GmbH (Vienna, Austria)</td>
<td>$5†</td>
<td>www.lithoz.com</td>
<td>Develops and manufactures additive manufacturing technologies, particularly with ceramic materials, for diverse industries including medical applications.</td>
</tr>
<tr>
<td>CAM Bioceramics (Leiden, The Netherlands)</td>
<td>$3.5†</td>
<td>www.cambioceramics.com</td>
<td>Develops and manufactures bioactive calcium phosphate and coatings for orthopedic and dental applications.</td>
</tr>
<tr>
<td>Berkeley Advanced Biomaterials Inc. (Berkeley, Calif.)</td>
<td>$0.6†</td>
<td>www.hydroxyapatite.com</td>
<td>Develops and manufactures calcium-based biomaterials for medical industry, particularly bone grafts.</td>
</tr>
</tbody>
</table>

*Conversions per Google as of October 16, 2020. All financial data obtained from company reports unless otherwise noted.
†Private company or data not available; revenue estimated from dnb.com or google.com.
and melts only the very small interface area where the glass wafers meet—an area of just some tens of microns—while leaving all other surfaces untouched.”

(Figure 2)

The possibilities of such technology are wide-reaching even within implantable device applications, but one of the first to see clinical application is in the eye.

For patients with reduced or lost sight due to retinal degradation, a company called NanoRetina (Herzliya, Israel) pioneered an artificial retina device. NanoRetina’s NR600 implant, which is designed to mimic the functionality of the eye’s highly sensitive photoreceptor cells, is a tiny chip containing an imager, 3D neural interface, and embedded photovoltaics to provide power. The device is completely encased in glass using Schott Primoceler technology (Figure 3).

“Without our glass-to-glass laser bonding technology, this would not have been possible because the encapsulated sensor inside is very heat sensitive. Only with our technology could we encapsulate it at room temperature,” Herzberg says.

Enabled by glass, NanoRetina’s NR600 implant entered a small clinical trial of 20 patients in Europe and Israel in early 2020 and already shows promising results. “The device was activated for the first time, and the result was amazing: this patient had been completely in the dark for five years, and she immediately reported seeing an image in the center of her visual field when the device was activated, and could show with her hands the size of the image that she saw,” professor Peter Stalmans, who implanted the trial device and is one of Europe’s leading retinal specialists, says in a Schott press release. “I am very impressed by this experience. I have been working for more than 20 years as an ophthalmologist, but this is the first time I witnessed a completely blind patient being given back a visual perception.”

Akin to maturation in the smartphone industry—where shrinking of components has enabled enhanced functionality in smaller devices—miniaturization is an important reason why implantable devices such as NanoRetina’s NR600 are possible today, and it can be traced back to advances in ceramics and glass, as well as other materials.

The consequences of miniaturization are not limited to better performing and more innovative devices, however—it also affects the ultimate bottom line in modern healthcare: cost.

“It starts with the surgery itself,” Herzberg says. “Imagine the pacemaker—30 years ago it was very bulky, so hospitalization time of patients was really long, increasing healthcare costs. People cannot go to work, they are on sick leave,

THE SCIENCE AND ART OF GLASS OCULAR PROSTHESSES

Although ocular prostheses are often called “glass” eyes, many modern such prostheses are actually made of acrylic.

However, prosthetics fashioned from glass—true glass eyes—still exist and are especially prevalent in Germany, Austria, and Switzerland, where more than 90% of ocularists manufacture custom glass ocular prosthetics.

These glass ocular prosthetics are individual works of glass art, handmade by an ocularist to specifically match a patient’s need. Ocularists train for about six years, gaining practical experience in addition to their education, to be able to master their art.1

Glass ocular prosthetics are uniquely made of cryolite glass, a silicate glass containing the mineral cryolite to provide a white hue that matches the look of a natural eye. The prosthetic is usually bowl or shell shaped.

Ocularists custom match a prosthetic to the patient’s other eye, using colored glass to embed details such as iris color and drawn blood vessels onto the eye, rather than painting them on, thus reducing the potential for reaction with the body. All details are part of the 100% glass prosthetic and are fired into the finished product.

Firing produces a very polished uniform surface on the prosthetic to prevent irritation within the eye socket. And unlike the hydrophobic surface of acrylic prosthetics, which can leave a feeling of dryness for the patient, glass’s hydrophilic surface provides a uniform tear film that keeps the prosthetic moist.

A video of the custom manufacturing process is available at https://doi.org/10.3791/60016.

Better bodies with biomaterials

and this is very costly for insurance companies. Today pacemakers are getting smaller and smaller because technology is getting better and better.” Smaller devices allow more minimally invasive procedures, translating to faster recovery times and shorter hospital stays, which ultimately help reduce care-related costs.

Technologies and advances that continue to allow implantable devices to assume smaller forms with enhanced performance, as well as parallel medical developments that permit minimally invasive procedures and improved surgical outcomes, are critical components of future healthcare strategies to sustainably and effectively promote the health of growing, aging populations.

JOINT IMPLANTS: CERAMICS EXTEND IMPLANT LIFE

Our joints, the connections between the skeleton’s more than 200 bones, provide our bodies with an incredible capacity for movement.

This ability is perhaps most appreciated in the face of reduced or lost mobility in the joints, often due to stiffening caused by conditions such as arthritis. Osteoarthritis, the most common form of arthritis, represents the single most common cause of disability in aging bodies, affecting an estimated 10%–15% of adults over 60 years old.5

As such, it is no surprise that the global market for joint replacement, implants, and regenerative product devices is expected to grow—reaching a value of $33.6 billion by 2023, growing at a CAGR of 4.8% during 2018–2023.5

Knee replacements constituted the largest share of the $26.5 billion joint replacement market (by value, not number) in 2018, accounting for 33% of the market, or $8.8 billion. Hip replacements were the next largest share, accounting for 28% of the market or $7.4 billion, followed by spinal implants (20%; $5.2 billion) and then extremities reconstruction, which comprises implant devices for the shoulder, elbow, wrist, digits, and ankle joints.

At all of these locations, ceramic implants compete with those made of polymers, metals, and combinations thereof. Due to length of time in the market, ceramics’ successful infiltration into joint replacements is most notable for hip replacements.

“Though implantable ceramics have been in the market for decades, the adoption of these materials has really happened in the last 15 years,” says Lucian Strong, vice president of CoorsTek Bioceramics (Grand Junction, Colo.), which manufactures ceramic femoral heads and acetabular liners for total hip arthroplasty, among other bioimplantable ceramic components. “The adoption is coming from the transition away from metals to ceramics due to the superior wear properties of ceramics, as well as patients’ demands for longer and more active lifestyles after joint replacement.”

Wear of polymer and metal joint implants can generate debris particles that cause inflammation around the joint, loosening the implant and potentially leading to its failure. Potential allergic reactions to metals as well as toxicity from release of metal ions from an implant into the body are also considerations.

These considerations are creating a favorable landscape for ceramic implants, and that shift is evident in data from the 2019 annual report of the American Joint Replacement Registry, a database of more than 1.5 million knee and hip arthroplasty procedures performed in the U.S. during 2012–2018. Registry data show that for total hip arthroplasty, the number of implants with ceramic heads is increasing and first surpassed those with cobalt chromium heads in 2015.9

This data, however, presents only a limited picture, as the registry captures an estimated 25%–30% of the volume of annual procedures in the U.S. Other estimates indicate that adoption of ceramic hip implants is already much higher in some parts of the world—more than 50% of hip implants performed in European countries like Austria, France, Germany, Italy, and Switzerland use a ceramic ball head, while 72% of total hip replacements in Asian countries such as South Korea have an alumina ball head.10

A large proportion of total hip replacement ceramic implants are historically alumina, although zirconia is used as well. Acceptance of zirconia was severely hindered by the 2001 recall of millions of Prozyr brand zirconia ball heads, prompted by high fracture rates in patient implants. Subsequent failure investigation of the manufacturer, Saint Gobain Ceramiques Desmarquest, determined that a switch in the type of furnace used to manufacture the implants caused an unanticipated change in temperature kinetics, resulting in insufficiently densified zirconia.11 Although the problem was traced back to a manufacturing error, the recall significantly marred zirconia’s reputation in the market.

Many modern ceramic hip joint implants now combine the best of both worlds with composites that offer improved properties of strength, toughness, and scratch resistance, for example, ones based on zirconia toughened alumina (Figure 4).

Beyond material-based considerations, additional factors also are coalescing to create a favorable landscape for ceramics implants. “Medical care has seen many transitions over time, but the latest big trend is the move to outpatient care due to rising costs,” Strong says.

Similar to how miniaturization of components allowed pacemakers to shrink in size, resulting in shorter hospital stays and lower care-related costs, parallel evolu-
tions also occurred for joint replacements. The spine provides a critical balance of flexibility and stability to the body, any modifications to the spine ideally must balance those same properties. Spinal implant devices stabilize and strengthen the spine in various ways, often by securing vertebral elements and inserting implants to shore up the intervertebral space (Figure 5). But that need for flexibility and stability makes spinal devices challenging to design.

For instance, the articulation surface for a total disc arthroplasty must not only be functional, it must be designed to account for an estimated device life of more than 40 years. Considering the estimated number and amplitude of load cycles a lumbar disc undergoes annually—based on an average adult bending an estimated 125,000 times and taking 2 million steps in that year—a disc implant is expected to endure some 85 million cycles of loading during its lifetime without wearing down.12

So these devices demand incredibly high-performance and long-lasting materials. While the usual biomedical materials have long been used in spinal implant devices—metals such as stainless steel, titanium, and cobalt-based alloys offer strength; high-performance polymers such as polyetheretherketone (PEEK) provide good value—these materials do not offer perfect solutions in the spine, where integration with existing tissue is particularly desirable for preserving functionality of the spine and maintaining longevity of the device.

“Overall, the need of the hour is to develop materials that demonstrate both biomechanical applicability and biocompatibility while being user friendly in a surgical environment,” according to a 2017 article on trends in spinal surgery (Figure 5). So it is not surprising that this field is also starting to realize the potential of ceramics and glass.

For instance, Mo-Sci (Rolla, Mo.) is developing multicomponent biodegradable spinal bone grafts from bioactive glass—containing one bioactive glass formulation that dissolves more quickly and contains compounds to stimulate vasculature growth (e.g., copper and zinc elements) in early stages of healing, and another bioactive glass formulation that forms a porous silicate glass scaffold that dissolves more slowly to provide support while natural bone formation gradually replaces the graft.

“This bone graft has shown really nice improvements in spinal fusion rates, and it actually isn’t even on the market yet,” says Steve Jung, chief technology officer of Mo-Sci. “Mixing to get this benefit from this material and this benefit from this material is sometimes a better option than trying to find this one material that could do it all. Sometimes you have to accept that there are just two really great materials you can put together and get what you want from each.”

Beyond bioactive glass, other materials also have their sights set on the spinal market. Silicon nitride spinal fusion devices manufactured by SINTX (Salt Lake City, Utah)—the only FDA-registered and ISO-certified silicon nitride medical device manufacturer in the world—and sold through CTL Amedica are working their way into this market (Figure 6).

Silicon nitride is not only bioactive, antiviral, and antibacterial but also promotes bone growth, providing an effective orthopedic solution.

Although the material currently constitutes a small portion of the overall market for spinal fusion devices, data indicates silicon nitride has significant potential, as the company reports there were fewer than 30 FDA-reported adverse events despite more than 35,000 human spine implantations over 10 years.10

SINTX anticipates many additional orthopedic applications for silicon nitride, such as dental and craniofacial applications as well as joint replacements.

“There’s a lot of concerns that metals corrode in the body. As you’re putting hips into younger and younger patients who are going to live longer, you’re not looking at 20-year outcomes. You’re interested in 30- and 40-year outcomes, and there ceramics have a very special role,” says Sonny Bal, president and CEO of SINTX.

For craniofacial applications, customized repair of defects with 3D-printed patient-specific implants is a possibility that SINTX has in mind, according to Don Bray, vice president of business development at SINTX. “If someone has a severe accident and you need to rebuild the facial bones and structure, you would want to do a CAT scan and make an exact fit. In the spine you can use some standard sizes. But because of the shape of the face, you can’t—and we think 3D printing there with our silicon nitride is key,” Bray says.
Better bodies with biomaterials

“It’s a very critical area, so having an antibacterial implant that you could coat exactly for the person is where we think this is going to go,” Bray adds. “And we don’t think it’s that far off.”

Because of silicon nitride’s favorable antibacterial and biological properties, SINTX also is developing techniques to incorporate silicon nitride into devices and products made of other materials as well. For example, silicon nitride can be mixed into polymer-based products or coated onto titanium devices to enhance biocompatibility of those surfaces, promote healing, and prevent infection and spread of viral diseases, according to Bal.

“We are looking at 3D processing procedures that we can commercialize, in which we put a very tenacious micron-level coating of silicon nitride that supercharges the metal and makes it antibacterial,” he says.

3D PRINTING: A TECHNOLOGY WITH LAYERED MEDICAL POTENTIAL

Multimaterial implants

At the intersection of medical care and additive manufacturing lies tremendous promise to completely change how we approach health strategies to replace, enhance, and restore function of the human body.

According to the annual Wohler’s report, the 2019 additive manufacturing industry was worth some $11.867 billion. Medical and dental applications account for about 11% of that market, and dental in particular represents a large growth segment in the latest report.

Additive manufacturing company Lithoz GmbH (Vienna, Austria) is familiar with the potential of the technology for medical and dental applications. Lithoz’s lithography-based ceramic manufacturing technology 3D prints complex structures layer-by-layer using a photo-curable polymer–ceramic slurry. After printing, green parts are debinded and sintered to remove the polymer, leaving fully dense ceramic parts.

Lithoz developed both the expertise and the custom printers to additively manufacture a diverse array of ceramic materials, everything from piezoceramics to regolith, and certainly including ceramics with medical applications such as alumina, zirconia, silicon nitride, hydroxyapatite, and tricalcium phosphate. Daniel Bomze, head of the Lithoz’s medical business unit, says the company also has success printing with bioactive glass. “We have produced several parts and some slurries already successfully with bioglass. So we know it works,” he says. Now, Bomze says Lithoz is waiting for a commercial partner who is interested in making the investment to further develop applications for additively manufactured bioactive glass.

Lithoz’s technologies can print complex geometries such as high-resolution lattice structures with openings just several hundred microns wide—optimal scaffolds to promote interaction and integration with living tissues—so medical applications are one promising direction (Figure 7). For instance, such bioceramic scaffolds could be used to repair bone defects due to injury or disease.

While ceramic and bone are a perfect match materially speaking, design of bioceramic scaffold structures is challenging because they must provide both porosity and mechanical strength, properties that often come at a tradeoff. Fortunately, natural bone can provide some inspiration. Bone’s structure consists of an outer layer of dense cortical bone filled with porous and spongy inner trabecular bone, a multimaterial strategy that uses different forms to provide two different components of bone’s function.

Lithoz is developing multimaterial 3D-printed implants that provide both porosity to promote tissue regeneration and mechanical stability to support a bone defect. These multimaterial implants incorporate a strong outer layer for structural support during the initial healing phase, composed of a ceramic material with good mechanical stability such as zirconia, with a porous inner scaffold of biore Absorbable ceramic substrate such as tricalcium phosphate or hydroxyapatite. The inner material more closely matches the inorganic component of bone, and its porosity permits cell attachment and penetration of blood vessels, allowing the body to heal and replace the bioabsorbable substrate with natural tissues over time.

Such multimaterial implants could be used to repair many types of bone defects, such as those in the jawbone. Critically, Bomze says, the material’s resorption rate can be tuned to the area of the body being targeted. “The ideal would be that the regrowth, the new tissue forms at the same speed as the implant is being resorbed. So you have the overall volume and stability, and the whole healing time is the same by tuning...
this artificial material and the natural material,” he says.

Although the individual components of these implants were implanted into a small number of human patients, with good results so far, the multimaterial implant is currently a proof-of-concept. And although the current design is printed into two separate steps, Lithoz has bigger plans for the future.

“The future will be printing it simultaneously, in one single step—you could print the cage and the inner part at the same time and then sinter them together,” Bomze says. “You can probably make even more sophisticated materials, for example a sandwich structure with an inner part of hydroxyapatite, then a shell of zirconia, and then a tiny outer coating or a third layer again of hydroxyapatite to facilitate ingrowth of the implant. And here we’re making really rapid progress.”

In that vein, Lithoz released in September 2020 a new multimaterials 3D printer called the CeraFab Multi 2M30. The printer is similar to the company’s other offerings but now includes two vats to provide the ability to simultaneously print with two different raw materials (Figure 8). This ability affords new functional applications, such as printing multiple materials in a single layer and allowing gradual compositional variation from one material to the next.15

3D-painting

Additive manufacturing is a diverse technology, so Lithoz’s lithography-based technique is one of many different approaches.

Another company, Dimension Inx (Chicago, Ill.), is innovating with printing ceramic-based biomaterials at room temperature, with no additional post-processing sintering steps required—affording the ability to incorporate organic molecules such as proteins, drugs, and antibiotics into the materials themselves before printing.

As noted in a May 2019 Bulletin article,16 “3D-painting is a materials-centric advanced manufacturing technology that permits nearly any material to be transformed into a 3D-printable ‘3D-paint’ via simple, room-temperature extrusion without the need for support materials,

BREATHEALYZERS: ANOTHER WAY TO DETECT COVID-19

In the fight against COVID-19, the main technique used to collect samples is a deep nasal swab, a procedure doctors describe as moderately uncomfortable but some patients describe as “being stabbed in the brain.”

Testing methods that are more comfortable and more easily administered would certainly be appreciated by patients and physicians alike, and researchers have explored saliva testing as an alternative, with some promising results. However, according to Edward Orton, Jr., Chair in Ceramic Engineering Pelagia-Iren (Perena) Gouma at The Ohio State University, breathalyzers may be an even easier and readily accessible way to administer tests.

Breathalyzers use selective gas sensing elements to detect certain biomarkers in breath that signal disease. Compared to swab-based testing methods, breathalyzers are noninvasive, nonintrusive, and can deliver a result in dozens of seconds.

Gouma has explored the use of breathalyzers for medical diagnostics since 2003. She started investigating the development of breathalyzers aimed specifically at detecting infectious diseases a few years ago, and she has worked extensively the past few months to use that knowledge to design a breathalyzer that detects COVID-19.

The in-development COVID-19 breathalyzer uses ceramic sensors to target biomarkers that give a response specific to that infection, and it includes advances on nanomaterials for detecting specific breath gases at concentrations that can make a diagnosis.

Gouma says her team initially tested the new breathalyzer by using gas canisters that were mixed to simulate the breath gas mixture as a result of COVID-19 infection. However, they have since moved to conducting human testing and have been testing at various COVID-19 testing sites around Columbus, Ohio.

In mid-September, they reported initial results from the ICU-focused human testing at the Ohio State Wexner Medical Center. The results showed the breathalyzer could detect acute cases of COVID-19 and can monitor the severity of the disease.

The researchers currently are seeking FDA emergency-use authorization for the breathalyzer.

For more information on Gouma’s study, as well as other breathalyzer studies taking place at Northeastern University, check out a recent Wired story on the topic at https://www.wired.com/story/could-breathalyzers-make-covid-testing-quicker-and-easier.
Better bodies with biomaterials

In the 3D-painting technique, a powder-based material is mixed with elastomer and solvents; after extrusion through a nozzle, the finished printed product requires only rinsing and sterilizing. The flexibility of the technique means that in addition to 3D printing structures out of 3D-paints, the same strategy could also be used to coat products manufactured via other techniques and out of other materials.

Importantly, 3D-painting can be applied to almost any material, including ceramics. “3D-painting is materials agnostic. It’s not dependent on what you’re making or what material you’re using,” says Adam Jakus, co-founder and chief technology officer at Dimension Inx.

As one example of the 3D-painting technology, Dimension Inx’s bone-specific 3D-paint formulation, called Hyperelastic Bone®, is primarily ceramic yet still incredibly flexible, offering significant potential for bone implants. Hyperelastic Bone can be printed in specific structures (Figure 9) as well as porous scaffolds and sheets that could be cut and custom-fit in the operating room (Figure 10).

“The really interesting thing about Hyperelastic Bone is that it’s 90% ceramic, which is technically more ceramic than is in our actual bones,” Jakus explains. Human bones contain 60%-70% dry weight of crystalline hydroxyapatite, bound by collagen and other structural and functional proteins. “But the end result is actually flexible and cuttable and shapeable, which you wouldn’t really expect for a something that’s mostly ceramic.”

That flexibility is because of Hyperelastic Bone’s unique microstructure, which forms as evaporants vaporize from the printed material after it is extruded through a printer nozzle. The rate of evaporation tunes precipitation of the elastomer, forming an optimized structure in the printed material.17 “A very specific microstructure really allows the different components of the composite, the ceramic and the resorbable polymer, to play off each other and move around and then return to their original form without breaking,” Jakus says.

Hyperelastic Bone also is microporous, which provides excellent osteoconductivity and biocompatibility. “If it’s intended to regrow bone, the body tissue needs to be able to access that material on the microstructure level and transform it,” Jakus says, although the porosity can have a drawback. “But it’s a balance if you want structural integrity and you want bioactivity. Those things are in conflict all the time.”

Since the technology is relatively well-established at this point, Jakus says Dimension Inx is now working on quality control aspects of the process, showing that it can demonstrate consistent results. “So a lot of our efforts throughout 2020 have been establishing new quality control systems and quality manufacturing systems around design and synthesis of these new materials as well as the 3D-painting process itself,” he says.

That includes establishing consistent and detailed manufacturing processes and identifying and mitigating risks—all part of the company’s preparations toward seeking FDA approval for Hyperelastic Bone devices.

3D printing inherently conjures ideas of patient-specific printed implants. And while that is an eventual direction for Dimension Inx, the company is starting with a more practical pathway—and one common for biomedical innovations—by targeting mass-produced implants of Hyperelastic Bone, a collection of standard shapes like “strips or squares or blocks,” Jakus says. “We are introducing a new material in a new manufacturing process. So I think it’s important to get the regulatory agencies, the FDA, surgeons, everybody comfortable with the material and the process first so they are then willing to take that next step to patient-matched implants.”

That acceptance is a considerable issue in the medical industry—you not only have to prove that a device or technology works (see sidebar: Regulating the pace of medical innovation), but you also have to
Infiltrating a site like the craniofacial space can then be a strategic initial target application of a new technology to gain acceptance before expanding to additional sites and applications.

Another consideration that makes the craniofacial segment attractive for innovation in additive manufacturing, especially with bioresorbable materials, is that these surgeons treat many pediatric defects. “So they’re most excited to use new materials, ceramic or not, that transform over time and grow with the patient,” Jakus says.

Tissue regeneration: the softer side of biomaterials

In terms of the body’s natural materials, ceramics and glass are most analogous to bone and tooth enamel—so it is not surprising that there are so many orthopedic and dental applications for ceramics and glass (see sidebar: Ceramics used in dentistry).

But modern developments in nanotechnology, particularly the ability to engineer nanosurfaces, nanoparticles, and nanoscaffolds, as well as more nuanced understanding of cell biology are together reshaping how we think about the potential of biomaterials.

Biomaterials were once designed to minimize interactions with the body and to eliminate any potential adverse reactions. But starting with Larry Hench’s discovery of bioactive glass 50 years ago, a more modern perspective for biomaterials no longer attempts to eschew cell biology.

“Design of a new biomaterial should always consider the need of the cells, because the cells are the engineers of our body,” says Aldo Boccaccini, professor of biomaterials and head of the Institute of Biomaterials in the Department of Materials Science and Engineering at University of Erlangen-Nuremberg (Erlangen, Germany).

Many biomaterials now aim to not only stand in for living tissues when they need to be repaired or replaced, but the materials play a more supportive role in actually helping the body perform its own healing—more like an assist rather than a complete substitution. That guidance can be used to mediate processes such as wound healing and to rebuild damaged or missing tissues, broadly contributing to the overall field of tissue engineering, or regenerative medicine.

In terms of the future of healthcare, regenerative medicine is a big business. The global market for tissue engineering...

REGULATING THE PACE OF MEDICAL INNOVATION

While there is no shortage of innovative ideas for medical applications, bringing such innovation to the market is a whole different story.

“The medical market is slow and steady in terms of innovation,” says Lucian Strong, vice president of CoorsTek Bioceramics (Grand Junction, Colo.). “While new applications or processes may demand new materials, there is a well-defined process that is governed through the regulatory bodies around the globe. There is no simple introduction of a new material that will be implanted into a patient. Clinical data, proven over numerous years and multiple patients, is necessary for any new material to gain acceptance.”

Collecting such data takes considerable time, but it is a critical component of the regulatory processes to ensure that biomaterials and devices are safe and effective once implanted into human patients. And even before the clinical data, much additional time must be first devoted to testing and documenting effectiveness and safety in both lab settings and in animal models.

In the U.S., where the FDA regulates the approval process, bringing a medical device to market takes on average 3–7 years. Although this process unavoidably slows the pace of innovation, these pathways are critical to maintain safety and minimize potential harm to human health.

Yet even once clinical data does provide acceptance for a material, the story is still not over.

“The increasing longevity of the human race, younger patients undergoing surgical interventions, all points to a future in which we as scientists need to understand the long-term interaction of the implant with the body,” says B. Sonny Bal, president and CEO of SINTX.

Of course, it is not feasible to wait decades while collecting long-term outcomes for every new device—such observation trials would completely stifle innovation and prohibit entrance of any new product on the market.

Instead, to develop materials for the future, we need robust short-term outcome proxies that can predict long-term behavior, Bal says.

“That’s the Holy Grail.”

Bal made the analogy to how NASA uses algorithms and modeling to predict the outcomes of its missions. There are no practice runs when sending a rocket to Mars—NASA incorporates knowledge and modeling to maximally reduce the margin of error. And that, he envisions, is where biomaterials need to go.

“Instead of experimenting with humans, we need to be able to predict how a biomaterial will behave in the body just like NASA does—because there’s no room for mistakes. You do it once, and that patient has to live with it. You can’t have failures,” he says.

Better bodies with biomaterials

and regeneration was valued at $24.7 billion in 2018 and is predicted to reach $109.9 billion by 2023, representing an impressive CAGR of 34.8%.

While bone is a significant focus of this market, it encompasses soft tissues as well, such as strategies to repair damaged cardiac and gastrointestinal tissues or engineer vascular, muscle, neural, and skin tissues.

Likewise, there is potential for many different types of materials in this broad field. “In the field of regenerative medicine and tissue engineering, there is no one material that is going to tackle all the problems,” Boccaccini says. And many of the ceramic- or glass-based strategies to heal tissues actually combine them with organic materials, in polymer composites or hydrogels, for example.

Although bioactive glasses were discovered half a century ago, their potential within regenerative medicine is still being realized today. When in contact with body fluids, bioactive glasses dissolve and release ionic dissolution products such as biologically active ions within the body. Cells, in turn, respond to these ionic products, some of which stimulate growth of new blood vessels in the tissue, a process called angiogenesis. Blood vessels nourish developing tissue with oxygen and nutrients and remove waste products, so the angiogenic response is part of what makes bioactive glass so attractive for tissue repair.

But ionic dissolution products also do more than stimulate angiogenesis—these products alter gene expression patterns in nearby cells, shifting signaling pathways that orchestrate every cellular function, such as cell migration, proliferation, and differentiation.

Although we are just beginning to unravel some of these biomolecular mechanisms, the potential exists for bioactive glass compositions and properties to catalyze a diverse array of cellular responses, precisely tuned to the target tissue and the desired effect in that tissue—whether that is modulating an immune reaction, prompting tissue regeneration, or stimulating release of growth factors to guide stem cell differentiation.

“Understanding genetic upregulation and activation by ionic stimuli released from bioactive glasses offers the possibility of developing patient-specific therapies, a huge challenge for the aging population,” per a 2015 Bulletin article on bioactive glasses.

One of the more familiar and clinically approved applications of bioactive glasses for soft tissues is in wound repair, with products such as a cotton candy-like borate bioactive glass fiber matrix to heal advanced wounds.

CERAMICS USED IN DENTISTRY

Ceramics are ubiquitous in the $10.7 billion U.S. dental industry, with applications in prosthetics, fillings, orthodontic appliances, cosmetic products, process materials, preventive products, toothpaste, and more. Below are some highlights of the roles that ceramics play in this industry.

Dental caries: From prevention to treatment

Dental caries, commonly known as tooth decay, is the most common bacterial disease of children and adults worldwide. Formerly, tooth loss due to bacteria attacking the tooth enamel was inevitable, but advances in dental materials and techniques during the last few decades have greatly reduced chances of this outcome.

Plaque removal and teeth cleaning at home and by hygienists is the first line of defense against these bacteria. Toothpastes contain many ceramic powders ranging from stannous fluoride, potassium nitrate, and several calcium phosphate compounds. Bioactive glass is also present in some toothpastes, to promote remineralization of the enamel. Sodium bicarbonate is often used by hygienists to more thoroughly remove plaque, and pumice is sometimes used as well.

When bacterial attack progresses into the enamel, a dentist will seek to remove the softened tissue and restore tooth anatomy. Small to medium bacterial lesions (cavities) are treated with ceramic composite filling material or glass polyalkenoate cement material to restore the tooth form.

When the disease progresses into the pulp, a medication that induces the pulp tissue to build a protective barrier of reparative dentine is needed. Calcium hydroxide-containing materials used to be the standard material used for this purpose, but now tricalcium silicate cements, which are based on the same materials as white Portland cement, are the “gold standard.” (These cements are set with a matrix that includes calcium hydroxide.) If the pulp becomes irreversibly infected, a root canal procedure is required. In this procedure, the pulp is removed and is replaced by a combination of rubber points shaped like a root canal and sealed with another material. The trans-polysoprene rubber points are usually filled with zinc oxide and barium sulfate. The sealing material comes in a variety of polymer and ceramic matrices, ranging from epoxy to zinc oxide—eugenol. The newest sealers are based on tricalcium silicate powders. Sometimes, glass fiber-reinforced composite posts are inserted in a root canal after a root canal procedure to help restore tooth function.

When a majority of the anatomy of a tooth is lost, the anatomy is restored with a crown. Gold foil and its alloys were the materials traditionally used for crowns, but in the 1950s, porcelain enameled crowns and bridges became the standard tooth restoration for severely damaged teeth because of their greater durability and more natural aesthetic. Today, all-ceramic crowns—such as alumina, lithium disilicate, and yttria-stabilized tetragonal zirconia—are the most common crown type because of their strength, ease of fabrication, and aesthetics. Tetragonal zirconia with 3% yttria dominates this market due to its high strength, but zirconia with higher yttria formula are also in use due to better aesthetics, despite their diminished strength.

Whenever a temporary or permanent crown or bridge is placed, dental cements are needed. Numerous ceramic- and glass-containing dental cements are used in dentistry, but the original cements were all based on zinc oxide. More recently, glass-ionomer cements evolved from the original silicate filling materials in the mid 20th century and remain popular because of their temporary fluoride release, which deters caries from forming under a crown. Resin-modified glass-ionomer cements and composites are also advantageous, by combining light-curable polymers from composites with limited fluoride ion release from the glass ionomers.

Tooth extractions: Replacing the missing teeth

Periodontal diseases and tooth fractures may lead to tooth extraction. Dental implants, or posts surgically placed into the jawbone, are increas-

*The urethane polymers filled with about 40–70% by weight of ceramic powders, which may include radiopaque glasses, fumed silica, or quartz in combination. Requires bonding agents such as slame and a polymer primer to induce adhesion.

*In other words, glass-ionomer, composed of fluorooxaluminosilicate glass powder reacted with a polycrylic acid liquid, which bonds to tooth structure. Used for restoring tooth anatomy plus permanent cementation of crowns, bridges, inlays, onlays, posts, and orthodontic appliances.
“But you can also think of internal wounds, such as adhesives with hemostatic ability for coating internal wounds where there is a lot of bleeding,” Boccaccini says. “Here I think yet is an open area for the applications of [bioactive glass], either as a fiber or mesh or in composites.”

As research continues to characterize how cells respond to the unique materials as well as the underlying biomechanisms of these responses, soft tissue applications of bioactive glass will also continue to expand.

Mo-Sci’s Steve Jung says that bioactive glass is experiencing increasing integration in medical products due to the material’s recognition as a “premium material” and its ability to intimately interact with tissues. Bioactive glasses are being combined with other materials to make new products as well as being integrated into existing products already on the market. “They’re making these products better by the addition of bioactive glass,” Jung says.

Jung says that in veterinary medicine, there also have been some indications that bioactive glass can also repair tendons and ligaments. “To me, that kind of outcome is really what gets you thinking about sports injury-type situations—if you blow a ligament, could we develop a technology to help to heal that back together?” he says.

Beyond being implanted within the human body to aid tissue regeneration, ceramic and glass materials can also be similarly used to grow tissues outside of the body, with the vision that these tissues could eventually be harvested and implanted into or on the body as appropriate.

“The possibilities for ceramic technologies for improving the health and wellbeing of mankind are vast,” says Randel Mercer, chief technology officer at CoorsTek. “One exciting avenue CoorsTek has been working on is the use of engineered ceramic cell culturing devices. Our product, Cerahive, is used to grow human tissue cells in an environment that mimics the growth environment in the human body.” These porous ceramic substrates line the bottom of a cell culture dish to support 3D cell cultivation, allowing in vitro growth of cell spheres (Figure 11). “The future potential to ‘manufacture’ specific tissues in the laboratory could be used as a source for repairing damaged tissue in humans,” Mercer says.

LOOKING FORWARD—A GLIMPSE OF FUTURE HEALTHCARE

So what does the future of medical care look like, and how do biomaterials fit into that future?

3Freedonia Group

Other applications: Brackets, abrasives, equipment

Orthodontic brackets are commonly made of stainless steel, but sapphire, tetragonal zirconia, and polycrystalline alumina (with no glass bonding) are also used to manufacture orthodontic brackets because of their aesthetic appeal (they make the brackets less obvious). Ceramic coatings such as rhodium oxide are also used on orthodontic wires to disguise the orthodontic device. Diamonds, tungsten carbide, and alumina and silica abrasives are essential for dentistry to remove tooth structure and to polish or adjust any dental restorative or denture. Some abrasives are bound in rubber; others are used in paste form.

“Of course, most of the equipment used in dentistry would not be possible without ceramics, from microscopes and cameras to curing lights to air turbines handpieces; from piezoelectric devices, to general electronic devices, to office scheduling and case record software and computers,” says Carolyn Primus, medical device consultant and the 2020 Larry Hensch awardee for Bioceramics.

Future of dental ceramics

Biocompatibility is a top priority for medical devices, and ceramics excel in biocompatibility compared to polymers and metals. On the other hand, durability is a key concern for ceramic restoratives in dentistry, particularly composite ceramics. Current research on zirconia, for example, looks to optimize the strength and appearance of zirconia by exploring variations in the stabilizers for the tetragonal phase. Ceramic nanoparticles are another subject of much research, as nanoparticles offer a way to provide unique biological responses. Nanoparticles are not new in dentistry, however—silica nanoparticles have been used for decades in composites and toothpastes.

Compared to other fields, manufacturing in dentistry happens at a small scale. As such, “Dentistry often follows the innovations in other industries or adopts materials used in other fields,” Primus says.

For example, computer-aided design and computer-aided manufacturing (CAD/CAM) are examples of innovations from other industries adopted for dental applications beginning in the 1980s.² CAD/CAM dentistry is becoming a widespread method for making ceramic dental crowns in a dental office.

Additive manufacturing is also being adopted for dentistry. Fabrication of dentures and temporary restorations are leading the way for additive manufacturing. Lithoz GmbH (Vienna, Austria) is helping to lead the adoption of additive manufacturing for dental purposes with their lithography-based CeraFab 7500 Dental and CeraFab System Series ceramic manufacturing machines. Ivoclar Vivadent (Schaan, Liechtenstein) is also exploring additive manufacturing with their PrograPrint PR5, a digital light processing-based stereolithography printer.

As these technical innovations allow people to retain more teeth, the dentistry field will continue to grow, and the opportunities for ceramic and glass materials along with it.
Better bodies with biomaterials

The medical industry is constantly searching for new, better, and more cost-effective solutions, and advancements in the medical industry are moving at a pace so much faster than just a few years ago due to the introduction of advanced materials. With climbing healthcare costs combined with the move from inpatient to outpatient procedures, there is a pull from the market for better materials,” says CoorsTek’s Lucian Strong.

Ceramics and glass clearly fit into that future vision not only because of the role of established products such as joint implants but also due to entirely new forms and functionalities of the materials that are just starting to be discovered, realized, and matured.

“I absolutely believe that ceramics and bioactive glass have a really strong future, and their areas of use are going to diversify in a big way,” says MoSci’s Steve Jung. “Bioactive glass is 50 years old, but we’re still finding new ways to use it all the time. Old materials used in new ways or in combination with new techniques I think is the wave of the future.”

Some of those new ways, combinations, and techniques are highlighted in this article, but potential extends much, much further as well.

One particular area ripe for future innovation is technologies that address multiple different tissues simultaneously. Although an isolated tissue-specific approach often guides biomaterial developments, components of the human body operate together in systems on several different scales.

“If you look at everything in isolation, there are solutions that already exist. They may not be the best solutions, but there are ways to treat individual tissues,” says Dimension Inx’s Adam Jakus. However, most injuries or conditions involve multiple tissues, so more complex solutions are often required.

“This has been a driving force for our technology for a long time, and we set up a manufacturing technology where all the materials are complementary to each other,” Jakus says about Dimension Inx’s 3D-painting platform. “So we can manufacture a bone material with a muscle material and with a ligament material, so that in the future you could make a multitissue implant.”

Such strategies will inevitably need to leverage properties and strengths from multiple different materials. “This could be partially ceramic, partially polymer, partially biological, even partially things like graphene and graphite for electrical conductivity,” Jakus adds. “So manufacturing different material types together to match the really different material types in the body.”

Another systems-level approach that will certainly shape the future of healthcare is smart implants.

Miniaturization of devices, enabled by advances in the materials themselves, provided the feasibility for tiny sensors that can be implanted within the body to track an array of biological parameters on-demand. Such sensors provide the ability to track those parameters continuously, rather than sporadic measures taken at a doctor’s office or hospital, and monitor for any changes that could signal a potential health problem. Such rich data provides a more comprehensive view of a patient’s health as well as the ability to respond immediately to a potential disturbance in that health.

According to Schott’s Jochen Herzberg, smart implants have a prominent place in the future of medical care not only because they provide better monitoring but also in terms of reducing healthcare spending, by reducing trips to the doctor or hospital and by informing more strategic medical intervention when necessary.

“A trend that is very visible right now is smart implants and remote monitoring of patients to reduce hospitalization. For example, in-line measurements of vital signs like blood pressure inside of your body, with smart computers inside your body communicating with your doctor without being hospitalized,” Herzberg says.

Glass is already used in several different components of such devices, including hermetic seals, but its optical transmissivity offers compatibility in terms of data transmission (see sidebar: Could future bandages not only be smart, but also made of glass?).

Yet tiny implantable devices also can do more than just sense and monitor—they can also be designed with the capability to intervene as well, for instance by delivering a therapeutic.

“This is very fast moving technology. The idea is to replace conventional medical therapies with active implants so that you avoid overmedicating your whole body, for example by replacing...
chronic pain relievers with very smart implants that are active only where the pain is created rather than influencing the whole body,” Herzberg says.

Smart implants play into an overall health ecosystem increasingly focused on early detection and proactive intervention, before health conditions because problems and require more involved treatment.

These data-based monitoring strategies extend beyond implants as well, according to a Deloitte Insights report on the future of health.23 “Medical products might no longer be limited to pharmaceuticals and medical devices. They could also include software, applications, wellness products, even health-focused foods. The home bathroom of the future, for example, might include a smart toilet that uses always-on sensors to test for nitrites, glucose, protein, and pH to detect infections, disease, even pregnancy. A smart mirror equipped with facial recognition might be able to distinguish a mole from melanoma,” the report says.

Ultimately, the entire landscape of how we approach, monitor, manage, and mitigate human health is shifting. While these changes will not come without challenges to the market for biomaterials, they also offer incredible opportunity—and ceramics and glass are certainly well-positioned to capitalize on such opportunities as well as integrate critical function into the human body.

ACKNOWLEDGEMENTS

We thank Carolyn Primus for her review of and detailed suggestions for the section “Ceramics used in dentistry.”

REFERENCES

3 BCC Research, “Global markets for implantable biomaterials (AVM118A),” January 2015.
8 BCC Research, “Advanced orthopedic technologies, implants and regenerative products (HLC052D),” August 2018.
How are manufacturers handling business during the COVID-19 pandemic? That question was at the core of many discussions during Ceramics Expo Connect, the virtual version of Ceramics Expo. The industry exposition, which typically takes place in the spring, took place instead from Sept. 21–25, 2020, and it welcomed more than 1,500 virtual event attendees and more than 150 exhibitors.

Each day of the exposition featured panels, interviews, and roundtables focused on different themes, including clean and electrified technology (Monday), additive manufacturing (Tuesday), aerospace applications (Wednesday), and quality and testing (Thursday).

The exposition kicked off Monday with a panel on overcoming business continuity challenges caused by COVID-19. The manufacturers on the panel say while there are still difficulties, overall some of the necessary workarounds enacted to handle the pandemic could prove useful in the future, such as facilitating business electronically and working from home.

On Tuesday, manufacturers again were future focused in their discussions of additive manufacturing. However, they did caution that additive manufacturing should not be treated as a solution to all processing challenges but rather as just another forming process.

With all the talk of future potential, Wednesday discussions focused on one area in which ceramics are already making a difference: aerospace. The first jet engines based on ceramic matrix composites were commercially deployed in 2016, and panelists suggested more aerospace opportunities for ceramic materials in the future, including in shrouds, liners, nozzles, and blades.

In contrast to the other three days, Thursday wrapped up the exposition with a focus on current processes and how to ensure material quality and testing. Experts from multiple fields offered their expertise, including representatives from vehicle manufacturing, scientific instruments for molecular research, and clay brick making.

Materials Challenges in Alternative and Renewable Energy 2021 (MCARE 2021)

4th Annual Energy Harvesting Society Meeting (EHS 2021)

Hyatt Regency Bellevue
Bellevue, WA USA

Hosted and organized by: Energy Materials and Systems Division

ceramics.org/MCARE2021
Current trends, applications, and processes in the ceramic manufacturing industry were the focus of the first-ever Ceramic Manufacturing Solutions Conference, which took place on Sept. 29, 2020. Originally scheduled to take place alongside Ceramics Expo in the spring, CMSC was rescheduled as a virtual event for the week after Ceramics Expo Connect in light of the ongoing pandemic.

Sixty-nine registrants from 13 countries, including 10 students, registered to attend the one-day event, which was organized into three main sessions: Testing, Quality, and Health & Safety; Ceramic Processing; and Raw Materials.

The day kicked off with a keynote presentation by Doug Freitag, technical director for government affairs at the United States Advanced Ceramics Association. Freitag spent time describing the history and current status of research on transparent ceramic armor and ceramic fiber reinforced ceramic matrix composites for gas turbines.

Following Freitag’s presentation, ACerS director of meetings and marketing Andrea Ross presented Allied Mineral Products vice president of research & development Dana Goski and manager of special projects Matthew Lambert with this year’s John E. Marquis Memorial Award, in recognition of their paper “Engineering resilience with precast monolithic refractory articles.”

During the three main sessions, several topics were discussed in regard to each theme, including

- Occupational Safety and Health Administration citations and ASTM test methods for powder characterization under Testing, Quality, and Health & Safety.
- Failure modes & effects analysis, additive manufacturing considerations, silicon nitride production, and specific volume diagrams under Ceramic Processing.
- Electric arc fusion of mullite ceramics and the role of alumina in various applications under Raw Materials.

“Working in the manufacturing environment, the CMSC event exceeded expectations; the speakers and the content of their talks were both excellent. I’m excited for this event to continue,” says coorganizer Keith DeCarlo of Blasch Precision Ceramics.
Electronic Materials and Applications 2021 (EMA 2021) is an international conference focused on electroceramic materials and their applications in electronic, electrochemical, electromechanical, magnetic, dielectric, biological and optical components, devices, and systems. Jointly programmed by the Electronics Division and Basic Science Division of The American Ceramic Society, EMA 2021 will be a virtual event on the same planned dates, Jan. 19–22, 2021.

EMA 2021 is designed for scientists, engineers, technologists, and students interested in basic science, engineering, and applications of electroceramic materials. Participants from across the world in academia, industry, and national laboratories exchange information and ideas on the latest developments in theory, experimental investigation, and applications of electroceramic materials.

Students are highly encouraged to participate in the meeting. Prizes will be awarded for the best oral and poster student presentations.

ORGANIZING COMMITTEE

ELECTRONICS DIVISION

Hui (Claire) Xiong
Boise State University
clairexiong@boisestate.edu

Jennifer Andrew
University of Florida
jandrew@mse.ufl.edu

BASIC SCIENCE DIVISION

Wolfgang Rheinheimer
Technische Universität Darmstadt, Germany
wolfgang.rheinheimer@gmail.com

Edwin Garcia
Purdue University
redwing@purdue.edu

SCHEDULE OF EVENTS

WEDNESDAY, JANUARY 20, 2021

Plenary session 1
9:45 – 11 a.m.

Concurrent technical sessions
11 a.m. – 4 p.m.

Networking session
4 – 5 p.m.

THURSDAY, JANUARY 21, 2021

Plenary session 2
10 – 11 a.m.

Concurrent technical sessions
11 a.m. – 5 p.m.

Student & Young Professionals networking session
5:30 – 6:30 p.m.

FRIDAY, JANUARY 22, 2021

Concurrent technical sessions
11 a.m. – 5 p.m.

Failure: The greatest teacher
5 – 6 p.m.

TECHNICAL PROGRAM

S1 – Characterization of Structure-Property Relationships in Functional Ceramics

S2 – Advanced Electronic Materials: Processing Structures, Properties, and Applications

S3 – Frontiers in Ferroic Oxides: Synthesis, Structure, Properties, and Applications

S4 – Complex Oxide Thin Films and Heterostructures: From Synthesis to Strain/Interface-engineered Emergent Properties

S5 – Mesoscale Phenomena in Ferroic Nanostructures: From Patterns to Functionalities

S6 – Emerging Semiconductor Materials and Interfaces

S7 – Superconducting and Magnetic Materials: From Basic Science to Applications

S8 – Structure-Property Relationships in Relaxor Ceramics

S9 – Ion-Conducting Ceramics

S10 – Point Defects and Transport in Ceramics

S11 – Dislocations in Ceramics: Processing, Structure, Plasticity, and Functionality

S12 – Evolution of Structure and Chemistry of Grain Boundaries and Their Networks as a Function of Material Processing

S13 – 5G Materials and Applications Telecommunications

S14 – Agile Design of Electronic Materials: Aligned Computational and Experimental Approaches and Materials Informatics

S15 – Functional Materials for Biological Applications

OFFICIAL NEWS SOURCES
Due to uncertainty surrounding the current global pandemic, meeting organizers, along with the meetings team at The American Ceramic Society, have decided to move the 45th International Conference & Exposition on Advanced Ceramics & Composites meeting to a fully virtual format for 2021, running live sessions containing pre-recorded talks on a new date: Feb. 8–12, 2021. This conference will be the first-ever Virtual ICACC organized by ACerS Engineering Ceramics Division, and we would like for you to be a part of it.

This conference has a strong history of being the preeminent international meeting on advanced structural and functional ceramics, composites, and other emerging ceramic materials and technologies, and this year is no different.

The technical program will reflect the growth and success of ICACC by featuring 18 symposia, five focused sessions, one special focused session, and the 10th Global Young Investigator Forum. These technical sessions, consisting of both oral and poster presentations, will provide an open forum for scientists, researchers, and engineers from around the world to present and exchange findings on recent advances on various aspects related to ceramic science and technology. The technical program reflects critical areas of interest within ceramics and advanced composites, with a particular emphasis on current trends in research, development, engineering, and application of advanced ceramics.

Hisayuki Suematsu
Program chair, ICACC 2020
Nagaoka University of Technology, Japan
E-mail: suematsu@nagaokaut.ac.jp

SYMPOSIA

S1: Mechanical Behavior and Performance of Ceramics and Composites
S2: Advanced Ceramic Coatings for Structural, Environmental, and Functional Applications
S3: 18th International Symposium on Solid Oxide Cells (SOC): Materials, Science, and Technology
S4: Armor Ceramics – Challenges and New Developments
S5: Next Generation Bioceramics and Biocomposites
S6: Advanced Materials and Technologies for Rechargeable Energy Storage
S7: 15th International Symposium on Functional Nanomaterials and Thin Films for Sustainable Energy Harvesting, Environmental, and Health Applications
S8: 15th International Symposium on Advanced Processing and Manufacturing Technologies for Structural and Multifunctional Materials and Systems (APMT15)
S9: Porous Ceramics: Novel Developments and Applications
S10: Modeling and Design of Ceramics and Composites
S11: Advanced Materials and Innovative Processing Ideas for Production Root Technologies
S12: On the Design of Nano-laminated Ternary Transition Metal Carbides/Nitrides (MAX Phases) and Borides (MAB Phases), and Their 2D Counterparts (MXenes, MBenes)
S13: Development and Applications of Advanced Ceramics and Composites for Nuclear Fission and Fusion Energy Systems
S14: Crystalline Materials for Electrical, Optical, and Medical Applications
S15: 4th International Symposium on Additive Manufacturing and 3D Printing Technologies
S16: Geopolymers, Inorganic Polymers, and Sustainable Materials
S17: Advanced Ceramic Materials and Processing for Photonics and Energy
S18: Ultra-High Temperature Ceramics

FOCUSED SESSIONS

- Special Focused Session on Diversity, Entrepreneurship, and Commercialization
- 10th Global Young Investigator Forum
FS1: Bio-Inspired, Green Processing, and Related Technologies of Advanced Materials
FS2: Materials for Thermoelectrics
FS3: Molecular-level Processing and Chemical Engineering of Functional Materials
FS4: Ceramic/Carbon Reinforced Polymers
FS5: Fractography of Ceramics
Biomimetic approach—the role of ions in bone regeneration

The challenge of bone tissue engineering (BTE) is to develop bone scaffolds that allow good integration with the surrounding tissues. Systems of particular interest are scaffolds based on calcium phosphates (CaPs), mainly hydroxyapatite (HAp), due to its chemical and structural similarity to the inorganic matrix of natural bone and its excellent bioactivity.

Scientists have used growth factors in combination with CaP to enhance bone regeneration, but negative side effects such as ectopic or unwanted bone formation throw the safety of this approach into question. An alternative way to adjust properties of synthetic materials is a biomimetic approach, in which various trace elements with a beneficial effect for bone formation are incorporated in CaPs. The introduction of even small quantities of these ions may cause changes or improvements in the biological, physicochemical, or mechanical properties of scaffolds.

Researchers have extensively investigated CaPs substituted with strontium, magnesium, zinc, selenium, and carbonate ions. Findings concerning each of these ions include:

- **Strontium** (Sr²⁺) stimulates bone formation by decreasing resorption activity and differentiation of osteoclasts, while at the same time increasing osteoblast proliferation and differentiation.
- **Magnesium** (Mg²⁺) acts as a growth factor, especially in the early stage of bone formation, where it plays a key role in bone metabolism. It influences the osteoblast and osteoclast activity.
- **Zinc** (Zn²⁺) is thought to have the same influence on osteoblast and osteoclast activity as strontium and magnesium. Furthermore, it has antimicrobial and anti-inflammatory properties. Due to that, zinc-substituted CaPs could be used as a coating for metal implants to reduce inflammatory response.
- **B-type carbonate** (CO₃²⁻) substitution is characteristic for biological apatite and thus is a highly interesting substitution in synthetic HAp. Furthermore, the CO₃-substitution enhances bioresorption and therefore osteogenic performance of synthetic material.

- **Selenium** is an essential element for the proper functioning of bone tissue, with strong antioxidant properties. Selenium can induce tumor cell apoptosis while at the same time enhance the proliferation of healthy bone cells. As such, many experiments involve selenium oxyanions (SeO₃²⁻ or SeO₄³⁻), especially in bone cancer studies.

Though these results show the benefits of introducing trace elements in CaPs, scaffolds based on HAp still face some disadvantages, such as poor mechanical properties. To overcome these disadvantages, HAp has been combined with polymers to obtain composite scaffolds for bone regeneration.

The ongoing University of Zagreb research project “Development of bioactive and bioresorbable and biodegradable titanium metal scaffolds” involved with this research project.

Currently, I am one of the researchers involved with this research project. In the future, we plan to investigate the efficacy of selective laser sintered bioinspired scaffolds for bone tissue engineering as well.

References

SETTING THE STANDARDS: HOW STANDARDS ENHANCE QUALITY AND PROMOTE RELIABILITY

JAPAN FINE CERAMICS ASSOCIATION AND ITS INTERNATIONAL STANDARDIZATION ACTIVITIES FOR FINE CERAMICS

A SHORT LIST OF STANDARDS-DEVELOPING ORGANIZATIONS
THE UNIFIED INTERNATIONAL TECHNICAL CONFERENCE ON REFRACTORIES
17th Biennial Worldwide Congress on Refractories

CELEBRATING THE INTERNATIONAL REFRACTORIES COMMUNITY
Organized by The North American Members of the UNITECR International Executive Board
Under the auspices of the UNITECR International Executive Board | Hosted by The American Ceramic Society

UNITECR2021.ORG

Sept. 14–17, 2021 | Chicago, Ill., USA

FOUNDING MEMBERS
The American Ceramic Society (ACerS)
German Refractory Association (GRA)
Asociacion Latinoamericana de Fabricantes de Refractarios (ALAFAR)
The Technical Association of Refractories, Japan (TARJ)

PRINCIPAL MEMBERS
Chinese Ceramic Society (CCS)
Indian Refractories Makers Association (IRMA)
Federation Europeenne des Fabricants de Produits Refractaires (PRE)

UNITECR2021.ORG

Abstracts now due DEC. 31, 2020
CONTENTS

INDUSTRY NEWS

SETTING THE STANDARDS: HOW STANDARDS ENHANCE QUALITY AND PROMOTE RELIABILITY
by David Holthaus

A SHORT LIST OF STANDARDS–DEVELOPING ORGANIZATIONS
by David Holthaus

JAPAN FINE CERAMICS ASSOCIATION AND ITS INTERNATIONAL STANDARDIZATION ACTIVITIES FOR FINE CERAMICS
by Hirofumi Takemura

ADVERTISERS LIST AND EDITORIAL CALENDAR
ENPRO AGREES TO BUY OPTICAL FILTER AND COATINGS MAKER

Charlotte, N.C.-based EnPro Industries, Inc. agreed to acquire Alluxa, Inc., a privately held, Santa Rosa, Calif.-based company. Alluxa is an industrial technology firm that provides optical filters and thin-film coatings for applications in the industrial technology, life sciences, and semiconductor markets. EnPro is financing the transaction with cash and rollover equity from Alluxa executives. The purchase price is $255 million, including rollover equity. EnPro says it has a strategy to grow by acquisition in attractive markets.

TOTAL AGREES TO BUILD SOLAR PROJECTS IN SPAIN

French energy company Total SE reached an agreement with Spanish developer Ignis to build 3.3 gigawatts of solar projects in Spain. The first projects are scheduled to start in 2022, with the rest expected to be in production by 2025. The transaction will bring Total’s portfolio of solar projects under development in Spain to more than five gigawatts by 2025, contributing to Spain’s goal of generating 70% of its electricity from renewables by 2030 and 100% by the middle of the century.

ALTONA ENERGY ACQUIRES MAJORITY STAKE IN RARE EARTH PROJECT

Australia-based Altona Energy, a mining exploration company with a focus on rare earth element projects in Africa, signed an agreement with Leadway Group Ltd. to acquire a 70% interest in a greenfield project in Uganda, the Nankoma Rare Earth Project. Altona says it wants to build a portfolio of rare-earth sites in Eastern and Central Africa. When the agreement is final, Altona will be responsible for completing a feasibility study on establishing a commercial-scale, rare-earth mining and processing operation at the site. Altona will also be the manager and operator of the project.

TOTAL AGREES TO BUILD SOLAR PROJECTS IN SPAIN

French energy company Total SE reached an agreement with Spanish developer Ignis to build 3.3 gigawatts of solar projects in Spain. The first projects are scheduled to start in 2022, with the rest expected to be in production by 2025. The transaction will bring Total’s portfolio of solar projects under development in Spain to more than five gigawatts by 2025, contributing to Spain’s goal of generating 70% of its electricity from renewables by 2030 and 100% by the middle of the century.
SIEMENS, UNIVERSITY OF NEW MEXICO COLLABORATE ON RENEWABLE ENERGY

Siemens Industry and the University of New Mexico signed an agreement to collaborate on integrating renewable energy systems and microgrids. The agreement is centered around a University-owned microgrid. The microgrid assets include facilities such as a cooling tower, thermal storage tank, battery energy storage system, fuel cell, photovoltaic system, and a natural gas generator. The university is part of a statewide consortium that received a five-year, $20 million grant in 2018 to modernize the electrical grid. Its microgrid facilitates research into power system modernization, renewable energy systems, smart grids, and smart cities.

The university's microgrid was built partly to test new smart-grid technologies.

Let’s challenge glass.

By creating specialty glass and glass-ceramics that stands out with unmatched properties, we enable engineers and designers to think in new dimensions.

Contact our Opportunity Lab today!

Challenge glass! Challenge us!

us.schott.com/opplab
BERLIN PACKAGING ACQUIRES NETHERLANDS-BASED COMPANY

Berlin Packaging announced the acquisition of Vinkova B.V., a Netherlands-based glass packaging supplier with expertise in the food and beverage sectors. The transaction is Berlin’s eighth acquisition in Europe since 2016. “Continued expansion in Europe is a central tenant of Berlin Packaging’s overall growth strategy,” says Bill Hayes, CEO and president of the Chicago-based company. The company says all Vinkova employees and locations would be retained. Financial details were not disclosed.

SANDVIK JOINS GE ADDITIVE BETA PROGRAM

GE Additive announced that Sandvik Additive Manufacturing joined its Binder Jet beta partner program. Sandvik has a broad alloy program for additive manufacturing on the market, marketed under the Osprey brand. The GE program uses its industrialized additive technology with technical partners to grow its Binder Jet technology. GE says the first phase involves developing the beta system into pilot lines, and eventually into a commercially available factory solution in 2021.

GUARDIAN GLASS COMPLETES STARTUP OF PLANT IN POLAND

Guardian Glass completed starting up its second float glass facility in Częstochowa, Poland, to help meet the demand for high-performance coated and fabricated glass products in Eastern Europe. The plant hosts two float lines, two coater lines, and a lamination line. Headquartered in Auburn Hills, Mich., Guardian Glass has six float glass plants in the United States and one in Mexico, as well as many fabrication facilities and warehouses. Guardian Glass companies also operate ten float glass plants across Europe and Russia.
CERAMIC MANUFACTURING MODULE HEADED TO SPACE STATION

Made In Space plans to launch a ceramic manufacturing module to the International Space Station. The technology is a commercial, in-space manufacturing device designed to provide proof-of-potential for single-piece, ceramic turbine blisk (blade and disk) manufacturing in microgravity for terrestrial use. This project marks the first ceramic facility on the ISS. Made In Space says the module will demonstrate the viability of manufacturing with preceramic resins in an additive, stereolithography environment. Made In Space is developing the technology with technical partners HRL Laboratories of Malibu, Calif., and Sierra Turbines of San Jose, Calif.
Setting the Standards: How Standards Enhance Quality and Promote Reliability

By David Holthaus

Standards in manufacturing are essential to ensuring quality products and to improving the accuracy and reliability of the materials used to make them.

They are also critical to promoting the safety of those who use the products, and sometimes it can literally be a matter of life and death.

In 2018, after two years of work, a committee of ASTM International, one of the world’s largest standards-developing organizations, published requirements for bullet-resistant doors on police vehicles.

The standard called for door panels to be made from a combination of ceramic and fabric, with the ceramic material acting as the strike face to break bullets that were made with steel cores. Such ammunition was increasingly being used in the high-powered weaponry that police were encountering on the streets, according to ASTM. Panels made with basic, armored steel often would not stop bullets with steel cores.

The new specification standardized protection levels and included language to help public safety agencies retrofit their vehicles or buy new ones with the safer ceramic-fabric panels.

It was a dramatic example of how standards evolve to keep up with new technology, materials, and processes.

Perhaps not as dramatic, but equally important in terms of safety and reliability, is the development and evolution of standards used to make refractories, the materials used to build structures routinely subjected to high temperatures.

The ASTM International Committee C08 on Refractories was founded in 1914. Over its history, the committee has defined what a refractory is, clas-
pecified them by type and function, and defined tests to
determine their suitability for specific applications.

In the early decades of the committee’s existence,
refractories were used to build the linings of fire-
places, kilns, and stills, among other applications. By
the end of the 20th century, refractories were used
to line nuclear reactors and in the manufacturing of
reentry heat shields for space shuttles.

The new uses demanded standardized tests to
benchmark performance and to help evaluate and
develop new materials.

Bill Headrick has been involved with creating and
refining ASTM standards for more than 30 years, and
he is currently working with Committee C08 as the
chair of the technical subcommittee on monolithics.

Headrick is head of research and development
for aluminosilicate products for the Americas at RHI Magnesita, the
world’s largest refractories company.

There are more than 100 standards relating to refractories alone, and
the manual on refractory standards is nearly an inch thick, Headrick
says. Committee members are engaged in a continuous process of eval-
uating and reviewing the standards to make sure they are up to date. In
August alone, Headrick says the committee reevaluated six standards.

“The biggest thing is making sure we’re using the best available
methods,” he adds.

For example, for years, the only method for determining the chemistry of
materials was wet chemistry, and the relevant standards only addressed
those methods. “Now, we have X-ray fluorescence, X-ray diffraction,
mass spectroscopy, and we’ve had to rewrite our standards to take into
account these better methods that give better results,” he says.

The committee is currently doing a lot of work to make standards
safer, Headrick says, and to have them align with the health and safety
requirements of employers.

Some of the standards for mea-
suring chemistry use materials
that are considered hazardous
to health, leading the com-
mittee to look for alternative
materials that are safer and can
produce similar results.

“That’s the biggest evolution
going on,” he says. “We’re
going through all the standards
and making sure they’re as safe
as possible.”

It is a deliberative process.

Every five years, ASTM standards must be reviewed and reapproved
by the appropriate subcommittee and then by the main commit-
tee. Any negative comment about the proposed standard must be
resolved before the standard can be approved.

“To pass a standard, you have to eliminate every single negative,”
Headrick says. “Once everyone is in full, 100 percent agreement, then
the standard is published. That can take a matter of months to a num-
ber of years.”

For several years now, ASTM committees and subcommittees have
worked on the standardization of the growing and developing field of
additive manufacturing, the process of fabricating parts and compo-
nents layer by layer using computer-aided design rather than traditional
manufacturing methods.

Improved technology, advanced equipment and sensors, and more
suitable materials are driving the productivity and reliability of additive
manufacturing production, yet the rapid change has pointed up the
need for standardization, says Mohsen Seifi.

Seifi is ASTM’s director of global additive manufacturing programs,
responsible for additive manufacturing programs that support stan-
dards development and other products and services at the organiza-
tion. He also oversees its Additive Manufacturing Center of Excellence,
which has the mission to bridge the gap between standardization to
research and development.

By 2008, the nascent additive manufacturing industry had reached the
point where standards were needed.

"Without standards, it’s going to be the Wild West," Seifi says.
"Industry needs standards for rapid implementation of this technol-
ogy for critical applications."
Additive manufacturing’s shortened development cycle and more efficient process means products can be designed and produced more quickly, but standardization is necessary to create consistency and reliability, and to serve as a foundation for continued growth.

“Innovation is inevitable, but without having standards in place, you can’t really drive this technology forward in terms of full implementation and adoption to satisfy regulation,” Seifi says.

“The reason is very clear,” he adds. “You need to make sure we’re all communicating the same language and making products in a repeatable and reliable fashion.”

ASTM’s committee on additive manufacturing technologies has met since 2009 and now has more than a thousand members from more than 35 countries who have developed standards that support the application and adoption of additive manufacturing for diverse materials and processes across various industry sectors.

In 2011, ASTM International and the International Organization for Standardization (ISO) signed an agreement paving the way to create joint additive manufacturing standards in order to increase collaboration and minimize duplication of efforts.

“If you are a user of this technology interested in fabricating parts and components, are you going to receive the same results if you produce a part at a service provider in the U.S. versus Europe versus Asia?” Seifi says. “That’s where standards play a critical role to make sure we manufacture products in a consistent, reliable, and repeatable manner.”

Another key reason for standards is to facilitate certification of additively manufactured parts from regulatory bodies such as the Federal Aviation Administration, NASA, Department of Defense, Food and Drug Administration, and many others.

“One a standard is out, it has the potential to become part of regulatory frameworks and can get into federal codes and referred to in federal contracts,” Seifi says.

One of the key trends on additive manufacturing standardization is understanding the challenges the technology brings in regard to data management and schema, Seifi says. The 3D printers and their sensors can generate gigabytes, sometimes terabytes, of data. “The question is, what data to collect according to what standard and format and why?” he says. “Is that data you collect findable, accessible, and reusable? Does it make sense to capture that data, and using what standard method? What kind of intelligence can we generate from the data to improve the process?”

“There are major standard gaps in this space that ASTM is trying to fill,” he adds.

In the cases of newer technologies such as additive manufacturing, and older processes such as refractory production, standards have helped advance processes, improve quality, and enable those production methods to be used reliably in a growing range of industries and applications.
A short list of standards-developing organizations

There are many organizations in the U.S. and around the world that work to develop standards for their industries. Here are some that apply to manufacturing:

- **The Association for Manufacturing Technology**
 Based in McLean, Va., the association promotes the interests of American manufacturing machinery and equipment, including the standardization of technology used to run machines. www.amtonline.org

- **The American Nuclear Society**
 Based in LaGrange Park, Ill., the Society advances the development of nuclear science, engineering, and technology, and maintains a standards committee and board. www.ans.org

- **The American Society of Heating, Refrigerating and Air Conditioning Engineers (ASHRAE)**
 Based in Atlanta, Ga., the Society focuses on building systems, energy efficiency, indoor air quality, refrigeration, and sustainability through research, standards writing, publishing, and continuing education. www.ashrae.org

- **American Society of Mechanical Engineers**
 Based in New York City, N.Y., the Society enables collaboration and skills development across engineering disciplines through programs in continuing education, training and professional development, codes and standards, research, and conferences and publications. www.asme.org

- **ASTM International**
 Formerly known as American Society for Testing and Materials, ASTM International is an international standards organization that develops and publishes consensus technical standards for a range of materials, products, systems, and services. It is headquartered in West Conshohocken, Pa., outside of Philadelphia. www.astm.org

- **International Code Council**
 Based in Washington, D.C., the Council is an association of building safety professionals and a source of model codes and standards that establish baselines for building safety. www.iccsage.org

- **The International Organization for Standardization (ISO)**
 Headquartered in Geneva, Switzerland, ISO is an international standard-setting body composed of representatives from various national standards organizations. It promotes worldwide proprietary, industrial, and commercial standards. www.iso.org

- **The International Committee for Information Technology Standards (INCITS)**
 Based in Washington, D.C., this committee is a standards development organization composed of information technology developers. www.incits.org

- **The International Society of Automation**
 Based in Research Triangle Park, N.C., the Society is a technical society for engineers, technicians, businesspeople, educators, and students, and it sets standards for industry professionals in automation. www.isa.org

- **National Institute of Standards and Technology (NIST)**
 Headquartered in Gaithersburg, Md., NIST is a nonregulatory federal agency within the U.S. Department of Commerce that develops and disseminates standards that allow technology to work seamlessly and business to operate smoothly. www.nist.gov

- **NSF International**
 Based in Ann Arbor, Mich., NSF International has developed more than 80 public health and safety standards, and tests and certifies products to verify they meet those standards. www.nsf.org

- **SAE International**
 Previously known as the Society of Automotive Engineers, Warrendale, Pa.-based SAE International is a standards-developing organization for engineering professionals in various industries. Its principal emphasis is on global transport industries, such as aerospace, automotive, and commercial vehicles. www.sae.org

- **UL**
 Formerly known as Underwriters Laboratories, UL is a global safety certification company headquartered in Northbrook, Ill. It is approved to perform product safety testing by the U.S Occupational Safety and Health Administration. www.ul.com
Japan Fine Ceramics Association (JFCA) was established in 1986 with a mission to promote the development of the fine ceramics/advanced ceramics industry. To take advantage of the most advanced technologies of fine ceramics, overall collaboration of manufacturers, users, universities, and research laboratories is required, together with the fusion of other materials.

The members of JFCA are 104 companies from different industries, such as ceramics, chemicals, metals, automobiles, electronics, power supply, and service. Through various activities, JFCA brings together and promotes cooperation among government, industry, academia, and overseas countries for the further expansion of the fine ceramics industry. The United States Advanced Ceramics Association (USACA), European Ceramics Center (PEC), and Ceramics Application are cooperating members of JFCA.

There are technical committees and consortiums in JFCA. Committees operate research groups such as Solid Oxide Fuel Cells, Power Electronics, GaN, LED, Bioceramics, Optical Ceramics, Material Function Predictive Simulation, Advanced Coating Alliance, and Ceramics Matrix Composites Consortium. In September, Fine Ceramics Roadmap 2050 Study Group was launched, which will publish the latest Roadmap in both Japanese and English versions in December 2021.

Figure 1 shows the amount of fine ceramics production in Japan, which reached $30 billion in 2018.¹

The benefits of standards for worldwide industries are extensive.² Standards help manufacturers reduce costs, anticipate technical requirements, and increase productive and innovative efficiency. Standards make trade across international borders easier and promote global competition, having a positive impact on economies.

ISO international standards help businesses of any size and sector reduce costs, increase productivity, and access new markets. Standards can help to

- Build customer confidence that the products are safe and reliable;
- Meet regulation requirements, at a lower cost;
- Reduce costs across all aspects of a business;
- Gain market access across the world;
- Improve quality, safety, and lead time of products and services;
- Lower research and development costs and improve speed to market by building on previously standardized technology or systems; and
- Provide uniformity of units measurement, enabling accuracy and confidence in commercial transactions locally and globally.

The Role of JFCA

JFCA conducts surveys and research to promote the international standardization of fine ceramics. JFCA, as a drafting organization in
the field of fine ceramics, is making international standards for high-quality, safe, secure, and highly reliable fine ceramic materials.

JFCA holds the secretariat of ISO/TC206 (Fine Ceramics) and ISO/TC150/SC7 (Tissue-engineered Medical Products) under the Japanese Industrial Standards Committee. In addition, as a national committee for ISO/TC206 and ISO/TC150 (Implants for Surgery) in Japan, we are engaged in deliberating proposals for new work items, development of projects in Japan and other countries, and maintenance and management of issued ISO standards.

ACCELERATION OF STANDARDIZATION SPEED
The speed of technological development increases to popularize new technologies globally. The conventional model shown in Figure 2, “Research & Development-Standard Development-Manufacturing / Products,” cannot catch up with its speed.

It is necessary to proceed with R&D and standard development at the same time and connect it to global manufacturing.

As shown in Figure 3, loop-shaped parallel development becomes the most effective way to establish standardization.

ABOUT INTERNATIONAL STANDARDS ORGANIZATION
International standards are published by international standardization bodies; three organizations are the representative. International Organization for Standardization (ISO) establishes international standards in a wide range of fields, except the fields of electricity, electronics, and communications. International Electrotechnical Commission (IEC) establishes international standards in the fields of electricity and electronics, and International Telecommunication Union (ITU) establishes international standards in the fields of communication, broadcasting, and information technology.

ISO is currently divided into 333 technical committees that deliberate and manage international standardization. The international standards for fine ceramic materials mainly belong to two committees: ISO/TC206 (Fine Ceramics) and ISO/TC150 (Implants for Surgery).

ISO/TC206 standardizes various forms and functions of fine ceramics. Japan is the secretariat of this committee and has a committee manager. The chair is from South Korea. The ISO/TC206 scope states as follows: Standardization in the field of fine ceramics materials and products in all forms: powders, monoliths, coatings and composites, intended for specific functional applications including mechanical, thermal, chemical, electrical, magnetic, optical, and combinations thereof. The term “fine ceramics” is defined as “a highly engineered, high performance, predominantly non-metallic, inorganic material having specific functional attributes.”

Note: Alternative terms for fine ceramics are advanced ceramics, engineered ceramics, technical ceramics, or high-performance ceramics.

The ISO/TC206 strategic business plan has the following description:
World demand for fine ceramics is projected to expand to $75 billion in the year 2020.

In order for the fine ceramics industry to further grow to contribute to the 21st century as a new materials industry, the following issues have to be overcome.

- Further promotion of research and development in terms of the material itself, development of new uses and application technologies.
- Research on manufacturing processes, and cost-reduction through corporate efforts.
- Establishment of testing and evaluation methods and standardization of the methods to prepare a basis for research and development, application, and utilization.
- Promoting international cooperation in the fields of research and development, and standardization.

Table 1 shows the composition of ISO/TC206, the number of ISO registrations, and the number under development. ISO/TC206 is divided into more specialized working groups (WGs) from WG1 to WG12. Since the committee’s inception in 1992, 136 standards have been issued. In recent years, about 10 new standards were published each year. In addition, there are 18 items under development.
New work-item proposals are deliberated by experts in the relevant working groups depending on the technical field. After approval of new business-item proposals, deliberation and approval proceed by passing through the stages of working draft, committee draft, draft international standard, and final draft international standard, to the goal of being published. It takes about three years to complete the process.

ISO/TC206 is currently composed of Participating Members from 14 countries (nine countries in Europe; five countries in Asia) and Observer Members from 20 countries. Participating Members have the right to vote and can elect experts to actively participate in the proposed project. ISO/TC206 holds a plenary meeting once a year where member countries can participate. This year, it was scheduled to be held in Brussels, Belgium, but due to the COVID-19 pandemic, the face-to-face conference was canceled, and a web conference was held by Japan.

The ISO/TC206 configuration is divided into specialized fields: subcommittee (SC) from SC1 to SC7, and working groups from WG1 to WG15. Since its inception in 1971, the technical committee has issued 166 standards, and 39 standards are under development.

ISO/TC150 currently consists of Participating Members from 29 countries, and Observer Members from 17 countries.

RECENT INTERNATIONAL STANDARDIZATION ACTIVITIES

New work-item proposals were made from Japan to ISO/TC206 in 2020. Two proposals were made regarding the thermal characteristics evaluation method for ceramic substrates for power modules, and one proposal was made regarding the evaluation method for power generation characteristics of piezoelectric materials. One new work-item proposal was approved for a ceramic substrate for a power module, and it is currently at working draft stage.

The market size of power modules was 420 billion yen in 2019, and it is projected to be 570 billion yen in 2025 (140% of 2019). The core technology for ensuring the long-term reliability of power modules is the high-temperature resistance of power semiconductors. More specifically, it is heat that controls the change over time, and the ambient temperature and heat generated by driving the element contribute as heat sources.

We have strategically promoted the world’s first international standardization of the method for measuring the thermal properties of ceramic substrates for power electronics, which is a key element of next-generation power semiconductors.

In addition, JFCA is promoting a research project to develop international standardization of fine ceramics as a preliminary step to propose new work-item proposals to ISO. We are working on about six projects a year. Each project takes three years to research, prepare a standardization draft, and make a new proposal to ISO.
The following projects are underway as ongoing research and research projects.

- Test method for GaN crystal surface defects.
- Strength reliability test method for ceramic materials for solid oxide fuel cells (SOFC).
- Corrosion-resistant test method for fine ceramic thin films.
- Optical characteristic evaluation method for ceramic phosphors for white LEDs.
- Test method for thermal characteristics of insulating substrates for power electronics.
- Mechanical property test method for bioceramics.

All of these projects cover advanced technological fields where the market for fine ceramic materials is expected to expand, and they are developments for standardization related to property test methods for fine ceramic materials. We are aiming for international standardization to ensure high-quality, safe, secure, and highly reliable fine ceramic materials.

To secure the competitiveness of the fine ceramics industry and to develop the industry, it is necessary to differentiate products by improving functionality, strengthen price competitiveness by innovation in manufacturing processes, enhance product revolution by innovation of materials, develop new markets, and lead with speed. We hope that the international standardization promoted by JFCA will contribute to the further expansion of the fine ceramics industry.

OTHER JFCA ACTIVITIES

CMC International Cooperation: CMC International Cooperation was established in 2020 for developing reliability assurance technology for ceramic matrix composites. This consortium consists of the CMC center at Tokyo University of Technology, Ultra High Temperature Materials Research Center, and JFCA.

CMC International initiated development of the international standard inspection method that can overcome the problems of the conventional test method for ceramic matrix composite reliability. The method of guaranteeing reliability for use by taking advantage of the “damage tolerance” is not established yet. The first step is to prepare SiC/SiC test pieces that are damaged and defective inside. Then, we will conduct an evaluation test (round robin test) using common test pieces by overseas joint research partners of the University of Birmingham and the University of California, Los Angeles.

Giant Micro-photonics Research: The Giant Micro-photonics Project was established in 2020 by RIKEN Spring-8 Center (RSC), National Institute for Materials Science (NIMS), Mitsubishi Electric Co., Kounoshima Chemical, and JFCA to achieve dramatic sophistication of extremely high-power, solid-state lasers and terahertz generation by new transparent ceramic materials, or so called giant micro-photonics.

Based on these research results, the project is expected to prototype and develop a compact ultrahigh output, power density laser and develop wavelength conversion technology, which was difficult until now. It is also designed to convert to other important wavelengths and apply laser driven particle accelerators.

Japan Ceramics Expo: JFCA is the coorganizer of Japan Ceramics Expo, which is one of the world’s largest exhibitions alongside Ceramitec in Munich and Ceramics Expo in Cleveland, Ohio. Japan Ceramics Expo is organized by the Reed Exhibitions Japan and gathers all kinds of highly functional ceramics, materials, forming/processing equipment, burning/heating equipment, evaluation/testing/analysis equipment. It is held every year in Osaka and Tokyo.

Japan Ceramics Expo is chosen by advanced materials industry players worldwide as the best gateway to the Japanese and Asian markets. For more information, please go to https://www.ceramics-japan.jp/en-gb.html.

Osaka Expo
Dates: Wednesday, June 23 to Friday, June 25, 2021
Venue: INTEX Osaka, Japan

Tokyo Expo
Dates: Wednesday, December 8 to Friday, December 10, 2021
Venue: Makuhari Messe, Japan

ABOUT THE AUTHOR
Hirofumi Takemura is director of Japan Fine Ceramics Association.

REFERENCES
1. JFCA Fine Ceramics Industrial Trend Survey (2019)
3. METI Standardization Seminar (2020)
DECEMBER 2020 • VOLUME 1 • ISSUE 5

ADVERTISERS

Ad Value Technology
www.advaluetech.com

American Elements
www.americanelements.com

Glen Mills
glenmills.com

Schott North America
us.schott.com

National Center for Manufacturing Sciences
www.ncms.org

The American Ceramic Society
www.ceramics.org

ADVERTISERS INDEX

VOLUME 1

LOOKING FOR A WAY TO REACH CERAMIC AND GLASS INDUSTRY DECISION MAKERS?
ON A CONSISTENT BASIS?
WITH A SMALL BUDGET?

Contact our advertising sales team today!

Advertising Sales
Mona Thiel, National Sales Director
mthiel@ceramics.org
ph: 614-794-5834
fx: 614-899-6109

Advertising Assistant
Pamela J. Wilson
pwilson@ceramics.org
ph: 614-794-5826
fx: 614-942-5607

Europe
Richard Rozelaar
media@alaincharles.com
ph: 44-(0)-20-7834-7676
fx: 44-(0)-20-7973-0076

Issue	Theme
December 2019 | Globalization: Doing business in China, Vietnam, and India
April 2020 | Breaking in: A small company guide to working with big companies
June/July 2020 | Smart manufacturing: Good business practices for manufacturers
September 2020 | Workforce development
December 2020 | Standards: Guideposts to quality

Ensure you get every issue!
Sign up today for your free copy at www.ceramics.org/ceramicandglassmanufacturing
Eliminating Barriers to Digital Transformation

NCMS IS LEADING A NEW DIGITAL PARADIGM THAT WILL CHANGE THE WAY EVERYTHING IS MANUFACTURED

The NCMS Digital Enterprise ecosystem enables our industry partners to expedite the adoption and transition of ceramic innovations into applications.

Through our collaboration framework, NCMS provides access to the latest digital tools and technology essential for the manufacturing supply chain transformation.

Join NCMS’ team of forward-leaning collaborators who are transforming our U.S. manufacturing sector. Email NCMSDigitalEnterprise@ncms.org for more information.

About NCMS: the National Center for Manufacturing Sciences (NCMS) is the nation’s largest network of technology providers dedicated to building the U.S. industrial base and strengthening its competitiveness.
Now Invent.™

The Next Generation of Material Science Catalogs

Over 15,000 certified high purity laboratory chemicals, metals, & advanced materials and a state-of-the-art Research Center. Printable GHS-compliant Safety Data Sheets. Thousands of new products. And much more. All on a secure multi-language "Mobile Responsive" platform.

American Elements opens a world of possibilities so you can Now Invent!

www.americanelements.com

© 2001-2019. American Elements is a U.S.Registered Trademark
Calendar of events

November–December 2020
29–Dec 3 2020 MRS Fall Meeting & Exhibit – VIRTUAL EVENT ONLY; www.mrs.org/fall2020

January 2021

February 2021
8–12 45th International Conference and Expo on Advanced Ceramics and Composites (ICACC2021) – VIRTUAL EVENT ONLY; www.ceramics.org/icacc2021

March 2021

24–25 56th Annual St. Louis Section/Refractory Ceramics Division Symposium on Refractories – Hilton St. Louis Airport Hotel, St. Louis, Mo. www.ceramics.org

24–29 ➔ 2nd Global Forum on Smart Additive Manufacturing, Design and Evaluation (SmartMADE) – Osaka University, Nakanoshima Center, Japan; http://www.jwri.osaka-u.ac.jp/~conf/SmartMADE2021

April 2021
25–30 ➔ International Congress on Ceramics (ICCC8) – Bexco, Busan, Korea; www.iccs.org

May 2021
1–4 6th Ceramics Expo – Cleveland, Ohio; https://ceramics.org/event/6th-ceramics-expo

3–7 6th International Conference on Competitive Materials and Technology Processes (ic-cmtp6) – Hunguest Hotel Palota, Miskolc-Lillafüred, Hungary; www.ic-cmtp6.eu

17–20 China Ceramitec 2021 – Messe München, Germany; https://ceramics.org/en

23–28 14th Pacific Rim Conference on Ceramic and Glass Technology (PACRIM 14) – Hyatt Regency Vancouver, Vancouver, British Columbia, Canada; www.ceramics.org/PACRIM14

June 2021
7–9 ACerS 2021 Structural Clay Products Division & Southwest Section Meeting in conjunction with the National Brick Research Center Meeting – Omni Austin Hotel Downtown, Austin, Texas; www.ceramics.org

July 2021

September 2021

October 2021

17–21 ACerS 123rd Annual Meeting with Materials Science & Technology 2021 – Greater Columbus Convention Center, Columbus, Ohio; www.ceramics.org

January 2022
18–21 Electronic Materials and Applications 2022 (EMA 2022) – DoubleTree by Hilton Orlando at Sea World Conference Hotel, Orlando, Fla; www.ceramics.org

23–28 46th International Conference and Expo on Advanced Ceramics and Composites (ICACC2022) – Hilton Daytona Beach Oceanfront Resort, Daytona Beach, Fla.; www.ceramics.org

Dates in **RED** denote new entry in this issue.
Entries in **BLUE** denote ACerS events.
➤ denotes meetings that ACerS cosponsors, endorses, or otherwise cooperates in organizing.
Denotes virtual meeting.
Need to know what is going on in Ceramic and Glass Manufacturing?

Check out Ceramic & Glass Manufacturing!

In this issue (pages 37 to 54)

Look for more business to business news in 2020:
- April
- June/July
- September
- December

Need more information on how to reach this audience? Call Mona Thiel at 614-794-5834 or email mthiel@ceramics.org

Career Opportunities

QUALITY EXECUTIVE SEARCH, INC...

Get Results!
Advertise in the Bulletin
Contact Mona Thiel
Ph: 614-794-5834
E-mail: mthiel@ceramics.org

Need for contributing editors for ACerS-NIST Phase Equilibria Diagrams Program

Professors, researchers, retirees, post-docs, and graduate students...

The general editors of the reference series Phase Equilibria Diagrams are in need of individuals from the ceramics community to critically evaluate published articles containing phase equilibria diagrams. Additional contributing editors are needed to edit new phase diagrams and write short commentaries to accompany each phase diagram being added to the reference series. Especially needed are persons knowledgeable in foreign languages including German, French, Russian, Azerbaijani, Chinese, and Japanese.

RECOGNITION:
The Contributing Editor's name will be given at the end of each PED Figure that is published.

QUALIFICATIONS:
General understanding of the Gibbs phase rule and experimental procedures for determination of phase equilibria diagrams and/or knowledge of theoretical methods to calculate phase diagrams.

COMPENSATION for papers covering one chemical system:
$150 for the commentary, plus $10 for each diagram.

COMPENSATION for papers covering multiple chemical systems:
$150 for the first commentary, plus $10 for each diagram.

$50 for each additional commentary, plus $10 for each diagram.

FOR DETAILS PLEASE CONTACT:
Mrs. Kimberly Hill
NIST MS 8520
Gaithersburg, Md. 20899-8524, USA
301-975-6009 | phase2@nist.gov

Statement of Ownership

American Ceramic Society Bulletin is published nine times per year (monthly except February, July and November) by The American Ceramic Society, 550 Polaris Parkway, Suite 510, Westerville, Ohio 43082. Publisher is Mark Mecklenborg, and editor is Eileen De Guire.

<table>
<thead>
<tr>
<th></th>
<th>Avg. each issue during previous 12 months</th>
<th>Actual no. of single issue nearest filing date</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Total number of copies (net press run)</td>
<td>7,523</td>
<td>8,078</td>
</tr>
<tr>
<td>B. Paid and/or requested circulation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Paid/requested outside-county mail subscriptions</td>
<td>2,972</td>
<td>2,850</td>
</tr>
<tr>
<td>2. Paid in-county subscriptions</td>
<td>none</td>
<td>none</td>
</tr>
<tr>
<td>3. Sales through dealers and carriers, street vendors, counter sales and other non-USPS paid distribution</td>
<td>1,674</td>
<td>1,478</td>
</tr>
<tr>
<td>4. Other classes mailed through the USPS</td>
<td>none</td>
<td>none</td>
</tr>
<tr>
<td>C. Total paid and/or requested circulation</td>
<td>4,646</td>
<td>4,328</td>
</tr>
<tr>
<td>D. Free distribution by mail (samples, complimentary and other free)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Outside-county</td>
<td>2,337</td>
<td>3,390</td>
</tr>
<tr>
<td>2. In-county</td>
<td>none</td>
<td>none</td>
</tr>
<tr>
<td>3. Other classes mailed through the USPS</td>
<td>none</td>
<td>none</td>
</tr>
<tr>
<td>4. Free or Nominal Rate Distribution Outside the Mail (Carriers or other means)</td>
<td>227</td>
<td>152</td>
</tr>
<tr>
<td>E. Total Free or Nominal Rate Distribution</td>
<td>2,564</td>
<td>3,542</td>
</tr>
<tr>
<td>F. Total distribution</td>
<td>7,210</td>
<td>7,870</td>
</tr>
<tr>
<td>G. Copies not distributed</td>
<td>255</td>
<td>194</td>
</tr>
<tr>
<td>H. Total</td>
<td>7,465</td>
<td>8,064</td>
</tr>
<tr>
<td>I. Percent paid and/or requested circulation</td>
<td></td>
<td>64.44%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>54.99%</td>
</tr>
</tbody>
</table>
When it Comes to Heat, We Sweat the Details!

Your firing needs are unique. So why use an “off the shelf” kiln in your process?

At Harrop, we get it. That’s why, for over a century, we’ve been putting in the hard work to design and service custom kilns. Is it harder to do things this way? Yes. Is the extra effort worth it? You bet!

At Harrop, we don’t stop there. If you aren’t sure what you need, we can help.

Our laboratory can run tests to help identify your process boundaries. Through our toll firing facility, we can help to further define the equipment/processing combination that works best for your material. And if you are not ready for a new kiln, we can toll fire your material to help meet your production needs.

Does your current kiln company sweat the details?
TABLE OF CONTENTS

Directories

Products and Services Directory 60
Additives 60
Advanced Structural & Technical Ceramics 61
Artware 67
Ceramic & Metallic Powders & Materials 68
Clay & Natural Minerals 75
Construction Ceramics 76
Consultants & Services 76
Custom Ceramics Fabrication & Engineering Services 80
Decorating 84
Dinnerware 86
Drying, Firing, & Melting 86
Education & Resources 91

Electrical/Electronic Ceramics 92
Fabricating & Finishing 94
Glass Products 97
Laboratory Equipment & Supplies 98
Laboratory Services 101
Materials Preparation, Handling, & Packaging 103
Plant Construction, Design, & Engineering 107
Porcelain Enamel 108
Refractories 108
Research Organizations 112
Testing/Evaluation Instruments & Equipment 112

Company Directory 114

ADVERTISER INDEX

AdValue Technology 43
www.advaluetech.com
Alteo .. 11
www.agc.com/en/
American Ceramic Society 8, 13, 32, 33,
www.ceramics.org 38, Inside back cover
American Elements 54
www.americanelements.com
Associated Ceramics & Technology 65
www.associatdceramics.com
Bomas Machine Specialties, Inc 81
www.bomas.com
Buehler Inc 99
www.buehler.com
Centorr Vacuum Industries, Inc 87
www.centorr.com
Ceramic and Glass Industry Foundation 9
www.foundation.ceramics.org
Cerion .. 71
www.cerionnano.com/acer
Chiz Bros, Inc 109
www.ChizBros.com
Deltech Inc 85
www.deltechfurnaces.com
Elcon Precision LLC 107
www.elconprecision.com
EZG Manufacturing 95
www.EZGmfg.com
Gasbarre Powder Compaction 95
www.gasbarre.com
Glen Mills Inc 43
https://glenmills.com
Harper International Corp 77
www.harperintl.com
Harrop Industries Inc 58
www.harropusa.com
Hitachi High Technologies America 101
www.hitachi-hightech.com/us
I Squared R Element Co, Inc 89
www.isquaredelement.com
II-VI Aerospace & Defense 67
www.ii-vi.com
Ingredient Masters 103
www.ingredientmasters.com
Ivoclar Vivadent Inc 95
www.ivoclarvivadent.com
L&L Special Furnace Co, Inc 87
www.llfurnace.com
McDanel Advanced Ceramic Technologies 61
www.mcdanelceramics.com
Mohr Corp 79
www.mohrcorp.com
Mo-Sci Corp 97
www.mo-sci.com
National Center for Manufacturing Sciences 53
www.ncms.org
NSL Analytical Services, Inc 75
www.nslanalytical.com
Objects Research System 81
www.theobjects.com
Oxy-Gon Industries, Inc 89
www.oxy-gon.com
Pacific Industrial Development Corp 69
www.pidc.com
Particle Technology Labs, Ltd 99
www.ParticleTechLabs.com
Plibrico Company 105
www.plibrico.com
Quality Executive Search Inc 56
www.qualityexec.com
Rauschert Industries, Inc 69
www.rauschert.com
Schott North America, Inc 41
https://www.us.schott.com
Semiconductor Energy Laboratories 91
www.sel.co.jp/en
Superior Graphite Co 73
www.superiorgraphite.com
Superior Technical Ceramics Co 63
www.ceramics.net
TevTech LLC 83
www.tevttechllc.com
Thermcraft, Inc 88
www.thermcraft.com
Verder Scientific 101
https://www.verder-scientific.com
Xiamen Innovacera Advanced 93
https://www.innovacera.com

American Ceramic Society Bulletin, Vol. 98, No. 9 | www.ceramicsource.org 59
ADDITIVES

Acids
- Arkema Inc PA
- Ferro-Ceramic Grinding Inc MA
- Heraeus Quartz UK Ltd UK
- Hexion Inc OH

Adhesives
- Aremco Products Inc NY
- Arkema Inc PA
- Dow Corning Corp MI
- Empower Materials Inc DE
- Gwent Electronic Materials Ltd UK
- Hexion Inc OH
- Master Bond Inc NJ
- Peter Pugger Mfg Inc CA
- Starfire Systems Inc NY
- Vanderbilt Minerals, LLC CT
- Zibo Guangtong Chemical Co Ltd China

Binders
- Arkema Inc PA
- BassTech Intl NJ
- Borregaard LignoTech WI
- Empower Materials Inc DE
- Fusion Ceramics Inc OH
- Gwent Electronic Materials Ltd UK
- Hauk Tech Europe BV The Netherlands
- Hexion Inc OH
- Nyacol Nano Technologies Inc MA
- Peter Pugger Mfg Inc CA
- Polymer Innovations Inc CA
- Refractory Minerals Co Inc PA
- Shamrock Technologies Inc NJ
- Tetron 3D NE
- Trinity Ceramic Supply Inc TX
- Vanderbilt Minerals, LLC CT
- Wesbond Corp DE
- Zschimmer & Schwarz GA

Colorants
- American Chemet Corp IL
- Artilin Industries CO
- Cancarb Limited Canada
- Ceramic Color & Chemical Mfg Co PA
- Fusion Ceramics Inc OH
- Hunter Chemical LLC PA
- Imerys Refractory Minerals GA
- Laguna Clay Co CA
- Mason Color Works Inc OH
- RISE Research Institutes of Sweden, RISE Glass Sweden
- Sauerstein Inc PA
- Wistra GmbH Germany

Conditioners
- Borregaard LignoTech WI
- Vanderbilt Minerals, LLC CT

Deflocculants
- BassTech Intl NJ
- Borregaard LignoTech WI
- Fusion Ceramics Inc OH
- Zschimmer & Schwarz GA

Defoaming Agents
- Arkema Inc PA
- Ferro-Ceramic Grinding Inc MA
- Momentive Performance Materials Inc NY
- Polymer Innovations Inc CA
- Zschimmer & Schwarz GA

Fillers
- Arkema Inc PA
- Baikowski Malakoff Inc NC
- Dow Corning Corp MI
- Fusion Ceramics Inc OH
- Hexion Inc OH
- Imerys Refractory Minerals GA
- Maryland Refractories Co OH
- Momentive Performance Materials Inc NY
- RE Carroll Inc PA
- Sauerstein Inc PA
- Vanderbilt Minerals, LLC CT

Flocculants
- Hexion Inc OH
- Wesbond Corp DE
- Zschimmer & Schwarz GA

Fluxes
- Fusion Ceramics Inc OH
- RISE Research Institutes of Sweden, RISE Glass Sweden

Foaming Agents
- Arkema Inc PA
- Hexion Inc OH
- RISE Research Institutes of Sweden, RISE Glass Sweden
- Zschimmer & Schwarz GA

Fungicides
- Vanderbilt Minerals, LLC CT

Gelling Agents
- Trinity Ceramic Supply Inc TX
- Vanderbilt Minerals, LLC CT

Glaze Additives
- BassTech Intl NJ
- Fusion Ceramics Inc OH
- Hexion Inc OH
- Hunter Chemical LLC PA
- RISE Research Institutes of Sweden, RISE Glass Sweden
- Vanderbilt Minerals, LLC CT
- Zschimmer & Schwarz GA

Glaze Hardeners
- Fusion Ceramics Inc OH
- RISE Research Institutes of Sweden, RISE Glass Sweden
- Vanderbilt Minerals, LLC CT

Lubricants
- Arkema Inc PA
- Boka Bearing Company FL
- Borregaard LignoTech WI
- Momentive Performance Materials Inc NY
- RE Carroll Inc PA
- Shamrock Technologies Inc NJ
- Superior Graphite Co IL
- Werner G Smith Inc OH
- Zschimmer & Schwarz GA

Organometallic Precursors
- RISE Research Institutes of Sweden, RISE Glass Sweden
- Zibo Guangtong Chemical Co Ltd China

Plasticizers
- Arkema Inc PA
- Borregaard LignoTech WI
- Croda NJ
- Hexion Inc OH
- Novamer Inc MA
- Polymer Innovations Inc CA
- SGS Chemicals Co Ltd Thailand
- Zschimmer & Schwarz GA

Polycondensation Additives
- Momentive Performance Materials Inc NY
- Starfire Systems Inc NY

Refractory Additives
- Almatis Inc PA
- BassTech Intl NJ
- Borregaard LignoTech WI
- Cancarb Limited Canada
- FELDCO Int Co CA
- Fusion Ceramics Inc OH
- Hunter Chemical LLC PA
- Innovnano - Advanced Materials SA Portugal
- Refractory Minerals Co Inc PA
- Vanderbilt Minerals, LLC CT
- Zschimmer & Schwarz GA

Rheological Additives
- Borregaard LignoTech WI
- Croda NJ
- Polymer Innovations Inc CA
- Shamrock Technologies Inc NJ
- Vanderbilt Minerals, LLC CT
- Zschimmer & Schwarz GA

Release Agents
- BassTech Intl NJ
- Dow Corning Corp MI
- Hexion Inc OH
- Shamrock Technologies Inc NJ
- Zschimmer & Schwarz GA

Sintering Aids
- Baikowski Malakoff Inc NC
- Empower Materials Inc DE
- Nyacol Nano Technologies Inc MA
- Polymer Innovations Inc CA
- Starfire Systems Inc NY

Suspending Agents
- Borregaard LignoTech WI
- Croda NJ
- Trinity Ceramic Supply Inc TX
- Vanderbilt Minerals, LLC CT
- Zschimmer & Schwarz GA
- ZYP Coatings Inc TN

Tape-Casting Additives
- Croda NJ
- Empower Materials Inc DE
- Polymer Innovations Inc CA
- Zschimmer & Schwarz GA

Thickeners
- Polymer Innovations Inc CA
- Trinity Ceramic Supply Inc TX
- Vanderbilt Minerals, LLC CT
- Zschimmer & Schwarz GA

Viscosity Stabilizers
- Hexion Inc OH
- norcross Viscosity Controls MI
- Vanderbilt Minerals, LLC CT

Wetting Agents
- Croda NJ
- Polymer Innovations Inc CA
- Zschimmer & Schwarz GA
ADVANCED STRUCTURAL & TECHNICAL CERAMICS

Adhesives
Aremco Products Inc NY
Arkema Inc PA
CerCo LLC OH
CoorsTek CO
Denka Corp NY
Hexion Inc OH
Momentum Performance Materials Inc NY
Starfire Systems Inc NY

Alumina Products
Accuratus Corp NJ
AdTech Ceramics TN
AdValue Technology LLC AZ See ad on pg 43
Advanced Ceramic Technology CA
Advanced Ceramics Manufacturing AZ
Almatis Inc PA
Alten NA LLC OH See ad on pg 11
Aremco Products Inc NY

100 Years of Excellence.
McDanel Advanced Ceramic Technologies LLC PA See ad on pg 61
Morgan Advanced Materials CA
Morgan Technical Ceramics Auburn CA
NanoE France
NEVZ-Ceramics, Close JSC Russia
NGK Spark Plug Co Ltd Japan
Nyasol Nano Technologies Inc MA
O’Keefe Ceramics Inc CO
Ortech Inc CA
PicoParts Ltd Israel
Precision Ceramics FL
Precision Ferrites and Ceramics Inc CA
PremTech Advanced Ceramics MA
Progressive Technology Inc CA

100 Years of Excellence.
Mcdanel Advanced Ceramic Technologies

With a 100-year legacy behind us, McDanel Advanced Ceramic Technologies is recognized as a global leader for innovation, customer service and results – giving our customers the advantage of increased productivity and performance.

100 Years of Excellence.
mcdanelceramics.com

Rauschert Industries, Inc. (U.S.A.)
949.421.9804
C.brayman@rauschertna.com
www.rauschert.com

Rauschert Industries Inc GA See ad on pg 69
Refractron Technologies Corp NY
Robocasting Enterprises LLC NM

Associated Ceramics & Technology Inc PA See ad on pg 65
Astral Material Industrial Co Ltd China
Astro Met Advanced Ceramics Inc OH
Beijing Cerametek Materials Co Ltd China
Bharat Heavy Electricals Ltd NY

Blauch Precision Ceramics Inc NY
Bullen OH
Ceramco Inc NH
CeramTec North America Corp SC
CeramTec-ETEC Germany
Ceranova Corp MA
CerCo LLC OH
China Uniprecite Ceramic Technology Co Ltd China
CoorsTek CO
Custom Processing Services PA
Denka Corp NY
Du-Co Ceramics Company PA
EBL Products Inc CT
Elcon Precision LLC CA See ad on pg 107
Federal-Mogul MI
FELDCO Intl CA
Ferro Ceramic Grinding Inc MA
Ferro-Ceramic Grinding Inc MA
Ferrotec Ceramic Products China
Grainbound LLC PA
H.C. Starck GmbH Germany
Induceramic Canada
International Ceramic Engineering MA
IPS Ceramics LTD UK
Ipsen Ceramics IL
Jyoti Ceramic Industries Pvt Ltd India
Leico Industries Inc NJ
Lihoz GmbH NY
Maryland Ceramic & Steatite Co Inc MD
Master Bond Inc NJ

Engineered Material Solutions • Service • Partnership

- World Class Suppliers of Advanced Ceramic Components
- American Owned & Operated for 120 Years
- Experts in Providing the Ultimate Levels of Product Control via In-House Material Fabrication
- AS9100 and ISO 9001 Certified; ITAR registered

Our highly trained staff are subject matter experts in:

<table>
<thead>
<tr>
<th>Industry Specific Applications</th>
<th>Prototype to Production Processes</th>
<th>CNC Green Machining</th>
</tr>
</thead>
<tbody>
<tr>
<td>New 22" Diameter Large Blank Cell</td>
<td>Multi-Method Blank Forming</td>
<td>CNC Diamond Grinding</td>
</tr>
<tr>
<td>Toll Material Processing</td>
<td>Advanced Material Fabrication</td>
<td>Specialty Coatings</td>
</tr>
</tbody>
</table>

Visit us at www.ceramics.net

(802) 527-7726 | 600 Industrial Park Rd. St. Albans, VT 05478
NEVC-Ceramics, Close JSC Russia
New Tech Ceramics Inc IA
Precision Ceramics FL
Precision Ferrites and Ceramics Inc CA
Refrac Systems AZ
Sigma Advanced Materials NY
Starfire Systems Inc NY
Technology Assessment and Transfer Inc (TAT&T) MD
Virdia3D LLC MA
Zibo Guangtong Chemical Co Ltd China

Composites, Ceramic-Polymer
Advanced Materials Associates China
Bullen OH
Cerakote Ceramic Coatings OR
novaBone Products LLC FL
O’Keefe Ceramics Inc CO
Starfire Systems Inc NY
Verity Technical Consultants LLC OH
Virdia3D LLC MA

Composites, Intermetallic
FELDCO Int’l CA
Zibo Guangtong Chemical Co Ltd China

Cutting Tools
Advanced Ceramics Manufacturing AZ
Advanced Materials Associates China
Astro Met Advanced Ceramics Inc OH
Cerakote Ceramic Coatings OR
CeramTec North America Corp SC
China Unipretc Ceramic Technology Co Ltd China
CooRTeK CO
Ferro-Ceramic Grinding Inc MA
New Tech Ceramics Inc IA
NGK Spark Plug Co Ltd Japan
PremaTech Advanced Ceramics MA
Rauschert Industries Inc GA See ad on pg 69
RoCera LLC NY
Thermocarbon FL
Zibo Guangtong Chemical Co Ltd China

Cylinders
Advanced Ceramics Manufacturing AZ
Cerakote Ceramic Coatings OR
CooRTeK CO
Ferrotec Ceramic Products China
Morgan Technical Ceramics Auburn CA
Suntech Advanced Ceramics (Shenzhen) Co Ltd China

Dies
Astro Met Advanced Ceramics Inc OH
North Star Equipment Inc WA
Petro Mold Company PA
Ram Products Inc OH
Refractron Technologies Corp NY
China Unipretc Ceramic Technology Co Ltd China
Zirca Inc OH

Engine Components
Advanced Ceramic Technology CA
Advanced Ceramics Manufacturing AZ
Cerakote Ceramic Coatings OR
CeramTec North America Corp SC
China Unipretc Ceramic Technology Co Ltd China
Elcon Precision LLC CA See ad on pg 107
Federal-Mogul MI
Ferrotec Ceramic Products China
GE Global Research NY
H.C. Starck GmbH Germany
Precision Ceramics FL
Prematac Advanced Ceramics MA
Toyota Central R&D Labs Inc Japan

Filters
Akeron Porcelain & Plastics Co OH
Bhagat Heavy Electricals Ltd NY
Blasch Precision Ceramics Inc NY
Induceramic Canada
Maryland Ceramic & Steatite Co Inc MD
Rauschert Industries Inc GA See ad on pg 69
Refractron Technologies Corp NY
Robocasting Enterprises LLC NM
Starfire Systems Inc NY
Valley Design Corp MA
Zhengzhou Mission Ceramic Products Co Ltd China

Glass-Ceramics
Accuratus Corp NJ
Aremco Products Inc NY
Astro Met Advanced Ceramics Inc OH
Bhagat Heavy Electricals Ltd NY
Ceraste France
China Unipretc Ceramic Technology Co Ltd China
CooRTeK CO
Egan Technology GA
Ferro-Ceramic Grinding Inc MA
Israel Ceramic & Silicate Inst Israel
Morgan Advanced Materials CA
Ortech Inc CA
Petro Mold Company PA
P-Ker Engineering NY
Precison Ceramics FL
PremaTech Advanced Ceramics MA
RISE Research Institutes of Sweden, RISE Glass Sweden
Schott North America Inc NY See ad on pg 41
Starfire Systems Inc NY
Technical Products Inc WI
TevTech LLC MA See ad on pg 83
Valley Design Corp MA
Zibo Guangtong Chemical Co Ltd China

Heat Exchangers
Arkema Inc PA
Blasch Precision Ceramics Inc NY
Dowa High Temp Furnaces India
Elcon Precision LLC CA See ad on pg 107
FCT Ingenieuerkeramik GmbH Germany
Ferrotec Ceramic Products China
Induceramic Canada
Precision Ceramics FL
Refracs Systems AZ
Saint-Gobain High Performance Ceramics & Refractors MA

Honeycombs
Bharti Heavy Electricals Ltd NY
Blasch Precision Ceramics Inc NY
Induceramic Canada
Rauschert Industries Inc GA See ad on pg 69
Robocasting Enterprises LLC NM
Zhengzhou Mission Ceramic Products Co Ltd China

Injection-Molded Ceramics
ASTech Ceramics TN
Bharti Heavy Electricals Ltd NY
Blasch Precision Ceramics Inc NY
Ceramco Inc NH
CerCo LLC OH
CerPoTech AS Norway
CerCo LLC OH
Cerlase France
Cerlase France
Cerinnov France
Ceranova Corp MA
Accuratus Corp NJ
Ceramco Inc NH
Blasch Precision Ceramics Inc NY
Induceramic Canada
Precision Ceramics FL
RISE Research Institutes of Sweden, RISE Glass Sweden
Schott North America Inc NY See ad on pg 41
Starfire Systems Inc NY
Technical Products Inc WI
TevTech LLC MA See ad on pg 83
Valley Design Corp MA
Zibo Guangtong Chemical Co Ltd China

Lasers, Ceramic
Accuratus Corp NJ
CerarNova Corp MA
Cerrinov France
Ceraste France
CerPoTech AS Norway

Magneesium & Compounds
Elcon Precision LLC CA See ad on pg 107
<table>
<thead>
<tr>
<th>Silicide Products</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Astral Material Industrial Co Ltd China</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Silicon Carbide Products</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Accuratus Corp NJ</td>
<td></td>
</tr>
<tr>
<td>Advanced Ceramic Technology CA</td>
<td></td>
</tr>
<tr>
<td>Advanced Ceramics Manufacturing AZ</td>
<td></td>
</tr>
<tr>
<td>Astral Material Industrial Co Ltd China</td>
<td></td>
</tr>
<tr>
<td>Blasch Precision Ceramics Inc NY</td>
<td></td>
</tr>
<tr>
<td>Cancarb Limited Canada</td>
<td></td>
</tr>
<tr>
<td>CoorsTek CO</td>
<td></td>
</tr>
<tr>
<td>Custom Processing Services PA</td>
<td></td>
</tr>
<tr>
<td>Diamorph AB UK</td>
<td></td>
</tr>
<tr>
<td>FCT Ingenieurkeramik GmbH Germany</td>
<td></td>
</tr>
<tr>
<td>FELDCO Int'l CA</td>
<td></td>
</tr>
<tr>
<td>Ferrotec Ceramic Products China</td>
<td></td>
</tr>
<tr>
<td>H.C. Starck GmbH Germany</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Silicon Nitride Products</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Accuratus Corp NJ</td>
<td></td>
</tr>
<tr>
<td>Advanced Ceramic Technology CA</td>
<td></td>
</tr>
<tr>
<td>Advanced Ceramics Manufacturing AZ</td>
<td></td>
</tr>
<tr>
<td>Beijing CeramicTek Materials Co Ltd China</td>
<td></td>
</tr>
<tr>
<td>CoorsTek CO</td>
<td></td>
</tr>
<tr>
<td>FELDCO Int'l CA</td>
<td></td>
</tr>
<tr>
<td>Ferrotec Ceramic Products China</td>
<td></td>
</tr>
<tr>
<td>H.C. Starck GmbH Germany</td>
<td></td>
</tr>
<tr>
<td>International Ceramic Engineering MA</td>
<td></td>
</tr>
<tr>
<td>Morgan Advanced Materials CO</td>
<td></td>
</tr>
<tr>
<td>O’Keefe Advanced Ceramics CO</td>
<td></td>
</tr>
<tr>
<td>Precision Ceramics FL</td>
<td></td>
</tr>
<tr>
<td>Precision Ferrites and Ceramics Inc CA</td>
<td></td>
</tr>
<tr>
<td>Rauschert Industries Inc GA</td>
<td></td>
</tr>
<tr>
<td>Saint-Gobain High Performance Ceramics & Refractories MA</td>
<td></td>
</tr>
<tr>
<td>Technology Assessment and Transfer Inc (TA&T) MD</td>
<td></td>
</tr>
<tr>
<td>Zhengzhou Mission Ceramic Products Co Ltd China</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Thread Guides</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Akron Porcelain & Plastics Co OH</td>
<td></td>
</tr>
<tr>
<td>Associated Ceramics & Technology Inc PA</td>
<td></td>
</tr>
<tr>
<td>Astro Met Advanced Ceramics Inc OH</td>
<td></td>
</tr>
<tr>
<td>Ceramo Inc NH</td>
<td></td>
</tr>
<tr>
<td>CeramTec North America Corp SC</td>
<td></td>
</tr>
<tr>
<td>Industrial Ceramic Products Inc OH</td>
<td></td>
</tr>
<tr>
<td>International Ceramic Engineering MA</td>
<td></td>
</tr>
<tr>
<td>Ortech CO</td>
<td></td>
</tr>
<tr>
<td>Rauschert Industries Inc GA</td>
<td></td>
</tr>
<tr>
<td>Superior Ceramic Technologies Inc PA</td>
<td></td>
</tr>
<tr>
<td>Zhengzhou Mission Ceramic Products Co Ltd China</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tubes</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Accuratus Corp NJ</td>
<td></td>
</tr>
<tr>
<td>AdValume Technology LLC AZ</td>
<td></td>
</tr>
<tr>
<td>Advanced Ceramics Manufacturing AZ</td>
<td></td>
</tr>
<tr>
<td>Akron Porcelain & Plastics Co OH</td>
<td></td>
</tr>
<tr>
<td>Aremco Products Inc NY</td>
<td></td>
</tr>
<tr>
<td>Associated Ceramics & Technology Inc PA</td>
<td></td>
</tr>
<tr>
<td>Astro Met Advanced Ceramics Inc OH</td>
<td></td>
</tr>
<tr>
<td>Blasch Precision Ceramics Inc NY</td>
<td></td>
</tr>
<tr>
<td>Ceramo Inc NH</td>
<td></td>
</tr>
<tr>
<td>CeramTec North America Corp SC</td>
<td></td>
</tr>
<tr>
<td>CoorsTek CO</td>
<td></td>
</tr>
<tr>
<td>CoorsTek CO</td>
<td></td>
</tr>
<tr>
<td>Diamorph AB UK</td>
<td></td>
</tr>
<tr>
<td>EBL Products Inc CT</td>
<td></td>
</tr>
<tr>
<td>FCT Ingenieurkeramik GmbH Germany</td>
<td></td>
</tr>
<tr>
<td>Ferrotec Ceramic Products China</td>
<td></td>
</tr>
<tr>
<td>H.C. Starck GmbH Germany</td>
<td></td>
</tr>
<tr>
<td>Ipsen Ceramics IL</td>
<td></td>
</tr>
<tr>
<td>Jyoti Ceramic Products Pvt Ltd India</td>
<td></td>
</tr>
<tr>
<td>McDaniel Advanced Ceramic Technologies LLC PA</td>
<td></td>
</tr>
<tr>
<td>Morgan Advanced Materials CA</td>
<td></td>
</tr>
<tr>
<td>Morgan Technical Ceramics Auburn CA</td>
<td></td>
</tr>
<tr>
<td>NEVZ-Ceramics, Close JSC Russia</td>
<td></td>
</tr>
<tr>
<td>New Tech Ceramics Inc IA</td>
<td></td>
</tr>
<tr>
<td>NGK Spark Plug Co Ltd Japan</td>
<td></td>
</tr>
<tr>
<td>O’Keefe Ceramics Inc CO</td>
<td></td>
</tr>
<tr>
<td>Ortech CO</td>
<td></td>
</tr>
<tr>
<td>P-Ker Engineering NY</td>
<td></td>
</tr>
<tr>
<td>Precision Ceramics FL</td>
<td></td>
</tr>
<tr>
<td>PremaTech Advanced Ceramics MA</td>
<td></td>
</tr>
<tr>
<td>Progressive Technology Inc CA</td>
<td></td>
</tr>
<tr>
<td>Rauschert Industries Inc GA</td>
<td></td>
</tr>
<tr>
<td>Zircoa Inc OH</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zirconia Products</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Accuratus Corp NJ</td>
<td></td>
</tr>
<tr>
<td>AdTech Ceramics TN</td>
<td></td>
</tr>
</tbody>
</table>
CERAMIC & METALLIC POWDERS & MATERIALS

Alumina, Activated
Alumina, Activated

Alumina, Calcined
Alumina, Calcined

Alumina, Fused
Alumina, Fused

Alumina, Reactive
Alumina, Reactive

Alumina, Single Crystal
Alumina, Single Crystal

Alumina, Tabular
Alumina, Tabular

Alumina, Zirconia Toughened
Alumina, Zirconia Toughened

Aluminum & Compounds
Aluminum & Compounds

Aluminum Nitride
Aluminum Nitride

North Star Equipment Inc WA

Peter Pugger Mfg Inc CA

Petro Mold Company PA

Ram Products Inc OH

Sheffield Pottery MA

StudioLX - Home Decor IL

Vindris3D LLC MA

CERAMIC & METALLIC POWDERS & MATERIALS

Abrasive Grains
Alumina, Calcined

Adsorbants & Catalysts
Alumina, Activated

Alumina, Fused
Alumina, Fused

Alumina, Reactive
Alumina, Reactive

Alumina, Single Crystal
Alumina, Single Crystal

Alumina, Tabular
Alumina, Tabular

Alumina, Zirconia Toughened
Alumina, Zirconia Toughened

Aluminum & Compounds
Aluminum & Compounds

Aluminum Nitride
Aluminum Nitride

APF Recycling Inc OH

MCD MI

Alumea Alumina, Calcined

Alumea Alumina, Activated

Alumea Alumina, Fused

Alumea Alumina, Reactive

Alumea Alumina, Single Crystal

Alumea Alumina, Tabular

Alumea Alumina, Zirconia Toughened

Alumea Aluminum & Compounds

Alumea Aluminum Nitride

Alumea Abrasive Grains

Alumea Adsorbants & Catalysts

Alumea Alumina, Calcined

Alumea Alumina, Activated

Alumea Alumina, Fused

Alumea Alumina, Reactive

Alumea Alumina, Single Crystal

Alumea Alumina, Tabular

Alumea Alumina, Zirconia Toughened

Alumea Aluminum & Compounds

Alumea Aluminum Nitride

Alumea Abrasive Grains

Alumea Adsorbants & Catalysts
Aluminum Silicate
Goodfellow Corp PA
Sauerreisen Inc PA

Antimony & Compounds
Alfa Aesar Johnson Matthey MA
Atlantic Equipment Engineers NJ
Goodfellow Corp PA
Pred Materials International Inc NY

Arsenic Oxide
Alfa Aesar Johnson Matthey MA

Barium & Compounds
Alfa Aesar Johnson Matthey MA

American Elements Inc CA Outside back cover, 54
BassTech Intl NJ
Bosai Minerals Group Co Ltd China
CerPoTech AS Norway
FELDCO Intl CA
GFS Chemicals Inc OH
Trinity Ceramic Supply Inc TX

Barium Carbonate
BassTech Intl NJ
Fusion Ceramics Inc OH
Hexion Inc OH

Barium Titanate
AVX Corp SC
BassTech Intl NJ
Beijing Cerametek Materials Co Ltd China
CerPoTech AS Norway
Euro Support Advanced Materials The Netherlands
Haiku Tech Inc FL
Hexion Inc OH
nGimat LLC KY

Bauxite, Sintered
Alteo NA LLC OH See ad on pg 11

Beryllium & Compounds
APF Recycling Inc OH
Centerline Technologies OH
Leico Industries Inc NJ
Materion Advanced Materials NY

Bismuth & Compounds
Atlantic Equipment Engineers NJ
Beijing Cerametek Materials Co Ltd China
CerPoTech AS Norway
FELDCO Intl CA
Fusion Ceramics Inc OH
nGimat LLC KY

Boric Acid
Sauerreisen Inc PA

Boron & Compounds
Atlantic Equipment Engineers NJ
Beijing Cerametek Materials Co Ltd China
Denka Corp NY
Electro Abrasives Corp NY
FELDCO Intl CA
Fusion Ceramics Inc OH
H.C. Starck North American Trading LLC MA
H.C. Starck Surface Technology and Ceramic Powders GmbH Germany
New Tech Ceramics Inc IA
Rio Tinto Minerals Australia

Boron Carbide
Atlantic Equipment Engineers NJ
CoorsTek CD

PIDC is focused on finding better, safer, and more cost-effective ways to manufacture our specialty materials.

We offer a vast product portfolio of aluminas, rare earths, zeolites, and custom proprietary powders for a variety of applications, including ceramics, coatings, and abrasives.

Contact us to learn more about how PIDC’s materials can meet your company’s unique needs.

pidc.com/contact-us
Gadolinium Oxide
Alfa Aesar Johnson Matthey MA
American Elements Inc CA Outside back cover, 54
CerPoTech AS Norway
PIDC MI See ad on pg 69

Gallium & Compounds
Alfa Aesar Johnson Matthey MA
American Elements Inc CA Outside back cover, 54
Beijing Cerametek Materials Co Ltd China
CerPoTech AS Norway
Goodfellow Corp PA
MSE Supplies AZ

Germanium & Compounds
Alfa Aesar Johnson Matthey MA
American Elements Inc CA Outside back cover, 54
Beijing Cerametek Materials Co Ltd China
CAL Development Corp CA
MSE Supplies AZ
Treibacher Industrie AG Austria

Grain, Refractory
Christy Minerals LLC MO
Imerys Refractory Minerals GA

Graphite
APF Recycling Inc OH
Applied Ceramics Inc CA
Arencos Products Inc NY
Beijing Cerametek Materials Co Ltd China
CooRsTeC CO
Momentive Performance Materials Inc NY
Semco Carbon OH
Superior Graphite Co IL See ad on pg 73
ToVrt LLC MA See ad on pg 83

Indium & Compounds
American Elements Inc CA Outside back cover, 54
CerPoTech AS Norway
FELDCO Intl CA
Goodfellow Corp PA
MSE Supplies AZ
Pred Materials International Inc NY

Iron & Compounds
Beijing Cerametek Materials Co Ltd China
CerPoTech AS Norway
GFS Chemicals Inc OH
Goodfellow Corp PA
Kyanite Mining Corp VA
Lienco Industries Inc NJ
Prince Minerals Inc TX

Iron Oxide
Fusion Ceramics Inc OH
Nutec Bickey Mexico
Prince Minerals Inc TX
Reade Advanced Materials RI

Lanthanides (also see Rare-Earths)
Alfa Aesar Johnson Matthey MA
American Elements CA Outside back cover, 54
C&L Development Corp CA
FELDCO Intl CA
GFS Chemicals Inc OH
MSE Supplies AZ
Nanocerox UT
PIDC MI See ad on pg 69

Magnesium & Compounds
Atlantic Equipment Engineers NJ
BassTech Intl NJ
Bosai Minerals Group Co Ltd China
CerPoTech AS Norway
FELDCO Intl CA
Fusion Ceramics Inc OH
GFS Chemicals Inc OH
Goodfellow Corp PA
H.C. Starck North American Trading LLC MA
H.C. Starck Surface Technology and Ceramic Powders GmbH Germany
Pred Materials International Inc NY
Prince Minerals Inc TX
Atlantic Equipment Engineers NJ
BassTech Intl NJ
CerPoTech AS Norway
Fusion Ceramics Inc OH
Goodfellow Corp PA
H.C. Starck North American Trading LLC MA
H.C. Starck Surface Technology and Ceramic Powders GmbH Germany
Pred Materials International Inc NY
Prince Minerals Inc TX
RE Carroll Inc PA

Metallic Salts
Alfa Aesar Johnson Matthey MA

We get it.
Designing & manufacturing nanomaterials in-house isn’t easy –
that shouldn’t stop you from using them to improve your products.

We can help.
www.cerionnano.com/acers

CERAMIC & METALLIC POWDERS & MATERIALS
Semiconducting Powders

American Elements Inc CA

SiAION Powder
Pred Materials International Inc NY

Silica
Arkema Inc PA
Denka Corp NY
Ipsen Ceramics IL
Maryland Refractories Co OH
Momentive Performance Materials Inc NY
Nanocerat UT
Saint-Gobain Ceramics & Plastics MA
Sauerreisen Inc PA
Sibelco Benelux Belgium
U.S. Silica Co MD

Silica, Fused
APF Recycling Inc OH
BassTech Intl NJ
Bosai Minerals Group Co Ltd China
Centerline Technologies OH
Industrial Ceramic Products Inc OH
Ipsen Ceramics IL
Momentive Performance Materials Inc NY
Valley Design Corp MA

Silicates
BassTech Intl NJ
Denka Corp NY
Nanocerat UT
Sauerreisen Inc PA

Silicon & Compounds
Atlantic Equipment Engineers NJ
Elkem Metals Inc PA
FELDCO Intl CA
McDanel Advanced Ceramic Technologies LLC PA

Silicon Carbide
American Elements Inc CA

Rauschert Industries Inc GA
See ad on pg 69
Saint-Gobain Ceramics & Plastics MA
Starfire Systems Inc NY
Suntech Advanced Ceramics (Shenzhen) Co Ltd China

Sinter-Pur® Beta SiC Powders
Ph: 1312.555.2999
CustomerServiceUSA@superiorgraphite.com
www.superiorgraphite.com

Silicon Nitride
Alteo NA LLC OH
Applied Ceramics Inc CA
Atlantic Equipment Engineers NJ
Bullen OH
CerCo LLC OH
CoorsTek CO
Denka Corp NY
FELDCO Intl CA
Goodfellow Corp PA
H.C. Starck North American Trading LLC MA
H.C. Starck Surface Technology and Ceramic Powders GmbH Germany
International Ceramic Engineering MA
McDanel Advanced Ceramic Technologies LLC PA

Silicon Carbide
American Elements Inc CA

Rauschert Industries Inc GA
See ad on pg 69
Suntech Advanced Ceramics (Shenzhen) Co Ltd China
Texers Technical Ceramics Inc Canada
China Unipretec Ceramic Technology Co Ltd China

Sodium & Compounds
Atlantic Equipment Engineers NJ
GFS Chemicals Inc OH

Spheres, Ceramic
Saint-Gobain norPro OH
Zircar Zirconia Inc NY

Spheres, Glass
Imerys Refractory Minerals GA
Mo-Si Corp MO
See ad on pg 97
RISE Research Institutes of Sweden, RISE Glass Sweden

Strontium & Compounds
Alfa Aesar Johnson Matthey MA
BassTech Intl NJ
CerPoTech AS Norway
Fusion Ceramics Inc OH
GFS Chemicals Inc OH
nGimat LLC KY

Superabrasives
Alteo NA LLC OH
Diamond Industrial Tools Inc IL
Saint-Gobain Ceramics & Plastics MA

Superconducting Powders
Alfa Aesar Johnson Matthey MA
nGimat LLC KY

Silicon Carbide
American Elements Inc CA

APF Recycling Inc OH
Applied Ceramics Inc CA
Atlantic Equipment Engineers NJ
BassTech Intl NJ
Beijing Cerametek Materials Co Ltd China
Bullen OH
Cancarb Limited Canada
CerCo LLC OH
CoorsTek CO
Custom Processing Services PA
Electro Abrasive Corp NY
FELDCO Intl CA
Goodfellow Corp PA
H.C. Starck North American Trading LLC MA
H.C. Starck Surface Technology and Ceramic Powders GmbH Germany
Imerys Refractory Minerals GA
Momentive Performance Materials Inc NY
Otehch Inc CA
Pred Materials International Inc NY

Rauschert Industries Inc GA
See ad on pg 69
Suntech Advanced Ceramics (Shenzhen) Co Ltd China
Texers Technical Ceramics Inc Canada
China Unipretec Ceramic Technology Co Ltd China

Sodium & Compounds
Atlantic Equipment Engineers NJ
GFS Chemicals Inc OH

Spheres, Ceramic
Saint-Gobain norPro OH
Zircar Zirconia Inc NY

Spheres, Glass
Imerys Refractory Minerals GA
Mo-Si Corp MO
See ad on pg 97
RISE Research Institutes of Sweden, RISE Glass Sweden

Strontium & Compounds
Alfa Aesar Johnson Matthey MA
BassTech Intl NJ
CerPoTech AS Norway
Fusion Ceramics Inc OH
GFS Chemicals Inc OH
nGimat LLC KY

Superabrasives
Alteo NA LLC OH
Diamond Industrial Tools Inc IL
Saint-Gobain Ceramics & Plastics MA

Superconducting Powders
Alfa Aesar Johnson Matthey MA
nGimat LLC KY

Beta SiC Powders
Sinter-Pur® Beta SiC products are highly sinterable non-oxide powders excellent for ceramic matrix composites, high-performance wear parts (seal rings & pump parts), and used as a micro-abrasive agent.

Low fracture toughness · Extreme hardness
Thermally conductive · Inert properties
312.559.2999 superiorgraphite.com

Superior Graphite
Innovating Since 1917
Titanium Carbide
Atlantic Equipment Engineers NJ
CerPoTech AS Norway
FELDCO Int’l CA
H.C. Starck North American Trading LLC MA
H.C. Starck Surface Technology and Ceramic Powders GmbH Germany
Leico Industries Inc NJ
Nanocerox UT

Tungsten Carbide
Associated Ceramics & Technology Inc PA
Atlantic Equipment Engineers NJ
C&L Development Corp CA
Centerline Technologies OH
Custom Processing Services PA
FELDCO Int’l CA
H.C. Starck North American Trading LLC MA
H.C. Starck Surface Technology and Ceramic Powders GmbH Germany
Pred Materials International Inc NY

Zirconia
Applied Ceramics Inc CA
China Uniprecet Ceramic Technology Co Ltd China
C&L Development Corp CA
Custom Processing Services PA
Innovnano - Advanced Materials SA Portugal
International Ceramic Engineering MA
Leico Industries Inc NJ
Nanocerox UT
Nanoe France
nGimat LLC KY
Ortech Inc CA
PIDC MI
PremaTech Advanced Ceramics MA
Rauschert Industries Inc GA
Saint-Gobain Ceramics & Plastics MA
Sauereisen Inc PA
Suntech Advanced Ceramics (Shenzhen) Co Ltd China
TAM Ceramics NY
Washington Mills Electro Minerals Co NY
Zibo Guangtong Chemical Co Ltd China
Zircar Zirconia Inc NY
Zircoa Inc OH

Titanium Nitride
Atlantic Equipment Engineers NJ
C&L Development Corp CA
Centerline Technologies OH
Custom Processing Services PA
FELDCO Int’l CA
H.C. Starck North American Trading LLC MA
H.C. Starck Surface Technology and Ceramic Powders GmbH Germany
MSE Supplies AZ
PicoParts Ltd Israel
Pred Materials International Inc NY

Tungsten Oxide
CerPoTech AS Norway
FELDCO Int’l CA
H.C. Starck North American Trading LLC MA
H.C. Starck Surface Technology and Ceramic Powders GmbH Germany

Vanadium & Compounds
Atlantic Equipment Engineers NJ
CerPoTech AS Norway
FELDCO Int’l CA

Yttria
APF Recycling Inc OH
Associated Ceramics & Technology Inc PA
Bullen OH
CoorsTek CO
ESL ElectroScience PA
H.C. Starck North American Trading LLC MA
H.C. Starck Surface Technology and Ceramic Powders GmbH Germany
Innovnano - Advanced Materials SA Portugal
Nanocerox UT
nGimat LLC KY
PIDC MI
Pred Materials International Inc NY
Washington Mills Electro Minerals Co NY
Zircar Zirconia Inc NY

Zirconia, Engineering-Grade
Innovnano - Advanced Materials SA Portugal
Leico Industries Inc NJ
McDanel Advanced Ceramic Technologies LLC PA
Nanoe France
Zibo Guangtong Chemical Co Ltd China
Zircoa Inc OH

Zirconia, High-Purity
APF Recycling Inc OH
Applied Ceramics Inc CA
CARBO TX
CoorsTek CO
Innovnano - Advanced Materials SA Portugal
International Ceramic Engineering MA
Nanocerox UT
Nanoe France
Sauereisen Inc PA
Zibo Guangtong Chemical Co Ltd China
Zirconia, Refractory-Grade
McDanel Advanced Ceramic Technologies LLC PA
See ad on pg 61
Nanone France
Washington Mills Electro Minerals Co NY
Zirca Inc OH

Zirconium & Compounds
Atlantic Equipment Engineers NJ
CAL Development Corp CA
CerPoTech AS Norway
FELDCO Intl CA
Goodfellow Corp PA
H.C. Starck North American Trading LLC MA
H.C. Starck Surface Technology and Ceramic Powders GmbH Germany
Innovnano - Advanced Materials SA Portugal
Luzifer MEL Technologies NJ
Monofrax LLC NY

PIDC MI
Saint-Gobain Ceramics & Plastics MA
Zibo Guangtong Chemical Co Ltd China

Zirconium Carbide
CanCarb Limited Canada
H.C. Starck North American Trading LLC MA
H.C. Starck Surface Technology and Ceramic Powders GmbH Germany

Zirconium Carbonate
C&L Development Corp CA
Zibo Guangtong Chemical Co Ltd China

Zirconium Diboride
H.C. Starck North American Trading LLC MA
H.C. Starck Surface Technology and Ceramic Powders GmbH Germany

Clays, Enamel
Old Hickory Clay Co KY
RISE Research Institutes of Sweden, RISE Glass Sweden
Sibelco Benelux Belgium
Vanderbilt Minerals, LLC CT

Clays, Engobe
Imerys GA
Old Hickory Clay Co KY
Sheffield Pottery MA
Sibelco Benelux Belgium
Vanderbilt Minerals, LLC CT

Clays, Fire or Refractory
Alsey Refractories Co MO
Christy Minerals LLC MO
Endiscott Clay Products Company NE
Furnace Products & Services Inc PA
Imerys Refractory Minerals GA
Maryland Refractories Co OH
Old Hickory Clay Co KY
Peter Pugger Mfg Inc CA
Riverdale Refractories Inc AL
Sheffield Pottery MA
Sibelco Benelux Belgium

Clays, Glaze
Imerys GA
Old Hickory Clay Co KY
Peter Pugger Mfg Inc CA
Sheffield Pottery MA
Sibelco Benelux Belgium
Vanderbilt Minerals, LLC CT

Clays, Stoneware
Christy Minerals LLC MO
Old Hickory Clay Co KY
Peter Pugger Mfg Inc CA
Sheffield Pottery MA
Sibelco Benelux Belgium

Cordierite
Maryland Ceramic & Steatite Co Inc MD
Mason Color Works Inc OH
Reade Advanced Materials RI
Refratechnik Ceramics GmbH Germany
Trans-Tech Inc, a subsidiary of Skyworks Solutions Inc MD

Diatomaceous Earth
Reade Advanced Materials RI

Dolomite
Fusion Ceramics Inc OH
Sibelco Benelux Belgium
Trinity Ceramic Supply Inc TX

Feldspar
Avalon Advanced Materials Co Canada
Fusion Ceramics Inc OH
Imerys GA
Prince Minerals Inc TX
Sheffield Pottery MA
Sibelco Benelux Belgium
Trinity Ceramic Supply Inc TX

Flint
Christy Minerals LLC MO
Fusion Ceramics Inc OH
Sheffield Pottery MA

Bauxite
APF Recycling Inc OH
Bosai Minerals Group Co Ltd China
Fluid Energy Processing & Equipment Co PA
Hindalco Industries Limited India
Imerys Refractory Minerals GA
Prince Minerals Inc TX

Bentonite
Custom Processing Services PA
Reade Advanced Materials RI
Trinity Ceramic Supply Inc TX
Vanderbilt Minerals, LLC CT

Borax
Rio Tinto Minerals Australia

Chromite
Prince Minerals Inc TX

Clays, Ball
Fusion Ceramics Inc OH
Imerys GA
Old Hickory Clay Co KY
Sheffield Pottery MA
Sibelco Benelux Belgium
Trinity Ceramic Supply Inc TX
Unimin Corp CT

Clays, No
Fusion Ceramics Inc OH
Imerys GA
Old Hickory Clay Co KY
Sheffield Pottery MA
Sibelco Benelux Belgium
Vanderbilt Minerals, LLC CT

In this webinar series by NSL Analytical Services, scientists discuss the latest cutting edge technologies and innovative techniques that are bringing science forward in the industries that are important to you.

Learn more by visiting nslanalytical.com/webinars to register now!

4450 Cranwood Parkway, Cleveland, OH 44128
877.560.3875 | ISO/IEC 17025
CONSTRUCTION CERAMICS

Forsterite
Du-Co Ceramics Company PA
Trans-Tech Inc, a subsidiary of Skyworks Solutions Inc MD

Quartz
Applied Ceramics Inc CA
Fusion Ceramics Inc OH
Goodfellow Corp PA
Imerys GA
International Ceramic Engineering MA
Momentive Performance Materials Inc NY
Multi Lab UK
Prince Minerals Inc TX
Sibeclo Benelux Belgium

Kaozin
Arkema Inc PA
Bosai Minerals Group Co Ltd China
CARBO TX
Christy Minerals LLC MO
Fusion Ceramics Inc OH
Imerys GA
Imerys Refractory Minerals GA
M&M Clays Inc GA
Old Hickory Clay Co KY
Reade Advanced Materials RI
Sheffield Pottery MA
Trinity Ceramic Supply Inc TX
U.S. Silica Co MD
Vanderbilt Minerals, LLC CT

Rutile
Fusion Ceramics Inc OH
Prince Minerals Inc TX

Lithium Minerals
Avalon Advanced Materials Inc Canada
Fusion Ceramics Inc OH

Sapphire
Applied Ceramics Inc CA
Centerline Technologies OH
Goodfellow Corp PA
International Ceramic Engineering MA
MSE Supplies AZ

Magnesite
APF Recycling Inc OH
Bosai Minerals Group Co Ltd China
Fluid Energy Processing & Equipment Co PA
Imerys Refractory Minerals GA

Silica
APF Recycling Inc OH
Centerline Technologies OH
Imerys GA
Imerys Refractory Minerals GA
Maryland Refractories Co OH
Prince Minerals Inc TX
Sibeclo Benelux Belgium
Trinity Ceramic Supply Inc TX
U.S. Silica Co MD

Mica
Imerys GA

Vanderbilt Minerals, LLC CT

Montmorillonite
Reade Advanced Materials RI

Mullite
Christy Minerals LLC MO
Imerys Refractory Minerals GA
International Ceramic Engineering MA
Kyanite Mining Corp VA
Pred Materials International Inc NY
Reade Advanced Materials RI
Textex Technical Ceramics Inc Canada
Washington Mills Electro Minerals Co NY

Mica
Imerys GA

Kyanite Mining Corp VA

Nepheline Syenite
Fusion Ceramics Inc OH
Sheffield Pottery MA
Sibeclo Benelux Belgium
Trinity Ceramic Supply Inc TX

Mica
Imerys GA

Kyanite Mining Corp VA

Pyrite
Kyanite Mining Corp VA
Washington Mills Electro Minerals Co NY

Mullite
Christy Minerals LLC MO
Imerys Refractory Minerals GA
International Ceramic Engineering MA
Kyanite Mining Corp VA
Pred Materials International Inc NY
Reade Advanced Materials RI
Textex Technical Ceramics Inc Canada
Washington Mills Electro Minerals Co NY

Olivine
Prince Minerals Inc TX
Sibeclo Benelux Belgium

Mica
Imerys GA

Kyanite Mining Corp VA

Pyrophyllite
Maryland Ceramic & Steatite Co Inc MD
Vanderbilt Minerals, LLC CT

Olivine
Prince Minerals Inc TX
Sibeclo Benelux Belgium

Mica
Imerys GA

Kyanite Mining Corp VA

Pyrophyllite
Maryland Ceramic & Steatite Co Inc MD
Vanderbilt Minerals, LLC CT

Silica
APF Recycling Inc OH
Centerline Technologies OH
Imerys GA
Imerys Refractory Minerals GA
Maryland Refractories Co OH
Prince Minerals Inc TX
Sibeclo Benelux Belgium
Trinity Ceramic Supply Inc TX
U.S. Silica Co MD

Olivine
Prince Minerals Inc TX
Sibeclo Benelux Belgium

Mica
Imerys GA

Kyanite Mining Corp VA

Pyrophyllite
Maryland Ceramic & Steatite Co Inc MD
Vanderbilt Minerals, LLC CT

Spodumene
Avalon Advanced Materials Inc Canada
Fusion Ceramics Inc OH
Prince Minerals Inc TX
Trinity Ceramic Supply Inc TX

Pyrite
Kyanite Mining Corp VA
Washington Mills Electro Minerals Co NY

Stellite
Du-Co Ceramics Company PA
International Ceramic Engineering MA
Maryland Ceramic & Steatite Co Inc MD

Talc
Custom Processing Services PA
Fusion Ceramics Inc OH
Rio Tinto Minerals Australia
Trinity Ceramic Supply Inc TX

Wollastonite
Bosai Minerals Group Co Ltd China
Fusion Ceramics Inc OH
Reade Advanced Materials RI
Trinity Ceramic Supply Inc TX
Vanderbilt Minerals, LLC CT

Zircon
AluChem Inc OH
APF Recycling Inc OH

Zircon
AluChem Inc OH
APF Recycling Inc OH

More information available at: www.ceramics.org
Combinations

- Activation Laboratories Ltd Canada
- Advanced Materials Associates China
- CelSian Glass & Solar BV The Netherlands
- CHEMIR - A Division of Evans Analytical Group MO
- Gwent Electronic Materials Ltd UK
- Hitech Materials Pty Ltd NY

Decorating Processes & Materials

- Cerlase France
- Lucideon UK
- OPF Enterprises TX

Electronics & Electrical Materials

- Advanced Energy CO
- APC International Ltd PA
- AVEKA MN
- Centerline Technologies OH
- Elcon Technology GA
- Electrosciences Ltd CO
- Gwent Electronic Materials Ltd UK
- Hauk Tech Europe BV The Netherlands
- Hauk Tech Inc FL

Engineering

- Advanced Materials Associates China
- Air Force Civil Engineer Center China
- CelSian Glass & Solar BV The Netherlands
- CerFein France
- Certherm France
- Cyclonaire Corp NE
- Deltech Kiln and Furnace Design, LLC CO
- FCT Systeme GmbH Germany
- General Glass Equipment Co NJ
- Hitech Materials Pty Ltd NY
- International Ceramic Engineering MA
- Jenike & Johanson Inc MA
- LithoZ GmbH NY
- Nol-Tec Systems Inc MN
- Teeter Marketing Services LLC FL
- Verity Technical Consultants LLC OH
- Wistra GmbH Germany

Environmental

- Activation Laboratories Ltd Canada
- Air Force Civil Engineer Center China
- CelSian Glass & Solar BV The Netherlands
- Lucideon UK
- SEMTech Solutions Inc UK
- Texers Technical Ceramics Inc Canada
- Tri-Mer Corp MI

Fabrication

- Accurateus Corp NJ
- Advanced Materials Associates China
- Bullen OH
- CHEMIR - A Division of Evans Analytical Group MO
- H&M Analytical Services Inc NJ
- Hitech Materials Pty Ltd NY
- JTF Microscopy Services, LLC NY
- Lucideon UK
- Particle Technology Labs IL
- Refrac Systems AZ
- Refractory Consulting Services OH
- Spontaneous Materials CO
- Verity Technical Consultants LLC OH

Furnaces

- Advanced Materials Associates China
- American Isostatic Presses OH
- CelSian Glass & Solar BV The Netherlands
- Centorr Vacuum Industries NH

High-Technology Ceramics

- Advanced Materials Associates China
- APC International Ltd PA
- ARBURG GmbH + Co KG Germany
- Astro Met Advanced Ceramics Inc OH
- Bharat Heavy Electricals Ltd NY
- CeramTec Germany
- CHEMIR - A Division of Evans Analytical Group MO
- Elcon Precision LLC CA
- Gwent Electronic Materials Ltd UK
- Hitech Materials Pty Ltd NY
- Lucideon UK
- Silicon Carbide Products Inc NY

Glass Processes & Materials

- Alfred University NY
- CelSian Glass & Solar BV The Netherlands
- Ceradyne Inc, a 3M Co KY
- Elcon Technology GA
- JTF Microscopy Services, LLC NY
- Rensselaer Polytechnic Inst NY
- RISE Research Institutes of Sweden, RISE Glass Sweden
- Saxon Glass Technologies Inc NY
- Schott North America Inc NY
- Specialty Glass Inc FL
- Tri-Mer Corp MI
- Verity Technical Consultants LLC OH
- Vezuvius SC

Glazes/Colorants

- Cancarb Limited Canada
- Ceradyne Inc, a 3M Co KY
- Laguna Clay Co CA
- Lucideon UK
- NLX Analytical Services Inc OH
- OPF Enterprises TX
- RISE Research Institutes of Sweden, RISE Glass Sweden

Manufacturers of Starbar® and Moly-D™ Heating Elements and Accessories

- I SQUARED R ELEMENT CO., INC.
- Phone: (716) 542-5511 Fax: (716) 542-2100
- www.isquaredrelement.com

Opportunities for Consultants & Services

- See ad on pg 58
- See ad on pg 77
- See ad on pg 89
- See ad on pg 91
Kilns
Ceritherm France
Deltech Kiln and Furnace Design, LLC CO
FCT Systeme GmbH Germany
Lucideon UK
Nabertherm Inc DE
OPF Enterprises TX

Litigation
H&M Analytical Services Inc NJ
Lucideon UK
Particle Technology Labs IL See ad on pg 99
Refractory Consulting Services OH
Spontaneous Materials CO
Vertity Technical Consultants LLC OH

Maintenance & Repairs, After Sales
Cerinnov France

Management
OPF Enterprises TX
Teeter Marketing Services LLC FL

Manufacturing
Advanced Materials Associates China
AVEKA MN
Ceramco Inc NH
CeramTec North America Corp SC
Cernovox France
CoorsTek CO
Custom Processing Services PA
Cyclotron Corp NE
Endicott Clay Products Company NE
Ferro-Ceramic Grinding Inc MA
Ingredient Masters Inc OH See ad on pg 103
Jenike & Johanson Inc MA
Laserage Technology Corp IL
Lucideon UK
Maryland Ceramic & Steatite Co Inc MD
Matmatch Germany
O’Keefe Ceramics Inc CO
OPF Enterprises TX
P-Ker Engineering NY
Rafrec Systems AZ
Semiconductor Energy Laboratory Co Ltd Japan See ad on pg 91
Technology Assessment and Transfer Inc (TA&T) MD
Vertity Technical Consultants LLC OH
Wistra GmbH Germany

Markets
Advanced Materials Associates China
Matmatch Germany
OPF Enterprises TX
Teeter Marketing Services LLC FL
Texers Technical Ceramics Inc Canada

Materials Testing & Characterization
Advanced Materials Associates China
Alfred University NY
ARBURG GmbH + Co KG Germany
AVEKA MN
Bharat Heavy Electricals Ltd NY

Sales and Liquidations of CERAMIC MACHINERY

Complete process lines, individual machine sales, and entire factory liquidations are performed professionally by the Mohr teams.

Contact Mohr today and discuss your used machinery and/or factory liquidation needs.
CONSULTANTS & SERVICES

Particle Technology Labs IL See ad on pg 99
P-Ker Engineering NY
Refractory Consulting Services OH
Semiconductor Energy Laboratory Co Ltd Japan See ad on pg 91

Spectrochemical Laboratories PA
Tabor Industries NY
Washington Mills Electro Minerals Co NY

Modelling
Celsian Glass & Solar BV The Netherlands
CornsTek CO
Lucideon UK
Ram Products Inc OH
Spontaneous Materials CO
Tetxon 3D NE

Nuclear Materials
Advanced Materials Associates China
Dunhua Zhengxing Abrasive Co Ltd China
NSL Analytical Services Inc OH See ad on pg 75

Patents
Modern Times Legal MA
Refrac Systems AZ
Spontaneous Materials CO
Teeter Marketing Services LLC FL

Professional Engineer
NSL Analytical Services Inc OH See ad on pg 75
Spontaneous Materials CO
Texers Technical Ceramics Inc Canada
Verity Technical Consultants LLC OH

Quality Management/ISO 9000
Elcon Precision LLC CA See ad on pg 107
Lucideon UK

Refractories
Celsian Glass & Solar BV The Netherlands
CeramTec Germany
Dunhua Zhengxing Abrasive Co Ltd China
Edward Orton Jr Ceramic Foundation OH
Fluid Energy Processing & Equipment Co PA
Fosbel Inc OH
Hitech Materials Pty Ltd NY
Industrial Ceramic Products Inc OH
Ipsen Ceramics IL
JTF Microscopy Services, LLC NY
Laguna Clay Co CA
Lucideon UK
Maryland Refractories Co OH
NSL Analytical Services Inc OH See ad on pg 75
Refractory Consulting Services OH
Silicon Carbide Products Inc NY
Teeter Marketing Services LLC FL
Texers Technical Ceramics Inc Canada

Virdis3D LLC MA
Widtra GmbH Germany

Research
Advanced Materials Associates China
Alfred University NY
ARBURG GmbH + Co KG Germany
AVEXA MN
Celsian Glass & Solar BV The Netherlands
Ceralink Inc NY
Cerion Nanomaterials NY See ad on pg 71
Cerflase France
CHEMIR - A Division of Evans Analytical Group MO
Insensitive Materials Ceramics in Mechanical Engineering, Karlsruhe Inst of Technology Germany
Lasio GmbH Luxembourg
Lithoz GmbH NY
Lucideon UK
OPF Enterprises TX
Refrac Systems AZ
RISE Research Institutes of Sweden, RISE Glass Sweden
Technology Assessment and Transfer Inc (TA&T) MD
Virdis3D LLC MA
Widtra GmbH Germany

Seminics (Consultants)
Seminics Energy Laboratory Co Ltd Japan See ad on pg 91
Suntech Advanced Ceramics (Shenzhen) Co Ltd China

Software
Chemical Abstracts Service OH
General Glass Equipment Co NJ

Object Research Systems Inc Canada See ad on pg 81
Outotec Research Oy Pori
Rockwell Automation, Inc WI
Throughput Bluestreak WI

Structural Ceramics
Advanced Materials Associates China
Astro Met Advanced Ceramics Inc OH
Bharat Heavy Electricals Ltd NY
CeramTec Germany
CeramTec North America Corp SC
FCT Ingenieurkeramik GmbH Germany
Hitech Materials Pty Ltd NY
OPF Enterprises TX
Rauschert Industries Inc GA See ad on pg 69
Silicon Carbide Products Inc NY
Technology Assessment and Transfer Inc (TA&T) MD

Superconductors
NSL Analytical Services Inc OH See ad on pg 75

Technical Writing
Advanced Materials Associates China
Bharat Heavy Electricals Ltd NY
Celsian Glass & Solar BV The Netherlands
Hitech Materials Pty Ltd NY
JTF Microscopy Services, LLC NY
Spontaneous Materials CO
Teeter Marketing Services LLC FL

Technology Transfer
Celsian Glass & Solar BV The Netherlands
Ceralink Inc NY

Cerflase France
Gwent Electronic Materials Ltd UK
Lucideon UK
Particle Technology Labs IL See ad on pg 99
Spontaneous Materials CO
Technology Assessment and Transfer Inc (TA&T) MD
Teeter Marketing Services LLC FL
Virdis3D LLC MA

CUSTOM CERAMICS FABRICATION & ENGINEERING SERVICES
Advanced Ceramics, Structural
Accuratus Corp NJ
AdTech Ceramics TN
AdValue Technology LLC AZ See ad on pg 43
Advanced Ceramic Technology CA
Advanced Ceramics Manufacturing AZ
Astro Met Advanced Ceramics Inc OH

Bomas Machine Specialties Inc MA See ad on pg 81
Bullen OH
CeramTec North America Corp SC
Ceranova Corp MA
CarCo LLC OH
CDNA Precision Services LLC CT
CornsTek CO
Custom Processing Services PA
Dunhua Zhengxing Abrasive Co Ltd China

Elcon Precision LLC CA See ad on pg 107
Exothermics Inc NH
FCT Ingenieurkeramik GmbH Germany
FELDCO Int Inc CA
GE Global Research NY
Induceramic Canada
Innovnano - Advanced Materials SA Portugal
Israel Ceramic & Silicate Inst Israel
Litboz GmbH NY
Machined Ceramics Inc KY
Maryland Ceramic & Steatite Co Inc MD

McDanel Advanced Ceramic Technologies LLC PA See ad on pg 61
MemPro Materials Corp CO
Morgan Technical Ceramics Auburn CA
Petro Mold Company PA
P-Ker Engineering NY
Precision Ceramics FL
Precision Ferrites and Ceramics Inc CA

Coatings, Thermal-Resistant
Aremco Products Inc NY
Cancarb Limited Canada
Cerakote Ceramic Coatings OR
Delko & Associates FL
ESL ElectroScience PA
Induceramic Canada
New Tech Ceramics Inc IA
Sigma Advanced Materials NY
Starfire Systems Inc NY
Technology Assessment and Transfer Inc (TAT&T) MD
Trans-Tech Inc, a subsidiary of Skyworks Solutions Inc MD
Unifrax I LLC NY
Verity Technical Consultants LLC OH
ZYP Coatings Inc TN

Coatings, Wear-Resistant
Cerakote Ceramic Coatings OR
CeramTec-ETEC Germany
CoorsTek CO
ESL ElectroScience PA
Master Bond Inc NJ
New Tech Ceramics Inc IA
Starfire Systems Inc NY
Technology Assessment and Transfer Inc (TAT&T) MD
Teeter Marketing Services LLC FL
TevTech LLC MA

Crushing, Custom
AVEKA MN
Christy Minerals LLC MO
Fluid Energy Processing & Equipment Co PA
Reade Advanced Materials RI
Stedman Machine Co IN

Dielectrics
Accuratrus Corp NJ
AdTech Ceramics TN
Associated ceramics CA
CerPorTech AS Norway
Ferro-Ceramic Grinding Inc MA
Hauki Tech Europe BV The Netherlands
Hauki Tech Inc FL
Sigma Advanced Materials NY
Starfire Systems Inc NY
Trans-Tech Inc, a subsidiary of Skyworks Solutions Inc MD

Drying, Custom
AVEKA MN
Christy Minerals LLC MO
Flamentex-Ceramics Technology Inc PA
Ipsen Ceramics LI
Reade Advanced Materials RI

Engineering
Ferro-Ceramic Grinding Inc MA

Films, Thick
CoorsTek CO
ESL ElectroScience PA
Gwent Electronic Materials Ltd UK
New Tech Ceramics Inc IA
P-Ker Engineering NY
Polymer Innovations Inc CA
Sigma Advanced Materials NY
Trans-Tech Inc, a subsidiary of Skyworks Solutions Inc MD

Films, Thin
Advanced Energy CO
Cerakote Ceramic Coatings OR
CoorsTek CO
Industrial Hard Carbon LLC NC
Morgan Technical Ceramics Auburn CA
New Tech Ceramics Inc IA

Furnace Rebuilds
Cancarb Limited Canada
Fosbel Inc OH
Materials Research Furnaces Inc NH
Dry-Gon Industries Inc NH
TevTech LLC MA
ZIRCAR Ceramics Inc NY
Zircar Zirconia Inc NY
See ad on pg 89
See ad on pg 83

Grinding, Custom
Advanced Ceramic Technology CA
Astro Met Advanced Ceramics Inc OH

Hot Repair
Fosbel Inc OH

Joining
Advanced Ceramic Technology CA
CeramTec North America Corp SC
Fosbel Inc OH
Fusion Tech/Hot Tech Group OH
Induceramic Canada
Morgan Technical Ceramics Auburn CA
P-Ker Engineering NY
Precision Ferrites and Ceramics Inc CA
Refrac Systems AZ
Refraco LLC NY
Sigma Advanced Materials NY
Starfire Systems Inc NY

Lapping & Polishing
Advanced Ceramic Technology CA
Astro Met Advanced Ceramics Inc OH
Bullen OH
CoorsTek CO
Du-Co Ceramics Company PA
Dunhua Zhengping Abrasive Co Ltd China
International Ceramic Engineering MA
Morgan Technical Ceramics Auburn CA
Ortech Inc CA
PremaTech Advanced Ceramics MA
Superior Technical Ceramics Corp VT
See ad on pg 63
Technical Products Inc WI
Texers Technical Ceramics Inc Canada
Valley Design Corp MA

Laser Cutting & Scribing Services
Cerise France
CoorsTek CO
Laserage Technology Corp L
Ortech Inc CA

Machining
Advanced Ceramic Technology CA
Advanced Ceramics Manufacturing AZ
Aremco Products Inc NY
Astro Met Advanced Ceramics Inc OH

Precision Machining of Advanced Ceramics and Composite Materials
Since 1959
ITAR Registered
Joe Annese
Mark Annese

Bomas Machine Specialties Inc MA
See ad on pg 81
Bullen OH
Christy Minerals LLC MO
CIDRA Precision Services LLC CT
CoorsTek CO
Du-Co Ceramics Company PA
FCT Ingenieurkeramik GmbH Germany
Ferro-Ceramic Grinding Inc MA
Fluid Energy Processing & Equipment Co PA
International Ceramic Engineering MA
Machined Ceramics Inc KY
McDanel Advanced Ceramic Technologies LLC PA
See ad on pg 61
Morgan Technical Ceramics Auburn CA
Ortech Inc CA
PremaTech Advanced Ceramics MA
Reade Advanced Materials RI
Refractory Machining Services PA
Refractory Minerals Co Inc PA
Refractron Technologies Corp NY
RocCera LLC NY
Stedman Machine Co IN
Union Process OH
Valley Design Corp MA
Washington Mills Electro Minerals Co NY
Zibo Guangtong Chemical Co Ltd China

Hot Repair
Fosbel Inc OH

Joining
Advanced Ceramic Technology CA
CeramTec North America Corp SC
Fosbel Inc OH
Fusion Tech/Hot Tech Group OH
Induceramic Canada
Morgan Technical Ceramics Auburn CA
P-Ker Engineering NY
Precision Ferrites and Ceramics Inc CA
Refrac Systems AZ
Refraco LLC NY
Sigma Advanced Materials NY
Starfire Systems Inc NY

Teeter Marketing Services LLC FL
See ad on pg 61
See ad on pg 61

Machining
Advanced Ceramic Technology CA
Advanced Ceramics Manufacturing AZ
Aremco Products Inc NY
Astro Met Advanced Ceramics Inc OH

Precision Machining of Advanced Ceramics and Composite Materials
Since 1959
ITAR Registered
Joe Annese
Mark Annese

Bomas Machine Specialties Inc MA
See ad on pg 81
Bullen OH
CerCo LLC OH
CIDRA Precision Services LLC CT
Du-Co Ceramics Company PA
Elan Technology CA
FCT Ingenieurkeramik GmbH Germany
FELDCO Intl CA
Ferro-Ceramic Grinding Inc MA
Fosbel Inc OH
International Ceramic Engineering MA
Laserage Technology Corp L
Machined Ceramics Inc KY
Maryland Ceramic & Steatite Co Inc MD
McDanel Advanced Ceramic Technologies LLC PA
See ad on pg 61
Morgan Technical Ceramics Auburn CA
Ortech Inc CA
Precision Ceramics FL

PremaTech Advanced Ceramics MA
Progressive Technology Inc CA

160 Goddard Memorial Dr., Worcester, MA 01603, USA
Tel: 508-791-9549 • Fax: 508-793-9814
www.PremaTechAC.com
CUSTOM CERAMICS FABRICATION & ENGINEERING SERVICES

Ram Products Inc OH
Refractory Machining Services PA
RocCera LLC NY
Stahl USA Inc WI
Superior Technical Ceramics Corp VT See ad on pg 63
Technical Products Inc WI
Valley Design Corp MA
Zircar Zirconia Inc NY

Millling, Custom
Advanced Ceramic Technology CA
AVeka MN
Bullen OH
CIDRA Precision Services LLC CT
Custom Processing Services PA
Fluid Energy Processing & Equipment Co PA
International Ceramic Engineering MA
MSE Supplies AZ
Powder Processing & Technology LLC IN
Precision Ceramics FL
PremaTech Advanced Ceramics MA
Reade Advanced Materials RI
Refractory Machining Services PA
RocCera LLC NY
Sledman Machine Co IN
Union Process OH
Valley Design Corp MA
Washington Mills Electro Minerals Co NY

Nuclear Materials
Dunhua Zhengxing Abrasive Co Ltd China
Morgan Technical Ceramics Auburn CA
Peter Pugger Mfg Inc CA
Refrac Systems AZ
Verity Technical Consultants LLC OH

Piezoelectrics
APC International Ltd PA
CerPoTech AS Norway
Electrosciences Ltd UK
Haiku Tech Europe BV The Netherlands
Haiku Tech Inc FL
Meggitt Piezo Technologies IN
Sparkler Ceramics Pvt Ltd India

Powder Synthesis
CerPoTech AS Norway

Prototypes
Accuratus Corp NJ
Advanced Ceramic Technology CA
Astra Met Advanced Ceramics Inc OH
Bullen OH
Ceramtec North America Corp SC
CerCo LLC OH
CoresTek CO
Du-Co Ceramics Company PA
ESL ElectroScience PA
FCT Ingenieurkeramik GmbH Germany
Goceram AB Sweden
Industrial Ceramic Products Inc OH
International Ceramic Engineering MA
Lithoz GmbH NY
Morgan Technical Ceramics Auburn CA
Ortech Inc CA
P-Ker Engineering NY
Precision Ceramics FL

PremaTech Advanced Ceramics MA
Progressive Technology Inc CA
Ram Products Inc OH
Refrac Systems AZ
Rebrocasting Enterprises LLC NM
RocCera LLC NY
Silicon Carbide Products Inc NY

Technical Products Inc WI
Technology Assessment and Transfer Inc (TA&T) MD
Tethon 3D NE

Refractory Installation
Diamorph AB UK
Fosbel Inc OH
Refractory Consulting Services OH
Riverside Refractories Inc AL
Wistra GmbH Germany

Screen Printing
Aremco Products Inc NY
Gwent Electronic Materials Ltd UK
Haiku Tech Europe BV The Netherlands
Haiku Tech Inc FL

Unsurpassed thermal and deposition uniformity
Each system custom designed to suit your specific requirements
Laboratory to Production
Exceptional automated control systems providing improved product quality, consistency and monitoring
Worldwide commissioning, training and service

www.tevtechllc.com
Tel. (978) 667-4557
100 Billerica Ave, Billerica, MA 01862
Fax. (978) 667-4554
sales@tevtechllc.com
DECORATING

Screening, Custom
AVEKA MN
CerPoTech AS Norway
Fluid Energy Processing & Equipment Co PA
General Spray LLC NJ
Reade Advanced Materials RI

Seals
Astro Met Advanced Ceramics Inc OH
Bharat Heavy Electricals Ltd NY
CerCo LLC OH
Dunhua Zhengxing Abrasive Co Ltd China
Elian Technology GA
Morgan Technical Ceramics Auburn CA
Ortech Inc CA
P-Ker Engineering NY
Precision Ceramics FL
Refrac Systems AZ
Saint-Gobain High Performance Ceramics & Refractories MA
Texers Technical Ceramics Inc Canada

Spray Drying
Arch Maintenance Services GA
AVEKA MN
CeramTec North America Corp SC
CerPoTech AS Norway
Dorst America Inc PA
Elian Technology GA
General Spray LLC NJ

Powder Processing & Technology LLC IN
Verity Technical Consultants LLC OH

Superconductors
Precision Ceramics FL

Toll Blending, Processing
AVEKA MN
CerPoTech AS Norway
Custom Processing Services PA
Euro Support Advanced Materials The Netherlands
Fluid Energy Processing & Equipment Co PA
Fusion Ceramics Inc OH
General Spray LLC NJ
Gwent Electronic Materials Ltd UK
Peter Pugger Mfg Inc CA
Powder Processing & Technology LLC IN
Reade Advanced Materials RI
Refrac Systems AZ
TAM Ceramics NY

Toll Firing, Contract
ACCCO Inc/Burley Clay Products Co OH
Advanced Ceramics Manufacturing AZ
Astro Met Advanced Ceramics Inc OH
CeramTec North America Corp SC
Christy Minerals LLC MO
FCT Ingenieurkeramik GmbH Germany
FCT Systeme GmbH Germany

Glazes
American Art Clay Co Inc IN
Ceramic Color & Chemical Mfg Co PA
Cerlase France
Fusion Ceramics Inc OH
Laguna Clay Co CA
Mason Color Works Inc OH
RISE Research Institutes of Sweden, RISE Glass Sweden
Sheffield Pottery MA

Grazing Equipment
Arlimin Industries CO
Cerlase France
Du-Co Ceramics Company PA
HED Intl Inc NJ

Inks
American Art Clay Co Inc IN
Ceramic Color & Chemical Mfg Co PA
Fusion Ceramics Inc OH
Gwent Electronic Materials Ltd UK
Zibo Guangtong Chemical Co Ltd China

Lehrs
Nabertherm Inc DE
Recco Furnaces CA

Pigments
Arlimin Industries CO
Ceramic Color & Chemical Mfg Co PA
Fusion Ceramics Inc OH
Mason Color Works Inc OH

Porcelain Enamels
Cerlase France
Fusion Ceramics Inc OH
RISE Research Institutes of Sweden, RISE Glass Sweden

Precious Metals
FELDCO Intl CA
Fusion Ceramics Inc OH
Gwent Electronic Materials Ltd UK

Screen Printing Equipment
Aremco Products Inc NY
Haiku Tech Europe BV The Netherlands
Haiku Tech Inc FL

Silver Pastes, Conducting
Master Bond Inc NJ

Spray Booths
American Art Clay Co Inc IN
Laguna Clay Co CA

Stains
Ceramic Color & Chemical Mfg Co PA
Fusion Ceramics Inc OH
Mason Color Works Inc OH
Sheffield Pottery MA
Trinity Ceramic Supply Inc TX

Used Equipment
Mohr Corp MI

DECORATING

Coating Equipment
Cerakote Ceramic Coatings OR
Cerlase France
Haiku Tech Europe BV The Netherlands
Industrial Hard Carbon LLC NC
Laguna Clay Co CA

Decorating Equipment
Cerlase France

Decorating Supplies
Ceramic Color & Chemical Mfg Co PA

Enamels
Ceramic Color & Chemical Mfg Co PA
Cerlase France
Fusion Ceramics Inc OH
Mason Color Works Inc OH

Engobes
American Art Clay Co Inc IN
Ceramic Color & Chemical Mfg Co PA
Fusion Ceramics Inc OH
RISE Research Institutes of Sweden, RISE Glass Sweden
Trinity Ceramic Supply Inc TX

Frits
Ceradayne Inc, a 3M Co KY
Ceramic Color & Chemical Mfg Co PA
Fusion Ceramics Inc OH
RISE Research Institutes of Sweden, RISE Glass Sweden

For more information, please contact us at
219-462-4141 x244 or sales@pptechnology.com
5103 Evans Avenue | Valparaiso, IN 46383
www.pptechnology.com
Deltech Furnaces
An ISO 9001:2015 certified company

Control Systems are Intertek certified UL508A compliant

www.deltechfurnaces.com
Please join us in supporting the Ceramic and Glass Industry Foundation
DINNERWARE

China, Fine
- Cerinov France
- StudioLX - Home Decor IL

Earthenware
- Petro Mold Company PA
- Sheffield Pottery MA
- Tetron 3D NE

Porcelain
- Akron Porcelain & Plastics Co OH
- Art On Ceramic NY
- Cerinov France
- Sheffield Pottery MA
- StudioLX - Home Decor IL
- Tetron 3D NE
- Wistra GmbH Germany

Tableware, Glass
- RISE Research Institutes of Sweden, RISE Glass Sweden
- StudioLX - Home Decor IL

Blowers
- Zenith China

Burners
- Air Products PA
- Cartherm France
- Furnace Products & Services Inc PA
- HED Intl Inc NJ
- Swindell Dressler Intl Co PA
- Zenith China

Calciners
- Applied Test Systems Inc PA
- Euro Support Advanced Materials The Netherlands
- Fluid Energy Processing & Equipment Co PA
- Harper International Corp NY
- Haiku Tech Europe BV The Netherlands
- Haiku Tech Inc FL

Controllers
- Applied Test Systems Inc PA
- Carbolite Gero UK
- General Glass Equipment Co NJ
- HED Intl Inc NJ
- Paragon Industries LP TX
- PSH Kilns & Furnaces Canada
- Zenith China

Controllers, Combustion
- Air Products PA
- Fives north American Combustion Inc OH

Controllers, Furnace
- Carbolite Gero UK
- Nabertherm Inc DE

Dryers
- Advanced Machinery Inc MI
- Applied Test Systems Inc PA
- Basic Machinery Co Inc NC
- Ceramic Services Inc PA
- Cerilase France
- Colber Muegge LLC CT
- Fives north American Combustion Inc OH
- Fluid Energy Processing & Equipment Co PA
- Furnace Products & Services Inc PA
- Goceram AB Sweden
- Haiku Tech Europe BV The Netherlands
- Haiku Tech Inc FL

Electrodes
- Haiku Tech Europe BV The Netherlands
- Haiku Tech Inc FL

Environmental Control Systems
- Air Products PA
- Applied Test Systems Inc PA
- Control Instruments Corp NJ

Furnaces
- American Isostatic Presses OH
- Applied Test Systems Inc PA
- Carbolite Gero UK

THERMCRAFT INC

Thermcraft Inc NC
- See ad on pg 88

Verder Scientific Inc PA
- See ad on pg 101

Controllers, Temperature
- Applied Test Systems Inc PA
- Datapaq Inc NH
- Edward Orton Jr Ceramic Foundation OH
- Nabertherm Inc DE
- Optocon AG Germany
- Paragon Industries LP TX
- PSH Kilns & Furnaces Canada
- Verder Scientific Inc PA

Data Acquisition Systems
- Applied Test Systems Inc PA
- Datapaq Inc NH
- HED Intl Inc NJ
- Nabertherm Inc DE

Driers
- Advanced Machinery Inc MI
- Applied Test Systems Inc PA
- Basic Machinery Co Inc NC
- Ceramic Services Inc PA
- Cerilase France
- Colber Muegge LLC CT
- Fives north American Combustion Inc OH
- Fluid Energy Processing & Equipment Co PA
- Furnace Products & Services Inc PA
- Goceram AB Sweden
- Haiku Tech Europe BV The Netherlands
- Haiku Tech Inc FL

Harrop Industries Inc OH
- See ad on pg 58

L&L Kiln Mfg Inc NJ
- See ad on pg 93

I Squared R Element Co NY
- See ad on pg 89

L&L Special Furnace Co Inc PA
- See ad on pg 87

Materials Research Furnaces Inc NH
- See ad on pg 79

Moor Corp MI
- Nabertherm Inc DE

Oxy-Gon Industries Inc NH
- See ad on pg 89

PSh Kilns & Furnaces Canada
- See ad on pg 95

Quintus Technologies LLC OH
- RD Webb Company Inc MA
- Seco/Warwick Corp PA
- Swindell Dressler Intl Co PA

Ilfurnace.com / 877.846.7628
- 20 Kent Road, Aston, PA 19014
- P: 610.459.9216 F: 610.459.3689 E: sales@ilfurnace.com

L&S Special Furnace Co Inc PA
- See ad on pg 87

Materials Research Furnaces Inc NH
- See ad on pg 79

Nabertherm Inc DE
- See ad on pg 95

Raygon Industries LP TX
- PSh Kilns & Furnaces Canada
- Quintus Technologies LLC OH
- RD Webb Company Inc MA
- Seco/Warwick Corp PA
- Swindell Dressler Intl Co PA

TeVeTech MATERIALS PROCESSING SOLUTIONS Custom Furnaces & Components

TeVeTech LLC MA
- See ad on pg 83

The Furnace Source LLC CT
- See ad on pg 88

Trent Inc PA
- See ad on pg 88
Verder Scientific Inc PA See ad on pg 101
Wyssmont Co NJ

Furnaces, Alternative Fuels
Ceritherm France
Harper International Corp NY See ad on pg 77
Harrop Industries Inc OH See ad on pg 58
Keith Co CA
Recco Furnaces CA
Swindell Dressler Intl Co PA
Thermcraft Inc NC See ad on pg 88
Verder Scientific Inc PA See ad on pg 101

Furnaces, Electric
Advanced Machinery Inc MI
American Isostatic Presses OH
Applied Test Systems Inc PA
Aremco Products Inc NY
Carbolite Gero UK See ad on pg 101

Centorr Vacuum Industries NH See ad on pg 87
Ceramic Services Inc PA
Ceritherm France
CM Furnaces Inc NJ

Deltech Inc CO See ad on pg 85
Deltech Kiln and Furnace Design, LLC CO
FCT Systeme GmbH Germany
Gasbarre Products Inc PA See ad on pg 95
Harper International Corp NY See ad on pg 77
Harrop Industries Inc OH See ad on pg 58
HED Intl Inc NJ
Keith Co CA
L&L Kiln Mfg Inc NJ
L&L Special Furnace Co Inc PA See ad on pg 87
Lucifer Furnaces Inc PA
Materials Research Furnaces Inc NH
Nabertherm Inc DE
Oxy-Gon Industries Inc NH See ad on pg 89
Paragon Industries LP TX
PSH Kilns & Furnaces Canada
RD Webb Company Inc MA
Recco Furnaces CA
Secco/Warwick Corp PA
The Furnace Source LLC CT
Thermcraft Inc NC See ad on pg 88
Trent Inc PA
Verder Scientific Inc PA See ad on pg 101
Winner Technology The Republic of Korea
Wysamont Co NJ
Zircar Zirconia Inc NY

Furnaces, Gas
Advanced Machinery Inc MI
Ceramic Services Inc PA
Ceritherm France
Harper International Corp NY See ad on pg 77
Harrop Industries Inc OH See ad on pg 58
HED Intl Inc NJ

If you have high-value loads to process, look no further than L&L Special Furnace. Our furnaces are the most reliable on the market – at any price! Each one is Special!

• Precision
• Uniformity
• Value

Centorr Vacuum Industries
55 Northeastern Blvd., Nashua, NH 03062 USA • 603-595-7233 • E-mail: sales@centorr.com
www.centorr.com
Furnaces, Glass-Melting
Applied Test Systems Inc PA
Carbolite Gero UK See ad on pg 101
Ceradyne Inc, a 3M Co KY
CM Furnaces Inc NJ
Deltech Inc CO See ad on pg 85
Deltech Kiln and Furnace Design, LLC CO
Furnace Products & Services Inc PA
General Glass Equipment Co NJ
Magnece Metrel Inc IL
Nabertherm Inc DE
Paragon Industries LP TX
PSH Kilns & Furnaces Canada
RISE Research Institutes of Sweden, RISE Glass Sweden
Verder Scientific Inc PA See ad on pg 101
Zircar Zirconia Inc NY

Furnaces, High-Temperature
Applied Test Systems Inc PA
Cancarb Limited Canada
Carbolite Gero UK See ad on pg 101
Centorr Vacuum Industries NH See ad on pg 87
Centherm France
CM Furnaces Inc NJ
Cober Muegge LLC CT
Dalmia Inst of Scientific & Industrial Research India
Deltech Inc CO See ad on pg 85
Detroit Process Machinery MI
FCT Systeme GmbH Germany
Furnace Products & Services Inc PA
Gasbarre Products Inc PA
Harper International Corp NY See ad on pg 95
Harrop Industries Inc OH See ad on pg 77
HED Intl Inc NJ
Lucifer Furnaces Inc PA
Materials Research Furnaces Inc NH
Nabertherm Inc DE
Nutec Bickley Mexico
Oxy-Gon Industries Inc NH See ad on pg 89
Phaneey SE MA

Furnaces, Laboratory
Carbolite Gero UK See ad on pg 101
Centorr Vacuum Industries NH See ad on pg 87
CM Furnaces Inc NJ
Cober Muegge LLC CT
Deltech Inc CO See ad on pg 85
Deltech Kiln and Furnace Design, LLC CO
FCT Systeme GmbH Germany
Harper International Corp NY See ad on pg 77
L&L Special Furnace Co Inc PA See ad on pg 87
Lucifer Furnaces Inc PA
Materials Research Furnaces Inc NH
Nabertherm Inc DE
Nutec Bickley Mexico
Oxy-Gon Industries Inc NH See ad on pg 89
RD Webb Company Inc MA
RocCera LLC NY
The Furnace Source LLC CT
Verder Scientific Inc PA See ad on pg 101
Winner Technology The Republic of Korea
Zircar Zirconia Inc NY

Furnaces, Vacuum
Applied Test Systems Inc PA
AVS Inc MA
Centorr Vacuum Industries NH See ad on pg 87
Cober Muegge LLC CT
FCT Systeme GmbH Germany
Gasbarre Products Inc PA See ad on pg 95
Goceram AB Sweden
Materials Research Furnaces Inc NH
Nabertherm Inc DE
Nutec Bickley Mexico
Oxy-Gon Industries Inc NH See ad on pg 89
RocCera LLC NY
Seco/Warwick Corp PA
Starbar® and Moly-D® elements are made in the U.S.A.
with a focus on providing the highest quality heating elements and service to the global market.

I²R -- 56 years of service and reliability
I Squared R Element Co., Inc.
Akron, NY Phone: (716)542-5511
Fax: (716)542-2100
Email: sales@isquaredrelement.com
www.isquaredrelement.com

BELL FURNACE
Ideal for Sensitive Loads
Ceramic Firing
Ceramic Polishing
Sintering
Annealing

"Degrees Ahead in Quality"

OXY-GON INDUSTRIES, INC.
P.O. Box 40, Epsom, NH 03234-0040 (603) 736-8422 • Fax (603) 736-8734
e-mail: sales@oxy-gon.com • website: www.oxy-gon.com

<table>
<thead>
<tr>
<th>Kilns, Rotary</th>
<th>Harper International Corp NY</th>
<th>See ad on pg 77</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Harrop Industries Inc OH</td>
<td>See ad on pg 58</td>
</tr>
<tr>
<td></td>
<td>HED Intl Inc NJ</td>
<td>See ad on pg 77</td>
</tr>
<tr>
<td></td>
<td>Keith Co CA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>L&L Kiln Mfg Inc NJ</td>
<td>See ad on pg 87</td>
</tr>
<tr>
<td></td>
<td>L&L Special Furnace Co Inc PA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lucifer Furnaces Inc PA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nabetherm Inc DE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nutec Bickley Mexico</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PSH Kilns & Furnaces Canada</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Recco Furnaces CA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Swindell Dressler Intl Co PA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Takasago Industry Co Ltd Japan</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thermcraft Inc NC</td>
<td>See ad on pg 88</td>
</tr>
<tr>
<td></td>
<td>Verder Scientific Inc PA</td>
<td>See ad on pg 101</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kilns, Shuttle</th>
<th>Harper International Corp NY</th>
<th>See ad on pg 77</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Harrop Industries Inc OH</td>
<td>See ad on pg 58</td>
</tr>
<tr>
<td></td>
<td>HED Intl Inc NJ</td>
<td>See ad on pg 77</td>
</tr>
<tr>
<td></td>
<td>Keith Co CA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>L&L Kiln Mfg Inc NJ</td>
<td>See ad on pg 87</td>
</tr>
<tr>
<td></td>
<td>L&L Special Furnace Co Inc PA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lucifer Furnaces Inc PA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nabetherm Inc DE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nutec Bickley Mexico</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PSH Kilns & Furnaces Canada</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Recco Furnaces CA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Swindell Dressler Intl Co PA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Takasago Industry Co Ltd Japan</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thermcraft Inc NC</td>
<td>See ad on pg 88</td>
</tr>
<tr>
<td></td>
<td>Wistrab GmbH Germany</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kilns, Test/Lab</th>
<th>American Art Clay Co Inc IN</th>
<th>See ad on pg 101</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Applied Test Systems Inc PA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ceratherm France</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Carbolite Gero UK</td>
<td>See ad on pg 101</td>
</tr>
<tr>
<td></td>
<td>Ceramic Services Inc PA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ceritherm France</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CM Furnaces Inc NJ</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cober Muegge LLC CT</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FCT Systeme GmbH Germany</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Harper International Corp NY</td>
<td>See ad on pg 77</td>
</tr>
<tr>
<td></td>
<td>Harrop Industries Inc OH</td>
<td>See ad on pg 58</td>
</tr>
<tr>
<td></td>
<td>HED Intl Inc NJ</td>
<td>See ad on pg 77</td>
</tr>
<tr>
<td></td>
<td>Keith Co CA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>L&L Kiln Mfg Inc NJ</td>
<td>See ad on pg 87</td>
</tr>
<tr>
<td></td>
<td>L&L Special Furnace Co Inc PA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lucifer Furnaces Inc PA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nabetherm Inc DE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nutec Bickley Mexico</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PSH Kilns & Furnaces Canada</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Recco Furnaces CA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Swindell Dressler Intl Co PA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Takasago Industry Co Ltd Japan</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thermcraft Inc NC</td>
<td>See ad on pg 88</td>
</tr>
<tr>
<td></td>
<td>Wistrab GmbH Germany</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kilns, Tunnel (Continuous)</th>
<th>Basic Machinery Co Inc NC</th>
<th>See ad on pg 101</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ceramic Services Inc PA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ceratherm France</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Carbolite Gero UK</td>
<td>See ad on pg 101</td>
</tr>
<tr>
<td></td>
<td>Ceramic Services Inc PA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ceritherm France</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CM Furnaces Inc NJ</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cober Muegge LLC CT</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FCT Systeme GmbH Germany</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Harper International Corp NY</td>
<td>See ad on pg 77</td>
</tr>
<tr>
<td></td>
<td>Harrop Industries Inc OH</td>
<td>See ad on pg 58</td>
</tr>
<tr>
<td></td>
<td>HED Intl Inc NJ</td>
<td>See ad on pg 77</td>
</tr>
<tr>
<td></td>
<td>Keith Co CA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>L&L Kiln Mfg Inc NJ</td>
<td>See ad on pg 87</td>
</tr>
<tr>
<td></td>
<td>L&L Special Furnace Co Inc PA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lucifer Furnaces Inc PA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nabetherm Inc DE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nutec Bickley Mexico</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PSH Kilns & Furnaces Canada</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Recco Furnaces CA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Swindell Dressler Intl Co PA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Takasago Industry Co Ltd Japan</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thermcraft Inc NC</td>
<td>See ad on pg 88</td>
</tr>
<tr>
<td></td>
<td>Verder Scientific Inc PA</td>
<td>See ad on pg 101</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kilns, Pusher Plate</th>
<th>Ceratherm France</th>
<th>CM Furnaces Inc NJ</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CM Furnaces Inc NJ</td>
<td>CM Furnaces Inc NJ</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kilns, Roller Hearth</td>
<td>Ceramic Services Inc PA</td>
<td>Ceratherm France</td>
</tr>
<tr>
<td></td>
<td>CM Furnaces Inc NJ</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kilns, Elevator</td>
<td>Advanced Machinery Inc MI</td>
<td>Applied Test Systems Inc PA</td>
</tr>
<tr>
<td></td>
<td>Ceramic Services Inc PA</td>
<td>Ceratherm France</td>
</tr>
<tr>
<td></td>
<td>CM Furnaces Inc NJ</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Euro Support Advanced Materials The Netherlands</td>
<td></td>
</tr>
</tbody>
</table>
Electrical/Electronic Ceramics

Antennas, Dielectric
- Euro Support Advanced Materials The Netherlands
- O’Keefe Ceramics Inc CO
- Trans-Tech Inc, a subsidiary of Skyworks Solutions Inc MD

Capacitors
- Associated Ceramics & Technology Inc PA
 - See ad on pg 65
 - AVX Corp SC
- Euro Support Advanced Materials The Netherlands
- Ferro-Ceramic Grinding Inc MA
- Induceramic Canada
- Murata Manufacturing Co Ltd Japan
- Polymer Innovations Inc CA

Ceramic-Brazed Assemblies
- AdTech Ceramics TN
- CeramTec North America Corp SC

Conductors
- AdTech Ceramics TN
- CerPoTech AS Norway
- ESL ElectroScience PA
- Master Bond Inc NJ
- norEcs AS Norway

Crystals
- Induceramic Canada
- Kyocera International Inc CA
- Momentive Performance Materials Inc NY
- MSE Supplies AZ
- TevTech LLC MA
 - See ad on pg 83

Dielectrics
- AVX Corp SC
- Centerline Technologies OH
- CerPoTech AS Norway
- ESL ElectroScience PA

Filters, Dielectric
- CerPoTech AS Norway
- Euro Support Advanced Materials The Netherlands
- Murata Manufacturing Co Ltd Japan
- Trans-Tech Inc, a subsidiary of Skyworks Solutions Inc MD

Fuel Cells, Solid Oxide
- AdTech Ceramics TN
- Associated Ceramics & Technology Inc PA
 - See ad on pg 65
- Bharat Heavy Electricals Ltd NY
- CanCarb Limited Canada
- CerPoTech AS Norway
- ESL ElectroScience PA
- Euro Support Advanced Materials The Netherlands
- Gwent Electronic Materials Ltd UK
- H.C. Starck GmbH Germany
- H.C. Starck Surface Technology and Ceramic Powders GmbH Germany
- Morgan Technical Ceramics Auburn CA
- Nexcioris LLC OH
- norEcs AS Norway
- Polymer Innovations Inc CA
- Trans-Tech Inc, a subsidiary of Skyworks Solutions Inc MD

High-Voltage Insulators
- Akron Porcelain & Plastics Co OH
- Bharat Heavy Electricals Ltd NY
- Ceramco Inc NH
- CeramTec North America Corp SC
- Du-Co Ceramics Company PA
- Elcon Precision LLC CA
 - See ad on pg 107
- Morgan Technical Ceramics Auburn CA
- Precision Ferrites and Ceramics Inc CA
- Xiamen Innovacera Advanced Materials Co Ltd China
 - See ad on pg 93

Hybrid Circuits & Packages
- AdTech Ceramics TN
- AVX Corp SC
- Xiamen Innovacera Advanced Materials Co Ltd China
 - See ad on pg 93
- Precision Ferrites and Ceramics Inc CA

IC Packages
- AdTech Ceramics TN
- Kyocera International Inc CA
- NGK Spark Plug Co Ltd Japan

Insulators, Electrical/Electronic
- Accurateus Corp NJ
- AdTech Ceramics TN
- AdValue Technology LLC AZ
 - See ad on pg 43
- Akron Porcelain & Plastics Co OH
- Blasch Precision Ceramics Inc NY
- Ceramco Inc NH
- CeramTec North America Corp SC
- CerCo LLC OH
- Du-Co Ceramics Company PA
- ER Advanced Ceramics Inc OH
- ESL ElectroScience PA

Magnets
- Spontaneous Materials CO

Microwave Packages
- AdTech Ceramics TN
- Kyocera International Inc CA
- Precision Ferrites and Ceramics Inc CA

Multilayer Ceramic Capacitors
- Euro Support Advanced Materials The Netherlands
- Murata Manufacturing Co Ltd Japan
- Polymer Innovations Inc CA

Multilayer Ceramics, AIN
- AdTech Ceramics TN
- NEVZ-Ceramics, Close JSC Russia
- Xiamen Innovacera Advanced Materials Co Ltd China
 - See ad on pg 93

Multilayer Ceramics, Custom
- AdTech Ceramics TN
- EBL Products Inc CT
- Euro Support Advanced Materials The Netherlands
- Xiamen Innovacera Advanced Materials Co Ltd China
 - See ad on pg 93

Piezoelectrics
- APC International Ltd PA
- AVX Corp SC
- EBL Products Inc CT
- Meggitt Piezo Technologies IN
- Morgan Advanced Materials CA
- Polymer Innovations Inc CA
- Sparkler Ceramics Pvt Ltd India

Resistors, Thick-Film
- ESL ElectroScience PA
- Murata Manufacturing Co Ltd Japan
- Polymer Innovations Inc CA

Resonators
- AVX Corp SC
- Murata Manufacturing Co Ltd Japan
- NGK Spark Plug Co Ltd Japan
- Trans-Tech Inc, a subsidiary of Skyworks Solutions Inc MD

RF Components
- AdTech Ceramics TN
- Advanced Ceramic Technology CA
- Advanced Energy CO
- Murata Manufacturing Co Ltd Japan
- Precision Ferrites and Ceramics Inc CA
- Trans-Tech Inc, a subsidiary of Skyworks Solutions Inc MD

Semiconductors
- Cancarb Limited Canada
- Elcon Precision LLC CA
 - See ad on pg 107
- Momentive Performance Materials Inc NY
- NEVZ-Ceramics, Close JSC Russia

Semiconductors
- Cancarb Limited Canada
- Elcon Precision LLC CA
 - See ad on pg 107
- Momentive Performance Materials Inc NY
- NEVZ-Ceramics, Close JSC Russia
Semiconductor Energy Laboratory Co Ltd Japan
See ad on pg 91
Toto Ltd Japan

Sensors
AdTech Ceramics TN
AVX Corp SC
Bullen OH
CeramTec North America Corp SC
EBL Products Inc CT
Gwent Electronic Materials Ltd UK
Murata Manufacturing Co Ltd Japan
Neoptix Canada
Otech AG Germany
Polymer Innovations Inc CA
Quality Thermostor Inc ID
Sparkler Ceramics Pvt Ltd India
Technisonic Research Inc CT

Spark Plugs
Associated Ceramics & Technology Inc PA
See ad on pg 65
CarCo LLC OH
Federal-Mogul MI
Gwent Electronic Materials Ltd UK
NGK Spark Plug Co Ltd Japan

Substrates, Alumina
Accuratus Corp NJ
AdTech Ceramics TN
Bullen OH
Centerline Technologies OH
CeramTec North America Corp SC
CoorsTek CO
Du-Co Ceramics Company PA
Laserage Technology Corp IL
NEVZ-Ceramics, Close JSC Russia
NGK Spark Plug Co Ltd Japan
Ortech Inc CA
Saint-Gobain nonPro OH
Toto Ltd Japan
Valley Design Corp MA
Xiamen Innovacera Advanced Materials Co Ltd China
See ad on pg 93

Substrates, Aluminum Nitride
Accuratus Corp NJ
AdTech Ceramics TN
Bullen OH
Centerline Technologies OH
CoorsTek CO
Laserage Technology Corp IL
MSE Supplies AZ
NEVZ-Ceramics, Close JSC Russia
Ortech Inc CA
Starfire Systems Inc NY
Valley Design Corp MA
Xiamen Innovacera Advanced Materials Co Ltd China
See ad on pg 93

Substrates, Glass
Accuratus Corp NJ
Bullen OH
Centerline Technologies OH
Laserage Technology Corp IL
RISE Research Institutes of Sweden, RISE Glass Sweden

Thermistors
AVX Corp SC
Gwent Electronic Materials Ltd UK
Murata Manufacturing Co Ltd Japan
Polymer Innovations Inc CA
Quality Thermistor Inc ID

Transducers
APC International Ltd PA
CSC Force Measurement Inc MA
EBL Products Inc CT
Meggitt Piezo Technologies IN
Neoptix Canada
Sparkler Ceramics Pvt Ltd India
Technisonic Research Inc CT

Transformers
RoMan Manufacturing MI
Warner Power LLC MI

Ultrasonic Ceramics
APC International Ltd PA
EBL Products Inc CT
Meggitt Piezo Technologies IN

Varistors
AVX Corp SC
Kyocera International Inc CA
Polymer Innovations Inc CA

Learn more at www.innovacera.com
Tel: 0086-592-5589730 Fax: 0086-592-5589733
Email: sales@innovacera.com
Note: * machining only

93
| FABRICATING & FINISHING |

Abrasives
- Allied High Tech Products Inc CA
- Diacut Inc CO
- Diamond Industrial Tools Inc IL
- Dunhua Zhengxing Abrasive Co Ltd China
- Dynacut Inc PA
- Electro Abrasives Corp NY
- Engis Corp IL
- FELDCO Int CA
- Jet Edge Waterjet Systems MN
- Reade Advanced Materials RI
- Saint-Gobain Abrasives MA
- Sigmadiamant Spain
- Stahli USA Inc WI

Cutting Equipment
- Basic Machinery Co Inc NC
- Diamond Industrial Tools Inc IL
- General Glass Equipment Co NJ
- Haiku Tech Inc FL
- Jet Edge Waterjet Systems MN
- Liberty Machinery Co IL
- OptiPro Systems LLC NY
- Penn Tool Co NJ
- Sigmadiamant Spain
- Suntech Advanced Ceramics (Shenzhen) Co Ltd China

Cutting Tools
- Diacut Inc CO
- Dynacut Inc PA
- Engis Corp IL
- Jet Edge Waterjet Systems MN
- New Tech Ceramics Inc IA
- Penn Tool Co NJ
- Sigmadiamant Spain

CVD Equipment
- Advanced Energy CO
- Centeror Vacuum Industries NH
- Liberty Machinery Co IL

Deburring Equipment
- Engis Corp IL
- Liberty Machinery Co IL
- Mohr Corp MI
- Penn Tool Co NJ

Diamond Drills
- Diamond Industrial Tools Inc IL
- Greenlee Diamond Tool Co IL

Diamond Hones
- Diamond Industrial Tools Inc IL
- Engis Corp IL
- Greenlee Diamond Tool Co IL
- Saint-Gobain Abrasives MA
- Stahli USA Inc WI

Diamond Saw Blades
- Allied High Tech Products Inc CA
- Aremco Products Inc NY
- Contrust Architectural Mesh Co Ltd China
- Diacut Inc CO
- Diamond Industrial Tools Inc IL
- Dynacut Inc PA
- Engis Corp IL
- Greenlee Diamond Tool Co IL
- LECO Corp MI
- Liberty Machinery Co IL
- Saint-Gobain Abrasives MA
- Texers Technical Ceramics Inc Canada

Diamond Saws
- Allied High Tech Products Inc CA
- Aremco Products Inc NY
- Diacut Inc CO
- Dynacut Inc PA
- Greenlee Diamond Tool Co IL
- Liberty Machinery Co IL

Diamond Tools
- Diamond Industrial Tools Inc IL
- Engis Corp IL
- Greenlee Diamond Tool Co IL
- LECO Corp MI
- Penn Tool Co NJ
- Saint-Gobain Abrasives MA
- Sigmadiamant Spain

Dicing Equipment
- Aremco Products Inc NY
- Diacut Inc CO
- Diamond Industrial Tools Inc IL
- Dynacut Inc PA
- Liberty Machinery Co IL
- Nutec Bickley Mexico

Dies
- Gasbarre Products Inc PA
- Ram Products Inc OH

Dressing Wheels, Diamond
- Diacut Inc CO
- Diamond Industrial Tools Inc IL
- Dynacut Inc PA
- Engis Corp IL
- Greenlee Diamond Tool Co IL

Electroplating Equipment
- Haiku Tech Inc FL
- Liberty Machinery Co IL
- Penn Tool Co NJ

Extruders
- Advanced Machinery Inc MI
- American Art Clay Co Inc IN
- Basic Machinery Co Inc NC
- Detroit Process Machinery MI
- Dorst America Inc PA
- Ipsen Ceramics IL
- Laguna Clay Co CA
- Mohr Corp MI
- North Star Equipment Inc WA
- Peter Pugger Mfg Inc CA

Feeders
- Ingredient Masters Inc OH
- Isiform Ltd UK
- Mohr Corp MI
- Wyssmont Co NJ

Forming Equipment
- Advanced Isostatic Presses OH
- ARBURG GmbH + Co KG Germany
- Dorst America Inc PA
- HED INI Inc NJ
- Ipsen Ceramics IL
- Isiform Ltd UK
- Lithoz GmbH NY
- Mohr Corp MI
- Quintus Technologies LLC OH
- Ram Products Inc OH

Glass Finishing Equipment
- General Glass Equipment Co NJ
- Liberty Machinery Co IL
- Lithoz GmbH NY
- OptiPro Systems LLC NY

Glass Forming Equipment
- General Glass Equipment Co NJ

Glass Shear Spray
- RISE Research Institutes of Sweden, RISE Glass Sweden

Glass Supplies
- Ipsen Ceramics IL

Grinders, Centerless
- Diamond Industrial Tools Inc IL
- Liberty Machinery Co IL
- Precision Ferrites and Ceramics Inc CA
- Suntech Advanced Ceramics (Shenzhen) Co Ltd China

SINTER-PUR
Advanced Beta SiC Powders
Ph: 1.312.555.2999
CustomerServiceUSA@sinterpur.com
www.sinterpur.com

Superior Graphite Co IL See ad on pg 73
Suntech Advanced Ceramics (Shenzhen) Co Ltd China
Washington Mills Electro Minerals Co NY

Brickmaking Equipment
- Basic Machinery Co Inc NC
- EZG Manufacturing Inc OH Inside front cover
- Laxis GmbH Luxembourg
- Stedman Machine Co IN

Casting Equipment, Pressure
- American Isostatic Presses OH
- Cerinov France
- Cerlase France
- Dorst America Inc PA
- HED INI Inc NJ
- Laguna Clay Co CA
- Maryland Ceramic & Steatite Co Inc MD

Casting Equipment, Tape
- Ferro-Ceramic Grinding Inc MA
- Haiku Tech Europe BV The Netherlands
- Haiku Tech Inc FL
- HED INI Inc NJ
- Polymer Innovations Inc CA

CNC Mills
- Elnco Precision LLC CA See ad on pg 107
- Liberty Machinery Co IL
- OptiPro Systems LLC NY
- Penn Tool Co NJ
- Suntech Advanced Ceramics (Shenzhen) Co Ltd China

Coating Equipment
- Allied High Tech Products Inc CA
- Cerakote Ceramic Coatings OR
- Dynacut Inc PA
- Haiku Tech Europe BV The Netherlands
- Haiku Tech Inc FL
- Liberty Machinery Co IL

Cold-End Coatings, Glass
- RISE Research Institutes of Sweden, RISE Glass Sweden

Controllers
- Dorst America Inc PA
- General Glass Equipment Co NJ
- Laguna Clay Co CA
- Rockwell Automation, Inc WI

Grinders, Centerless
- Diamond Industrial Tools Inc IL
- Liberty Machinery Co IL
- Precision Ferrites and Ceramics Inc CA
- Suntech Advanced Ceramics (Shenzhen) Co Ltd China

Grinders, Cylindrical
Diamond Industrial Tools Inc IL
Liberty Machinery Co IL
Suntech Advanced Ceramics (Shenzhen) Co Ltd China

Grinders, Finished Product
DCM Tech MN
Ipsen Ceramics IL
Liberty Machinery Co IL
OptiPro Systems LLC NY
Stahli USA Inc WI

Grinding Wheels
Allied High Tech Products Inc CA
Diadac Inc CO
Diamond Industrial Tools Inc IL
Dynamit Inc PA
Engis Corp IL
Greenlee Diamond Tool Co IL
Penn Tool Co NJ
Sigmadiamant Spain
Stahli USA Inc WI

Hydraulic Systems
Isoform Ltd UK
Ram Products Inc OH

Injection-Molding Equipment
ARBURG GmbH + Co KG Germany
Goceram AB Sweden
Mohr Corp MI See ad on pg 79
Rockwell Automation, Inc WI
Suntech Advanced Ceramics (Shenzhen) Co Ltd China

Jiggering Equipment
Cerinnov France
Ram Products Inc OH

Lapping Equipment
Allied High Tech Products Inc CA
Diamond Industrial Tools Inc IL
Dynamit Inc PA
Engis Corp IL
Liberty Machinery Co IL
OptiPro Systems LLC NY
Sigmadiamant Spain
Stahli USA Inc WI

Lapping Supplies
Allied High Tech Products Inc CA
Diamond Industrial Tools Inc IL
Dunhua Zhengxing Abrasive Co Ltd China
Engis Corp IL
FELDOO Int CA
Stahli USA Inc WI

Laser Scribers
Centerline Technologies OH
Cerlase France
Laserage Technology Corp IL

Machining Equipment
Advanced Ceramic Technology CA
Dynamit Inc PA
International Ceramic Engineering MA
Liberty Machinery Co IL
OptiPro Systems LLC NY
Penn Tool Co NJ
Stahli USA Inc WI

Mandrels, Diamond
Diadac Inc CO
Diamond Industrial Tools Inc IL

Bob Carvajal
New Orleans, LA
“When I first saw my face, I couldn’t believe I finally had a straight smile. I never realized just how much it affected me – I’ve learned how infectious a smile can be. When you smile, people smile back!”

Dentistry by Dr. Gretchen Juncker. Lab work by Mike Bellerino.

See Bob’s story at makeitemax.com
For more information call 1-800-533-6825 in the U.S., 1-800-263-8182 in Canada. ©2020 Ivoclar Vivadent, Inc. All rights reserved. All trademarks are the property of Ivoclar Vivadent, Inc.

© 2020 Ivoclar Vivadent, Inc. Ivoclar Vivadent, IPS e.max and ZirCAD are registered trademarks of Ivoclar Vivadent, Inc.

*Please see the conditions of the 10 + 2 year guarantee at guarantee.ipsemax.com
Molds, Case
Petro Mold Company PA
Ram Products Inc OH

Molds, Ceramic-Forming
Akron Porcelain & Plastics Co OH
Cerinnov France
Cerlase France
Geceram AB Sweden
Ipsen Ceramics IL
Isiform Ltd UK
Laeis GmbH Luxembourg
Laguna Clay Co CA
Petro Mold Company PA
Ram Products Inc OH
Virdis3D LLC MA

Molds, Models
Petro Mold Company PA
Ram Products Inc OH
Virdis3D LLC MA

Plasma Etching Systems
Advanced Energy CO
Liberty Machinery Co IL

Pneumatic Systems
Cycloenaire Corp NE
Ingredient Masters Inc OH
Ram Products Inc OH
Young Industries Inc PA

Polishing Equipment
Allied High Tech Products Inc CA
Diamond Industrial Tools Inc IL
Dynacut Inc PA
Engis Corp IL
LECO Corp MI
Liberty Machinery Co IL
OptPro Systems LLC NY
Penn Tool Co NJ
Sigmadiamant Spain
Stahli USA Inc WI

Polishing Powder & Supplies
Baikowski Malakoff Inc NC
C&L Development Corp CA
Engis Corp IL
Sigmadiamant Spain
Stahli USA Inc WI

Presses, Compacting
American Isostatic Presses OH
AVS Inc MA
FCT Ingenieurkeramik GmbH Germany
Quintus Technologies LLC OH

Presses, Dry
Advanced Machinery Inc MI
Dorst America Inc PA
Gasbarre Products Inc PA
See ad on pg 95
Maryland Ceramic & Steatite Co Inc MD
Suntech Advanced Ceramics (Shenzhen) Co Ltd China

Presses, Extrusion
Dorst America Inc PA
Maryland Ceramic & Steatite Co Inc MD
Mohr Corp MI
Peter Pugger Mfg Inc CA
See ad on pg 79

Presses, Hot
American Isostatic Presses OH
Centorr Vacuum Industries NH
FCT Ingenieurkeramik GmbH Germany
FCT Systeme GmbH Germany
Materials Research Furnaces Inc NH
Oxy-Gon Industries Inc NH
Refrac Systems A2
See ad on pg 87
See ad on pg 89

Presses, Isostatic
Advanced Machinery Inc MI
ARBURG GmbH + Co KG Germany
AVS Inc MA
Dorst America Inc PA
Gasbarre Products Inc PA
Laeis GmbH Luxembourg
Materials Research Furnaces Inc NH
Mohr Corp MI
Ram Products Inc OH
See ad on pg 95
See ad on pg 79

Presses, Hydraulic
Advanced Machinery Inc MI
ARBURG GmbH + Co KG Germany
AVS Inc MA
Digital Press Inc PA
Dorst America Inc PA
Gasbarre Products Inc PA
Laeis GmbH Luxembourg
Materials Research Furnaces Inc NH
Mohr Corp MI
Ram Products Inc OH
See ad on pg 95
See ad on pg 79

Presses, Other
ARBURG GmbH + Co KG Germany
Istofor Ltd UK

Presses, Pressure Casting
Cerlase France
Dorst America Inc PA
Peter Pugger Mfg Inc CA
Ram Products Inc OH

Presses, Refractory Shapes
Laeis GmbH Luxembourg

Presses, Rotary
Advanced Machinery Inc MI
Materials Research Furnaces Inc NH

Presses, Tile (Ceramic)
Laeis GmbH Luxembourg
Peter Pugger Mfg Inc CA

PVD Equipment
Liberty Machinery Co IL
Teeter Marketing Services LLC FL

Roofing Tile Machinery
Laeis GmbH Luxembourg

Setting Equipment
Basic Machinery Co Inc NC

Slab Rollers
North Star Equipment Inc WA

Spray Booths
Treibacher Industrie AG Austria

Sputtering Equipment
Advanced Energy CO
FCT Ingenieurkeramik GmbH Germany

Superabrasives
Diamond Industrial Tools Inc IL
Dynacut Inc PA
Engis Corp IL
Greenlee Diamond Tool Co IL
Liberty Machinery Co IL
Teeter Marketing Services LLC FL

Surface Modification Systems
Teeter Marketing Services LLC FL

Tilemaking Equipment
Basic Machinery Co Inc NC
Peter Pugger Mfg Inc CA
Ram Products Inc OH

Tools, Modeling
Sheffield Pottery MA
Virdis3D LLC MA
Turning Machines, Insulator
Liberty Machinery Co IL

Ultrasonic Machining Equipment
Bullen OH
International Ceramic Engineering MA
Liberty Machinery Co IL
OptiPro Systems LLC NY

Used Equipment
Advanced Machinery Inc MI
Basic Machinery Co Inc NC
Cerinov France
Diamond Industrial Tools Inc IL
Dorst America Inc PA
Dynacut Inc PA
Liberty Machinery Co IL
Mohr Corp MI
Ram Products Inc OH
Viridis3D LLC MA

Vibratory Finishing Equipment
Liberty Machinery Co IL
Penn Tool Co NJ
Rockwell Automation, Inc WI

Wheels, Cutoff & Grinding
Diacut Inc CO
Diamond Industrial Tools Inc IL
Dynacut Inc PA
Engis Corp IL
Greenlee Diamond Tool Co IL
LECO Corp MI
Liberty Machinery Co IL
Penn Tool Co NJ

Wheels, Diamond
Aremco Products Inc NY
Diacut Inc CO
Diamond Industrial Tools Inc IL
Dynacut Inc PA
Engis Corp IL
Greenlee Diamond Tool Co IL
LECO Corp MI
Liberty Machinery Co IL
Penn Tool Co NJ

GLASS PRODUCTS

Automotive Glass
Arkema Inc PA
RISE Research Institutes of Sweden, RISE Glass Sweden
Saint-Gobain Recherche France
Schott North America Inc NY

Beads/Spheres
Ceradyne Inc, a 3M Co KY
Maryland Ceramic & Steatite Co Inc MD

Mo-Sci offers a wide variety of custom glass solutions and will work with you to create tailored glass materials to match your application.

Contact us today to discuss your next project.
mo-sci.com/contact

Garg Process Glass India Pvt Ltd India
RISE Research Institutes of Sweden, RISE Glass Sweden
Schott North America Inc NY

Specialty Glass Inc FL
Valley Design Corp MA

A world leader in bioactive and custom glass solutions

Mo-Sci Corp MO
RISE Research Institutes of Sweden, RISE Glass Sweden
Specialty Glass Inc FL

Borosilicate Glass
Bullen OH
Elan Technology GA

Mo-Sci offers a wide variety of custom glass solutions and will work with you to create tailored glass materials to match your application.

Contact us today to discuss your next project.
mo-sci.com/contact
Chemically Strengthened Glass
Arkema Inc PA
Garg Process Glass India Pvt Ltd India
RISE Research Institutes of Sweden, RISE Glass Sweden
Saint-Gobain Recherche France
Saxon Glass Technologies Inc NY
Schott North America Inc NY See ad on pg 41
Vesuvius SC

Container Glass
Arkema Inc PA
Cerinnov France
Ovens–Illinois Inc OH
RISE Research Institutes of Sweden, RISE Glass Sweden
Saint-Gobain Recherche France
Vesuvius SC

Fibers, Continuous
Saint-Gobain Recherche France
Vertly Technical Consultants LLC OH

Fibers, Optical
Adaman Co Ltd Japan
Corning Incorporated NY
Optico AG Germany
Schott North America Inc NY See ad on pg 41

Flat & Safety Glass
Arkema Inc PA
RISE Research Institutes of Sweden, RISE Glass Sweden
Saint-Gobain Recherche France
Vesuvius SC

Fused Silica Glass
Accuratus Corp NJ
Arkema Inc PA
Bullen OH
Imerys Refractory Minerals GA
RISE Research Institutes of Sweden, RISE Glass Sweden
Valley Design Corp MA

Glass-Ceramics
Accuratus Corp NJ
Advanced Ceramic Technology CA
Arkema Inc PA
Bullen OH
Cerilase France
Elan Technology GA

Ivoclar Vivadent
www.ivoclarvivadent.com

What's your next milestone?
info@sgiglass.com
305 Marlborough Street • Oldsmar, Florida 34677
Phone (813) 855-5779

Jewelry

Glass-to-Metal Seals
Elan Technology GA
ESL ElectroScience PA
RISE Research Institutes of Sweden, RISE Glass Sweden
Schott North America Inc NY See ad on pg 41
Specialty Glass Inc FL

Laboratory & Technical Glass
Arkema Inc PA
Garg Process Glass India Pvt Ltd India
LECO Corp MI
RISE Research Institutes of Sweden, RISE Glass Sweden
Saxon Glass Technologies Inc NY
Schott North America Inc NY See ad on pg 41
Specialty Glass Inc FL
TevTech LLC MA See ad on pg 83

Laminated Glass
Arkema Inc PA
RISE Research Institutes of Sweden, RISE Glass Sweden
Vesuvius SC

Laser Glasses
Cerinnov France
Israel Ceramic & Silicate Inst Israel
RISE Research Institutes of Sweden, RISE Glass Sweden

Lenses
TevTech LLC MA See ad on pg 83

Lighting
Osram Sylvania Inc MA

Mirrors
Valley Design Corp MA

Optical & Optoelectronic Ceramics
NEVZ-Ceramics, Close JSC Russia
Specialty Glass Inc FL
TevTech LLC MA See ad on pg 83
Vesuvius SC

Optical Substrates
Bullen OH
FELDCO Intl CA
Schott North America Inc NY See ad on pg 41
Specialty Glass Inc FL
Valley Design Corp MA
Vesuvius SC

Optical Thin Films
FELDCO Intl CA
Schott North America Inc NY See ad on pg 41
TevTech LLC MA See ad on pg 83

Solar
Ceradyne Inc, a 3M Co KY
FELDCO Intl CA
Materion Ceramics AZ
TevTech LLC MA See ad on pg 83
Texers Technical Ceramics Inc Canada
Vesuvius SC

Specialty Glass
Ceradyne Inc, a 3M Co KY
Corning Incorporated NY
Fusion Ceramics Inc OH
Garg Process Glass India Pvt Ltd India
Israel Ceramic & Silicate Inst Israel

Reducing Agents

Tubing & Rod
AdvValue Technology LLC AZ See ad on pg 43
Garg Process Glass India Pvt Ltd India
Morgan Advanced Materials CA
Specialty Glass Inc FL

LABORATORY EQUIPMENT & SUPPLIES

Chemicals
Arkema Inc PA
Bayville Chemical Supply Co Inc NY
Nanofilm OH
RocCera LLC NY

Colorimeters
HunterLab VA

Density Measurement Instruments
Micrometrics Instrument Corp GA
Particle Technology Labs IL See ad on pg 99
Penn Tool Co NJ
Quantachrome Instruments FL
RocCera LLC NY

Detectors
Control Instruments Corp NJ
Penn Tool Co NJ
Rockwell Automation, Inc WI
Siemens Process Industries and Drives GA
Dimension Measurement Instruments
- CSC Force Measurement Inc MA
- Penn Tool Co NJ

Dryers
- Applied Test Systems Inc PA
- Ceramic Services Inc PA
- Cober Muegge LLC CT
- Detroit Process Machinery MI
- EIRICH Machines, Inc IL
- Goceram AB Sweden
- Littleford Day Inc MI
- Recco Furnaces CA
- Wysmont Co NJ

Fiberoptic Illuminators
- Carl Zeiss MicroImaging Inc NY

Glass Testing Instruments
- Mo-Sci Corp MO
- RISE Research Institutes of Sweden, RISE Glass Sweden
- Taber Industries NY

Glassware
- AdValue Technology LLC AZ
- Garg Process Glass India Pvt Ltd India
- RISE Research Institutes of Sweden, RISE Glass Sweden

Glossimeters
- Horiba Instruments Inc CA

Hardness Measurement Instruments
- Allied High Tech Products Inc CA

Hot Plates
- RocCera LLC NY
- Zhengzhou Mission Ceramic Products Co Ltd China

Lab Crucibles
- AdValue Technology LLC AZ
- Ceramco Inc NH
- CoorsTek CO
- McDanel Advanced Ceramic Technologies LLC PA
- Robocasting Enterprises LLC NM
- Xiamen Innovacera Advanced Materials Co Ltd China
- Zhengzhou Mission Ceramic Products Co Ltd China

Lab Furnace Tubes
- AdValue Technology LLC AZ
- Carbolite Gero UK
- McDanel Advanced Ceramic Technologies LLC PA
- Nabertherm Inc DE
- Xiamen Innovacera Advanced Materials Co Ltd China
- Zhengzhou Mission Ceramic Products Co Ltd China

Quality and performance of advanced ceramic material begins with what you can’t see. PTL can help.
LABORATORY SERVICES

Atomic Adsorption
Spectrochemical Laboratories PA

Auger Analysis
Evans Analytical Group LLC CA
High Temperature Materials Lab TN
Micron Inc DE

Chemical Analysis
Activation Laboratories Ltd Canada
CellSian Glass & Solar BV The Netherlands
CHEMIR - A Division of Evans Analytical Group MO
Dalmia Inst of Scientific & Industrial Research India
Edward Orton Jr Ceramic Foundation OH
Evans Analytical Group LLC CA
Geller Microanalytical Laboratory Inc MA
H&M Analytical Services Inc NJ
Hindalco Industries Limited India
Israel Ceramic & Silicate Inst Israel
Japan Fine Ceramics Center Japan
Lucideon UK
NSL Analytical Services Inc OH See ad on pg 75
RISE Research Institutes of Sweden, RISE Glass Sweden
Setaram Instrumentation France
Technology of Materials CA
Washington Mills Electro Minerals Co NY

Clay Testing
Activation Laboratories Ltd Canada
Edward Orton Jr Ceramic Foundation OH
Imerys GA
Laguna Clay Co CA
Technology of Materials CA

Composition
Activation Laboratories Ltd Canada
Alfred University NY
CellSian Glass & Solar BV The Netherlands
CHEMIR - A Division of Evans Analytical Group MO
Dalmia Inst of Scientific & Industrial Research India
Edward Orton Jr Ceramic Foundation OH
Japan Fine Ceramics Center Japan
P-Ker Engineering NY
Rauschert Industries Inc GA See ad on pg 69
Viridis3D LLC MA

Corrosion Testing
Activation Laboratories Ltd Canada
All Waste Matters UK
CellSian Glass & Solar BV The Netherlands
CHEMIR - A Division of Evans Analytical Group MO
Dalmia Inst of Scientific & Industrial Research India
Edward Orton Jr Ceramic Foundation OH
P-Ker Engineering NY
SEMTech Solutions Inc UK

Density Determination
Activation Laboratories Ltd Canada
AVEKA MN
CHEMIR - A Division of Evans Analytical Group MO
Cyclonair Corp NE
Edward Orton Jr Ceramic Foundation OH
GrainBound LLC PA
Hindalco Industries Limited India
Hysitron Inc MN
Israel Ceramic & Silicate Inst Israel
Japan Fine Ceramics Center Japan
Micrometrix Instrument Corp GA
NSL Analytical Services Inc OH See ad on pg 75
Particle Technology Labs IL
Quantachrome Instruments FL

SCIENCE FOR SOLIDS

HEAT TREATMENT
ELEMENTAL ANALYSIS
MATERIALOGRAPHY & HARDNESS TESTING
MILLING & SIEVING
PARTICLE CHARACTERIZATION

Are you looking for innovative, efficient solutions for your ceramic production process? Particle Size and Shape Analysis, Elemental Analysis, Heat Treatment, Microstructural Analysis and Hardness Testing – the Verder Scientific companies offer high-quality solutions combined with expert advice and support service worldwide.

Phone: +1 866-473-8724 · info-us@verder-scientific.com · www.verder-scientific.com

VERDER SCIENTIFIC INC.
CELEBRATES 20TH ANNIVERSARY

A Wide Array of Solutions for Ceramics Research and Production

From determining the porosity of a structure to analyzing particle size or chemical composition, Hitachi has a diverse portfolio of electron microscopy solutions designed to meet your research and production requirements.

Request a Virtual Demonstration
hta-microscopy@hitachi-hightech.com

Hitachi High-Tech America, Inc.
www.hitachi-hightech.com/us

Differential Thermal Analysis
Activation Laboratories Ltd Canada
AVEKA MN
CHEMIR - A Division of Evans Analytical Group MO
Edward Orton Jr Ceramic Foundation OH
Evans Analytical Group LLC CA
High Temperature Materials Lab TN
Hindalco Industries Limited India
Japan Fine Ceramics Center Japan
Micron Inc DE
Netzsch Instruments NA LLC MA
RISE Research Institutes of Sweden, RISE Glass Sweden
Setaram Instrumentation France
TA Instruments DE
Technology of Materials CA

Electron Microprobe Analysis
Activation Laboratories Ltd Canada
GrainBound LLC PA
High Temperature Materials Lab TN
Japan Fine Ceramics Center Japan
Micron Inc DE
Rensselaer Polytechnic Inst NY
Technology of Materials CA

Failure Analysis
CHEMIR - A Division of Evans Analytical Group MO
CMC Laboratories Inc AZ
CoorsTek CO
Edward Orton Jr Ceramic Foundation OH
Geller Microanalytical Laboratory Inc MA
H&M Analytical Services Inc NJ
High Temperature Materials Lab TN
Japan Fine Ceramics Center Japan
JTF Microscopy Services, LLC NY
Micron Inc DE
NSL Analytical Services Inc OH See ad on pg 75
Rensselaer Polytechnic Inst NY
RISE Research Institutes of Sweden, RISE Glass Sweden
SEMTech Solutions Inc UK
Technology of Materials CA

Fracture Analysis
CHEMIR - A Division of Evans Analytical Group MO
CoorsTek CO
High Temperature Materials Lab TN
Japan Fine Ceramics Center Japan
JTF Microscopy Services, LLC NY
Micron Inc DE
NSL Analytical Services Inc OH See ad on pg 75
Rensselaer Polytechnic Inst NY
RISE Research Institutes of Sweden, RISE Glass Sweden
SEMTech Solutions Inc UK
Spectrochemical Laboratories PA

Materials Analysis
Activation Laboratories Ltd Canada
Alfred University NY
CHEMIR - A Division of Evans Analytical Group MO
CSC Force Measurement Inc MA

H&M Analytical Services Inc NJ
Harper International Corp NY See ad on pg 77

Harrop Industries Inc OH See ad on pg 58
High Temperature Materials Lab TN
Hysitron Inc MN
Japan Fine Ceramics Center Japan
Jenike & Johanson Inc MA
JTF Microscopy Services, LLC NY
Micrometrics Instrument Corp GA
Micron Inc DE
Monofrax LLC NY
NSL Analytical Services Inc OH See ad on pg 75
Particle Technology Labs IL See ad on pg 99
RISE Research Institutes of Sweden, RISE Glass Sweden
SEMTech Solutions Inc UK
Setaram Instrumentation France
Spectrochemical Laboratories PA
Technology of Materials CA
Washington Mills Electro Minerals Co NY

Mechanical Properties
Activation Laboratories Ltd Canada
Advanced Ceramics Manufacturing AZ
Alfred University NY
BuzzMac Infl LLC ME
CHEMIR - A Division of Evans Analytical Group MO
CSC Force Measurement Inc MA
Edward Orton Jr Ceramic Foundation OH
High Temperature Materials Lab TN
Hysitron Inc MN
Japan Fine Ceramics Center Japan
TA Instruments DE
Taber Industries NY

Nondestructive Testing
SEMTech Solutions Inc UK

Optical Properties
Activation Laboratories Ltd Canada
CHEMIR - A Division of Evans Analytical Group MO
CSC Force Measurement Inc MA
Custom Processing Services PA
Dynamax Corp NE
Geller Microanalytical Laboratory Inc MA
H&M Analytical Services Inc NJ
Harper International Corp NY See ad on pg 77
Israel Ceramic & Silicate Inst Israel
Japan Fine Ceramics Center Japan
Micrometrics Instrument Corp GA
Micron Inc DE
NSL Analytical Services Inc OH See ad on pg 75

Particle-Size Analysis
Activation Laboratories Ltd Canada
AVEKA MN
CHEMIR - A Division of Evans Analytical Group MO
CSC Force Measurement Inc MA
Custom Processing Services PA
Cyclonaire Corp NE
Geller Microanalytical Laboratory Inc MA
H&M Analytical Services Inc NJ
Harper International Corp NY See ad on pg 77
Israel Ceramic & Silicate Inst Israel
Japan Fine Ceramics Center Japan
Micrometrics Instrument Corp GA
Micron Inc DE
NSL Analytical Services Inc OH See ad on pg 75

P-Ker Engineering NY
SEMTech Solutions Inc UK
Technology Assessment and Transfer Inc (TA&T) MD
Technology of Materials CA
Washington Mills Electro Minerals Co NY

Pore Structure Analysis
GrainBound LLC PA
Japan Fine Ceramics Center Japan
Micrometrics Instrument Corp GA
Particle Technology Labs IL See ad on pg 99
P-Ker Engineering NY
Quantachrome Instruments FL
SEMTech Solutions Inc UK

Residual Stress Analysis
American Stress Technologies Inc PA
High Temperature Materials Lab TN
Japan Fine Ceramics Center Japan
RISE Research Institutes of Sweden, RISE Glass Sweden
TA Instruments DE

Scanning Electron Microscopy
Activation Laboratories Ltd Canada
Alfred University NY
AVEKA MN
CHEMIR - A Division of Evans Analytical Group MO
CoorsTek CO
Edward Orton Jr Ceramic Foundation OH
Evans Analytical Group LLC CA
GrainBound LLC PA
H&M Analytical Services Inc NJ
High Temperature Materials Lab TN

Hitachi High Technologies America, Inc See ad on pg 101
Hindalco Industries Limited India
Israel Ceramic & Silicate Inst Israel
Japan Fine Ceramics Center Japan
JTF Microscopy Services, LLC NY
Micron Inc DE
NSL Analytical Services Inc OH See ad on pg 75
Particle Technology Labs IL See ad on pg 99
SEMTech Solutions Inc UK
Technology of Materials CA
Washington Mills Electro Minerals Co NY

Spectroscopy
Activation Laboratories Ltd Canada
CHEMIR - A Division of Evans Analytical Group MO
CoorsTek CO
Evans Analytical Group LLC CA
GrainBound LLC PA
Japan Fine Ceramics Center Japan
Micron Inc DE
NSL Analytical Services Inc OH See ad on pg 75
Spectrochemical Laboratories PA

Surface-Area Analysis
AVEKA MN
Harper International Corp NY See ad on pg 77
Hindalco Industries Limited India
Japan Fine Ceramics Center Japan
Micrometrics Instrument Corp GA
NSL Analytical Services Inc OH See ad on pg 75
Particle Technology Labs IL See ad on pg 99
Quantachrome Instruments FL

The Leader in Independent Particle Characterization Services
(630) 969-2703 ParticleTechLabs.com

PITL Practical Information Technology Laboratories

www.harropusa.com
Reduce Labor For Your Batching Operation!

Custom engineering with “off-the-shelf” components means 20-35% lower cost than same-spec systems!

Cincinnati, OH • sales@ingredientmasters.com

From small systems to very large, automated systems...we know dry bulk batching.

• Reduce labor and material costs
• Improve batch consistency
• Minimize injury risks
• Eliminate product and packaging waste

Learn More. Call 513-231-7432 today.

INGREDIENT MASTERS INC.
513-231-7432 • ingredientmasters.com

MATERIALS PREPARATION, HANDLING & PACKAGING

Agglomerators
Applicon Co IN
Lancaster Products PA
Littleford Day Inc MI

Bagging Equipment
Applicon Co IN
Cyclonaire Corp NE
Ingredient Masters Inc OH
Lancaster Products PA
Nol-Tec Systems Inc MN

Barcode Labels
Rockwell Automation, Inc WI
Applicon Co IN
Carolina Material Technologies NC
Cyclonaire Corp NE
General Glass Equipment Co NJ
Ingredient Masters Inc OH
Laguna Clay Co CA
Lancaster Products PA
Mohr Corp MI
Nol-Tec Systems Inc MN
Rockwell Automation, Inc WI
Siemens Process Industries and Drives GA
Young Industries Inc PA

Batching Equipment

INGENIOUS BATCHING SOLUTIONS
513-231-7432 • ingredientmasters.com

Ingredient Masters Inc OH

Batching Plants & Systems
Applicon Co IN
Cyclonaire Corp NE
EIRICH Machines, Inc IL
Ingredient Masters Inc OH

MATERIALS PREPARATION, HANDLING & PACKAGING

Transmission Electron Microscopy
Evans Analytical Group LLC CA
GrainBound LLC PA
Conveyors, Pneumatic
Applicon Co IN
Carolina Material Technologies NC
Cyclonaire Corp NE
Ingredient Masters Inc OH See ad on pg 103
Nol-Tec Systems Inc MN
Velco GmbH The Netherlands

Conveyors, Screw
Applicon Co IN
Carolina Material Technologies NC
Cyclonaire Corp NE
Ingredient Masters Inc OH See ad on pg 103
Mixer Systems Inc WI

Conveyors, Vibrating
Applicon Co IN
Carolina Material Technologies NC
OH Vibrator Co OH

Crushers
Aadvanced Machinery Inc MI
Applicon Co IN
Cyclonaire Corp NE
Detroit Process Machinery MI
ERVIC Machines, Inc IL
Gasharre Products Inc PA See ad on pg 95
Glen Mills Inc NJ See ad on pg 43
Laguna Clay Co CA
Lancaster Products PA
Littleford Day Inc MI
Mohr Corp MI See ad on pg 79
Netsch Premier Technologies LLC PA
Nol-Tec Systems Inc MN
Young Industries Inc PA

Crushers, Hammermill
AVEXA MN
Glen Mills Inc NJ See ad on pg 43
Mixer Systems Inc WI
Stedman Machine Co IN
Verder Scientific Inc PA See ad on pg 101
Williams Patent Crusher & Pulverizer Co Inc MO
Wysmont Co NJ

Crushers, Impact
Applicon Co IN
Glen Mills Inc NJ See ad on pg 43
Stedman Machine Co IN
Williams Patent Crusher & Pulverizer Co Inc MO
Wysmont Co NJ

Crushers, Jaw
Applicon Co IN
Fritsch GmbH - Milling and Sizing Germany
Fritsch Milling & Sizing Inc NC
Glen Mills Inc NJ See ad on pg 43
Verder Scientific Inc PA See ad on pg 101

Crushers, Primary
Stedman Machine Co IN
Williams Patent Crusher & Pulverizer Co Inc MO

Crushers, Roll
Applicon Co IN
Lancaster Products PA
Williams Patent Crusher & Pulverizer Co Inc MO

Cullet-Handling Equipment
Applicon Co IN
General Glass Equipment Co NJ

Drum Tumblers
Glen Mills Inc NJ See ad on pg 43

Dryers, Fluid Bed
Applicon Co IN
AVEXA MN
Williams Patent Crusher & Pulverizer Co Inc MO

Dryers, Rotating Tray
Raymond Bartlett Snow
Wysmont Co NJ

Dust Collectors
Cyclonaire Corp NE
Nol-Tec Systems Inc MN
RoboVent MI

Dust Control Equipment
Carolina Material Technologies NC
Mixer Systems Inc WI
Penn Tool Co NJ
RoboVent MI
Young Industries Inc PA

Edge Protectors
Tempo Plastic CA

Electric Screen Heating
Midwestern Industries Inc OH

Environmental/Waste Treatment Equipment
Carolina Material Technologies NC
Cober Muegge LLC CT
Control Instruments Corp NJ
Fritsch GmbH - Milling and Sizing Germany
Mixer Systems Inc WI
OPF Enterprises TX
Oxy-Gon Industries Inc NH See ad on pg 89
Rockwell Automation, Inc WI
Siemens Process Industries and Drives GA
Young Industries Inc PA

Feeders
Basic Machinery Co Inc NC
Carolina Material Technologies NC

Refractory Mixers
EZG Manufacturing Inc OH Inside front cover
1-800-417-9272 / sales@ezgmfg.com
Fully Customizable, Made in the USA

EZG Manufacturing Inc OH

Feeders, Batch
Applicon Co IN
Carolina Material Technologies NC
Ingredient Masters Inc OH See ad on pg 103
Merkle International Inc IL
Mixer Systems Inc WI
Nol-Tec Systems Inc MN
Siemens Process Industries and Drives GA

Feeders, Gravimetric
Applicon Co IN
Carolina Material Technologies NC

Lancaster Products PA
Mixer Systems Inc WI

Conveyors, Belt
Applicon Co IN
Carolina Material Technologies NC
Ingredient Masters Inc OH See ad on pg 103
Mixer Systems Inc WI

Conveyors, Bucket
Applicon Co IN
Ingredient Masters Inc OH See ad on pg 103
Feeders, Pneumatic
Carolina Material Technologies NC
Cyclonaire Corp NE
Nol-Tec Systems Inc MN

Filters
Texers Technical Ceramics Inc Canada

Granulators
Advanced Machinery Inc MI
Applicon Co IN
Fritsch GmbH - Milling and Sizing Germany
Littleford Day Inc MI
Mohr Corp MI See ad on pg 79
Netzsch Premier Technologies LLC PA
Wyssmont Co NJ

Grinders
Buehler Ltd IL See ad on pg 99
Diamond Industrial Tools Inc IL
Fluid Energy Processing & Equipment Co PA
Fritsch GmbH - Milling and Sizing Germany
Fritsch Milling & Sizing Inc NC
Glen Mills Inc NJ See ad on pg 43
Mohr Corp MI See ad on pg 79
Netzsch Premier Technologies LLC PA
Stedman Machine Co IN
Verder Scientific Inc PA See ad on pg 101
Wyssmont Co NJ

Grinding Media
CerCo LLC OH
CoorsTek CO
Dunhua Zhengxing Abrasive Co Ltd China
ER Advanced Ceramics Inc OH
Federal-Mogul MI
Fritsch GmbH - Milling and Sizing Germany
Fritsch Milling & Sizing Inc NC
Glen Mills Inc NJ See ad on pg 43
Jyoti Ceramic Industries Pvt Ltd India
MSE Supplies AZ
Netzsch Premier Technologies LLC PA
Texers Technical Ceramics Inc Canada
Union Process OH
Verder Scientific Inc PA See ad on pg 101
Zibo Guangtong Chemical Co Ltd China
Zircoa Inc OH

Grinding Mills, Vibratory
Fritsch GmbH - Milling and Sizing Germany
Fritsch Milling & Sizing Inc NC

Gunning Equipment, Refractory
Reed Gunite & Shotcrete Equipment CA
Velco GmbH The Netherlands

Hoppers
Basic Machinery Co Inc NC
Carolina Material Technologies NC
Ingredient Masters Inc OH See ad on pg 103
Jenike & Johanson Inc MA
Mixer Systems Inc WI
Reed Gunite & Shotcrete Equipment CA

Hydraulic Systems
Basic Machinery Co Inc NC
Ram Products Inc OH

Impeller, Mixing
Lancaster Products PA
Mixer Systems Inc WI

Materials Handling Equipment
Basic Machinery Co Inc NC
Carolina Material Technologies NC
Cyclonaire Corp NE

Mills
Custom Processing Services PA
ER Advanced Ceramics Inc OH
Euro Support Advanced Materials The Netherlands
Fritsch Milling & Sizing Inc NC

Grinding Mills
Custom Processing Services PA
ER Advanced Ceramics Inc OH
Euro Support Advanced Materials The Netherlands
Fritsch Milling & Sizing Inc NC

Mills, Attritor
Advanced Machinery Inc MI
Custom Processing Services PA
Detroit Process Machinery MI
Glen Mills Inc NJ See ad on pg 43
Netzsch Premier Technologies LLC PA
Union Process OH
Wyssmont Co NJ

Mills, Ball & Pebble
Advanced Machinery Inc MI
Advanced Ceramics Manufacturing AZ
Detroit Process Machinery MI
ER Advanced Ceramics Inc OH
Fritsch GmbH - Milling and Sizing Germany
Fritsch Milling & Sizing Inc NC
Glen Mills Inc NJ See ad on pg 43
Haiku Tech Europe BV The Netherlands
Haiku Tech Inc FL
Mohr Corp MI See ad on pg 79
MSE Supplies AZ
Netzsch Premier Technologies LLC PA
Raymond Bartlett Snow
Union Process OH

Mills, Centrifugal
Fritsch GmbH - Milling and Sizing Germany
Glen Mills Inc NJ See ad on pg 43
Verder Scientific Inc PA See ad on pg 101

PLibricro
Refractory Material and Services Centered Around Your Needs
Powered by knowledgeable experts with genuine experience
312-337-9000
www.plibricro.com
Mills, Hammer
AVEKA MN
Glen Mills Inc NJ See ad on pg 43
Stedman Machine Co IN
Verder Scientific Inc PA See ad on pg 101
Williams Patent Crusher & Pulverizer Co Inc MO

Mills, Jar
Detroit Process Machinery MI
Fritsch GmbH - Milling and Sizing Germany
Fritsch Milling & Sizing Inc NC

Mills, Jet
AVEKA MN
Fluid Energy Processing & Equipment Co PA
Netzsch Premier Technologies LLC PA

Mills, Planetary
Fritsch GmbH - Milling and Sizing Germany
Hockmayer Equipment Corp NC
MSE Supplies AZ
Verder Scientific Inc PA See ad on pg 101

Mills, Rod
Wysmont Co NJ

Mills, Roll
Hauk Tech Europe BV The Netherlands
Hauk Tech Inc FL
MSE Supplies AZ
Raymond Bartlett Snow
Williams Patent Crusher & Pulverizer Co Inc MO

Mills, Vibratory
Fritsch GmbH - Milling and Sizing Germany
Fritsch Milling & Sizing Inc NC

Mining & Beneficiation Equipment
Netzsch Premier Technologies LLC PA
Reed Gunite & Shotcrete Equipment CA
Rockwell Automation, Inc WI
Siemens Process Industries and Drives GA

Mixers, Batch
Carorna Material Technologies NC
Custom Processing Services PA
EIRICH Machines, Inc IL

Mixers, Drum
Glen Mills Inc NJ See ad on pg 43
Hockmeyer Equipment Corp NC

Mixers, Pneumatic
Carorna Material Technologies NC
EIRICH Machines, Inc IL
Netzsch Premier Technologies LLC MN

Mixers, Portable
Jiffy Mixer Co Inc CA
Mixer Systems Inc WI
Peter Pugger Mfg Inc CA

Mixers, Refractory
Applicon Co IN
EIRICH Machines, Inc IL

Mixers, Vacuum
Applicon Co IN
EIRICH Machines, Inc IL
Netzsch Premier Technologies LLC PA
Peter Pugger Mfg Inc CA
Reed Gunite & Shotcrete Equipment CA

Mixing Equipment
Advanced Machinery Inc MI
Carorna Material Technologies NC
Custom Processing Services PA

BUYING AND SELLING
Huge Inventory in our Detroit Michigan warehouse

Glen Mills Inc NJ See ad on pg 43
Goecram AB Sweden
Lancaster Products PA
Mixer Systems Inc WI
Mohr Corp MI See ad on pg 79
Netzsch Premier Technologies LLC PA

Glen Mills Inc NJ See ad on pg 43
Hockmeyer Equipment Corp NC
Laguna Clay Co CA
Lancaster Products PA

Littleford Day Inc MI
Mixer Systems Inc WI
Mohr Corp MI See ad on pg 79
Netzsch Premier Technologies LLC PA
OPF Enterprises TX
Peter Pugger Mfg Inc CA
Resodyn Acoustic Mixers Inc MT
Young Industries Inc PA

Nozzles
CarCo LLC OH
Dunhua Zhengxing Abrasive Co Ltd China
H.C. Starck GmbH Germany
Maryland Ceramic & Steatite Co Inc MD

Packaging
Tempo Plastic CA

Packaging Equipment
Basic Machinery Co Inc NC

Pneumatic Systems
Applicon Co IN
Carorna Material Technologies NC
Cycloniaire Corp NE
Netzsch Premier Technologies LLC MN
Reed Gunite & Shotcrete Equipment CA
Velco GmbH The Netherlands
Young Industries Inc PA

Process Control Equipment
Control Instruments Corp NJ
Datapaq Inc NH
General Glass Equipment Co NJ
Nor-Tec Systems Inc MN

Ingredient Masters Inc OH See ad on pg 103
Ram Products Inc OH
Rockwell Automation, Inc WI
Siemens Process Industries and Drives GA

Pulverizers
Advanced Machinery Inc MI
Applicon Co IN
Basic Machinery Co Inc NC
Fritsch GmbH - Milling and Sizing Germany
Fritsch Milling & Sizing Inc NC

Glen Mills Inc NJ See ad on pg 43
Mixer Systems Inc WI
Stedman Machine Co IN
Williams Patent Crusher & Pulverizer Co Inc MO
Wysmont Co NJ

Pumps
ER Advanced Ceramics Inc OH
Ram Products Inc OH
Reed Gunite & Shotcrete Equipment CA

Pumps, Concrete
Reed Gunite & Shotcrete Equipment CA

Scale Systems
CSC Force Measurement Inc MA
Mettrier-Toledo Inc OH
Nol-Tec Systems Inc MN

Screens & Screening Equipment
Advanced Machinery Inc MI
Basic Machinery Co Inc NC

OH Vibrator Co OH
Control Instruments Corp NJ
Detroit Process Machinery MI
Fritsch GmbH - Milling and Sizing Germany
Separators
Fritsch GmbH - Milling and Sizing Germany
Midwestern Industries Inc OH
Williams Patent Crusher & Pulverizer Co Inc MO
Basic Machinery Co Inc NC
Fritsch GmbH - Milling and Sizing Germany
Glen Mills Inc NJ See ad on pg 43
Stedman Machine Co IN
Williams Patent Crusher & Pulverizer Co Inc MO

Single-Wafer Packs
Tempo Plastic CA

Size Reduction Equipment
AVEKA MN
Basic Machinery Co Inc NC
Custom Processing Services PA
EIRICH Machines, Inc IL
ER Advanced Ceramics Inc OH
Fluid Energy Processing & Equipment Co PA
Fritsch GmbH - Milling and Sizing Germany
Glen Mills Inc NJ See ad on pg 43
Lancaster Products PA
Netzsch Premier Technologies LLC PA
Raymond Bartlett Snow
Stedman Machine Co IN
Union Process OH
Williams Patent Crusher & Pulverizer Co Inc MO
Wyssmont Co NJ

Spray Dryers
Advanced Machinery Inc MI
Arch Maintenance Services GA
AVEKA MN
Detroit Process Machinery MI
Dorst America Inc PA
Elan Technology GA
Euro Support Advanced Materials The Netherlands
Mohr Corp MI See ad on pg 79
Spray Drying Systems Inc MD

Storage Equipment
Basic Machinery Co Inc NC
Cyclonaire Corp NE

Substrate Wafer Trays
Tempo Plastic CA

Used Equipment
Advanced Machinery Inc MI
American Isostatic Presses OH

Wire Cloth
Midwestern Industries Inc OH

PLANT CONSTRUCTION, DESIGN & ENGINEERING

Brick Production
Basic Machinery Co Inc NC
Laesi GmbH Luxembourg
Swindell Dressler Intl Co PA

Casting Plants
Dorst America Inc PA
ER Advanced Ceramics Inc OH

Ceramic Production
Cerinnov France
Carfase France
GranBound LLC PA
Lucideon UK
Maryland Ceramic & Steatite Co Inc MD
Trans-Tech Inc, a subsidiary of Skyworks Solutions Inc MD
Virdis3D LLC MA

Combustion Systems
Air Products PA
Swindell Dressler Intl Co PA

Decals & Decorating
Cerinnov France
Carfase France
Gwent Electronic Materials Ltd UK
Refractories

General Material Industrial Co China
- HarbisonWalker Intl PA
- Insulating Firebrick Inc PA
- Morgan Thermal Ceramics GA
- Pacific Refractories Ltd India
- Refratechnik Ceramics GmbH Germany
- RHI US Ltd NY
- Sunrock Ceramics Co IL
- Wistras GmbH Germany

Brick, Acid-Resisting
- Pacific Refractories Ltd India
- Vitcas Ltd UK

Brick, Fireclay
- Allied Mineral Products Inc OH
- Alsey Refractories Co MO
- Pacific Refractories Ltd India
- RHI US Ltd NY
- Vitcas Ltd UK

Carbon
- Astral Material Industrial Co Ltd China
- Cancarb Limited Canada
- Pacific Refractories Ltd India

Castable
- Allied Mineral Products Inc OH
- Alsey Refractories Co MO
- Aremco Products Inc NY
- Cancarb Limited Canada
- Capital Refractories Ltd UK
- Furnace Products & Services Inc PA
- HarbisonWalker Intl PA
- Magneco Metrel Inc IL
- Pacific Refractories Ltd India

Cements
- Allied Mineral Products Inc OH
- Aremco Products Inc NY
- Capital Refractories Ltd UK
- Dalmia Inst of Scientific & Industrial Research India
- Furnace Products & Services Inc PA
- Gorka Cement Poland
- Kerneos Inc VA

Cordierite
- Advanced Ceramic Technology CA
- Akron Porcelain & Plastics Co OH
- Astral Material Industrial Co Ltd China
- CoorsTek CO
- Du-Co Ceramics Company PA
- ER Advanced Ceramics Inc OH
- Industrial Ceramic Products Inc OH
- IPS Ceramics LTD UK
- Maryland Refractories Co OH
- Rauschert Industries Inc GA

Coatings
- Allied Mineral Products Inc OH
- Aremco Products Inc NY
- Elcon Precision LLC CA
- Fostel Inc OH
- Furnace Products & Services Inc PA
- Fusion Ceramics Inc OH
- GWent Electronic Materials Ltd UK
- Induceramic Canada
- Magneco Metrel Inc IL
- Plibrico Japan Co Ltd Japan
- Rath Inc DE
- Riverside Refractories Inc AL
- Starfire Systems Inc NY
- Thermal Products Co Inc GA
- Unifrax I LLC NY
- Vitcas Ltd UK
- Zibo Guangtong Chemical Co Ltd China
- Zircar Refractory Composites Inc NY
- ZYP Coatings Inc TN

Crucibles
- AdValue Technology LLC AZ
- Allied Mineral Products Inc OH
- APC International Ltd PA
- Aremco Products Inc NY
- Blasch Precision Ceramics Inc NY
- Bucher Emhart Glass SA Switzerland
- Ceramico Inc NH
- CeramTec-ETEC Germany
- Furnace Products & Services Inc PA
- Industrial Ceramic Products Inc OH
- Ipsen Ceramics IL
- LECO Corp MI
- Magneco Metrel Inc IL
- McDaniel Advanced Ceramic Technologies LLC PA
- Progressive Technology Inc CA
- Selee Corp NC
- Silicon Carbide Products Inc NY
- Zhengzhou Mission Ceramic Products Co Ltd China
- Zircoa Inc OH

Dead-Burned
- Fluid Energy Processing & Equipment Co PA

Fiber Products
- Allied Mineral Products Inc OH

Clay Flux
- Furnace Products & Services Inc PA
- Peter Pugger Mfg Inc CA
- RHI US Ltd NY
<table>
<thead>
<tr>
<th>Instrument Category</th>
<th>United States</th>
<th>International</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dye Penetrant Equipment & Supplies</td>
<td>RocCera LLC NY</td>
<td>Spectronics Corp NY</td>
</tr>
<tr>
<td>Eddy-Current Testing Instruments</td>
<td>ETHer NDE UK</td>
<td></td>
</tr>
<tr>
<td>Electrochemical Analysis Instruments</td>
<td>Gamry Instruments PA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hawk Tech Inc FL</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nanocience Instruments AZ</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ocean Optics Inc FL</td>
<td></td>
</tr>
<tr>
<td>Electromechanical Analysis Instruments</td>
<td>APC International Ltd PA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CSC Force Measurement Inc MA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>James Instruments IL</td>
<td></td>
</tr>
<tr>
<td></td>
<td>nofECA AS Norway</td>
<td></td>
</tr>
<tr>
<td>Electronic Analysis Instruments</td>
<td>ETHer NDE UK</td>
<td>James Instruments IL</td>
</tr>
<tr>
<td>Flexural Analysis Instruments</td>
<td>Advanced Ceramics Manufacturing AZ</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RocCera LLC NY</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TA Instruments DE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Taber Industries NY</td>
<td></td>
</tr>
<tr>
<td>Gas Analysis Instruments</td>
<td>CatSil Glass & Solar BV The Netherlands</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Control Instruments Corp NJ</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dalmia Inst of Scientific & Industrial Research India</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Horiba Instruments Inc CA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ocean Optics Inc FL</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Setaram Instrumentation France</td>
<td></td>
</tr>
<tr>
<td>Image Analysis Instruments</td>
<td>Bruel Ltd IL</td>
<td>See ad on pg 99</td>
</tr>
<tr>
<td></td>
<td>Carl Zeiss MircolImaging Inc NY</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cilas Particle Size Wi</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fritsch Milling & Sizing Inc NC</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Horiba Instruments Inc CA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LECO Corp Mi</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Micromeritics Instrument Corp GA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nanocience Instruments AZ</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Particle Technology Labs IL</td>
<td>See ad on pg 99</td>
</tr>
<tr>
<td></td>
<td>TA Instruments DE</td>
<td></td>
</tr>
<tr>
<td>Infrared Spectroscopy Instruments</td>
<td>Ocean Optics Inc FL</td>
<td></td>
</tr>
<tr>
<td>Interferometers</td>
<td>OptiPro Systems LLC NY</td>
<td></td>
</tr>
<tr>
<td>Leak Detectors</td>
<td>Spectronics Corp NY</td>
<td></td>
</tr>
<tr>
<td>Microfocus X-Ray Imaging Instruments</td>
<td>Horiba Instruments Inc CA</td>
<td></td>
</tr>
<tr>
<td>Moisture Analyzers</td>
<td>James Instruments IL</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mettler-Toledo Inc OH</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Micromeritics Instrument Corp GA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MoisTech Corp FL</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ocean Optics Inc FL</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Penn Tool Co NJ</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Quantachrome Instruments FL</td>
<td></td>
</tr>
<tr>
<td>Nondestructive Evaluation Instruments</td>
<td>American Stress Technologies Inc PA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BuzzMac Intl LLC ME</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dalmia Inst of Scientific & Industrial Research India</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Datapac Inc NH</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ETHer NDE UK</td>
<td></td>
</tr>
<tr>
<td></td>
<td>James Instruments IL</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nanocience Instruments AZ</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Spectronics Corp NY</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thermal Wave Imaging Inc MI</td>
<td></td>
</tr>
<tr>
<td>Oxygen Analyzers</td>
<td>Ocean Optics Inc FL</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Verder Scientific Inc PA</td>
<td>See ad on pg 101</td>
</tr>
<tr>
<td>Particle Size Analysis Instruments</td>
<td>Brookhaven Instruments Corp NY</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cilas Particle Size Wi</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dalmia Inst of Scientific & Industrial Research India</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fritsch GmbH - Milling and Sizing Germany</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fritsch Milling & Sizing Inc NC</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Horiba Instruments Inc CA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Micromeritics Instrument Corp GA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Microntrac Inc PA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Particle Technology Labs IL</td>
<td>See ad on pg 99</td>
</tr>
<tr>
<td></td>
<td>Quantachrome UK- Anton Paar VA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Verder Scientific Inc PA</td>
<td>See ad on pg 101</td>
</tr>
<tr>
<td>Pore Size Analyzers</td>
<td>Dalmia Inst of Scientific & Industrial Research India</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Micromeritics Instrument Corp GA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Particle Technology Labs IL</td>
<td>See ad on pg 99</td>
</tr>
<tr>
<td></td>
<td>Quantachrome Instruments FL</td>
<td></td>
</tr>
<tr>
<td>Pressure Sensors</td>
<td>Rockwell Automation, Inc WI</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Siemens Process Industries and Drives GA</td>
<td></td>
</tr>
<tr>
<td>Raman Spectroscopy Instruments</td>
<td>Horiba Instruments Inc CA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ocean Optics Inc FL</td>
<td></td>
</tr>
<tr>
<td>Sonic Testing</td>
<td>James Instruments IL</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Penn Tool Co NJ</td>
<td></td>
</tr>
<tr>
<td>Spectroscopy Instruments</td>
<td>Cilas Particle Size Wi</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Horiba Instruments Inc CA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LECO Corp Mi</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ocean Optics Inc FL</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Optocon AG Germany</td>
<td></td>
</tr>
<tr>
<td>Surface Analysis Instruments</td>
<td>Carl Zeiss MircolImaging Inc NY</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dalmia Inst of Scientific & Industrial Research India</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Euro Support Advanced Materials The Netherlands</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Horiba Instruments Inc CA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hysitron Inc MN</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nanocience Instruments AZ</td>
<td></td>
</tr>
<tr>
<td></td>
<td>OptiPro Systems LLC NY</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Particle Technology Labs IL</td>
<td>See ad on pg 99</td>
</tr>
<tr>
<td></td>
<td>Quantachrome Instruments FL</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Taber Industries NY</td>
<td></td>
</tr>
<tr>
<td>Tensile Testers</td>
<td>Applied Test Systems Inc PA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CSC Force Measurement Inc MA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TA Instruments DE</td>
<td></td>
</tr>
<tr>
<td>Thermal Diffusivity/Conductivity Analysis Instruments</td>
<td>Dalmia Inst of Scientific & Industrial Research India</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lineise Inc NJ</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Netzsch Instruments NA LLC MA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Setaram Instrumentation France</td>
<td></td>
</tr>
<tr>
<td>Thermogravimetric Analysis Instruments</td>
<td>BuzzMac Intl LLC ME</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LECO Corp Mi</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lineise Inc NJ</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mettler-Toledo Inc OH</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Netzsch Instruments NA LLC MA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Setaram Instrumentation France</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TA Instruments DE</td>
<td></td>
</tr>
<tr>
<td>Thermomechanical Analysis Instruments</td>
<td>Edward Orton Jr Ceramic Foundation OH</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lineise Inc NJ</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Optocon AG Germany</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Setaram Instrumentation France</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TA Instruments DE</td>
<td></td>
</tr>
<tr>
<td>Ultrasonic Instruments</td>
<td>APC International Ltd PA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>James Instruments IL</td>
<td></td>
</tr>
<tr>
<td></td>
<td>APC International Ltd PA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>James Instruments IL</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Technisonic Research Inc CT</td>
<td></td>
</tr>
<tr>
<td>Visual & Optical Testers</td>
<td>Hauk Tech Inc FL</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Optocon AG Germany</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Penn Tool Co NJ</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RISE Research Institutes of Sweden, RISE Glass Sweden</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TA Instruments DE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Taber Industries NY</td>
<td></td>
</tr>
<tr>
<td>X-Ray Diffraction Instruments</td>
<td>American Stress Technologies Inc PA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dalmia Inst of Scientific & Industrial Research India</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Horiba Instruments Inc CA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MSE Supplies AZ</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RocCera LLC NY</td>
<td></td>
</tr>
<tr>
<td>X-Ray Instruments</td>
<td>American Stress Technologies Inc PA</td>
<td></td>
</tr>
<tr>
<td>X-Ray Spectroscopy Instruments</td>
<td>Cilas Particle Size Wi</td>
<td></td>
</tr>
<tr>
<td>Zeta Potential Analyzers</td>
<td>Brookhaven Instruments Corp NY</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cilas Particle Size Wi</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fritsch GmbH - Milling and Sizing Germany</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Horiba Instruments Inc CA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Micromeritics Instrument Corp GA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Particle Technology Labs IL</td>
<td>See ad on pg 99</td>
</tr>
</tbody>
</table>
Wholesale provider of raw materials to the ceramics, glass, and coatings industries.

ART ON CERAMIC
855-918-5506
PO BOX 1625
Plattsburgh NY 12901

https://www.custom-ceramic-tile.com
contact@artontceramic.com
We developed an exclusive ceramic printing technology that will fit your personal project or your business branding. We also do tile reproduction. It is simple; your imagination is the limit of what we can do for you. We create, you print!

ASSOC OF AMERICAN CERAMIC COMPONENT MANUFACTURERS (AACCM)
614-794-5894
550 Polaris Pkwy Ste 510
Westerville OH 43082

http://www.aaccm.org
kthompson@ceramics.org
AACCM's member companies manufacture component products from ceramic powders at U.S. operating facilities. Its purpose is to expand the market for U.S.-manufactured components by enhancing processes and quality and to increase awareness of ceramic applications.

ASSOCIATED CERAMICS & TECHNOLOGY INC
400 North Pike Rd
214-333-1585
Searcy AR 72143

http://www.associatedceramics.com
sales@associatedceramics.com
Associated Ceramics & Technology Inc is a custom manufacturer of ceramics composed of alumina, steatite, cordierite, spinel, wollastonite, mullite, and high performance materials such as zirconia and yttria-stabilized zirconia. Its engineers' knowledge of the physical and chemical properties of a finished product allow the company to provide excellent quality in applications pertaining to chemical, electrical, wear-resistant, automotive, appliances, and many others. The expansive production capabilities at ACT include drying, milling, blending, screening, and particle characterization. ACT is an ISO 9001:2015 registered company providing processing solutions from lab-scale samples to full-scale production for a wide variety of industries.

AVEKALTD 2045 Wooddale Dr Woodbury MN 55125
http://www.aveka.com
aveka@aveka.com
AVEKA is a contract manufacturing and R&D company specializing in particle toll processing. Processing capabilities include drying, milling, blending, screening, and particle characterization. AVEKA is an ISO 9001:2015 registered company providing processing solutions from lab-scale samples to full-scale production for a wide variety of industries.

AVC INC 60 Fitchburg Rd
Ayer MA 01432
http://www.avinc.com
sales@avinc.com
Manufactures standard and custom vacuum furnaces, Debinding, sintering, hot isostatic or axial pressing, diffusion bonding in lab to production scale units. Vacuum to 2,500 psig. Specializes in custom-designed systems for advanced materials processing.

AVX CORP 1 AVX Blvd
Fountain Inn SC 29644-9039
http://www.avx.com
inquiry@avx.com
Established 1972. Manufactures multilayer ceramic capacitors for the electronics industry, including microminiature, multilayer monolithics in chips; radial- and axial-leaded, molded and conformal coated capacitors and tantalum capacitors.

B&P LITTLEFORD 800-365-8555
1000 Hess Avenue
Saginaw MI 48601
http://www.bplittleford.com
sales@littleford.com
Manufactures processing equipment, including mixers, granulators, agglomerators, vacuum dryers, liquid dispersers, and pressure reactors. Also provides pilot-plant and lab equipment. Maintains a completely equipped test center to assist customers.

BAIKOWSKI MALAKOFF INC 700-820-4470
6601 Northpark Dr Ste H
Charlotte NC 28216
http://www.baikowskimalakoff.com
info@baikowskimalakoff.com
Subsidiary of Biaikowski Intl. Corp. Produces Bayer-derived intermediate and high-purity (99.8–99.9%) calcined alpha- and gamma-alumina.

BASIC MACHINERY CO INC 888-522-7420
1220 Harold Andrews Rd
Siler City NC 27344
http://www.basismachnery.com
ceramic-sales@basismachnery.com
Design automated machinery and systems for ceramic industries as well as complete plants. Specialize in materials handling, crushing, grinding, screening, reclaiming, automatic transfer cars, cable haulagings, and specialized equipment for brick shapes.

BASTECH INTL 201-569-8686
400 Kelby St
Fort Lee NJ 07024
http://www.bastechintl.com
info@bastechintl.com
Supplies chemicals and other raw materials to the ceramics industry in North America and Europe. Materials inventoried in warehouses strategically located throughout the United States, Europe, and Asia to guarantee continuity of supply.

BAYVILLE CHEMICAL SUPPLY CO INC 631-856-4309
70-G E Jefryn Blvd
Deer Park NY 11729
http://www.bayvillechemical.net
info@bayvillechemical.net
Bayville Chemical is a supplier of ultrahigh-purity chemicals (organic and inorganic), ceramics, metals, optics, crystals, sputtering targets, evaporation and coating materials, and vitreous carbon. The company services small research, R&D, and production facilities.

BEIJING CERAMETEK MATERIALS CO LTD A3 No 9 YongChuan St Ste No 301 GuangMing Shenzhen GD518106 China
http://www.cerametekmaterials.com
sales@cerametekmaterials.com
Cerametek materials (4Al-2Zr)-metal(s) oxide, carbide, nitride, boride, fluoride, sulfide, diamond, graphite, quartz, metal, alloys, and rare-earth compounds. Also, 98%–99.9% grade, submicron to mesh (mm), powder/rods/tube/foil/porous, complex compounds.

BELDEN BRICK CO 330-456-0031
PO Box 20910
Canton OH 44701
http://www.beldenbrick.com
info@beldenbrick.com
Established 1865. Company operates seven plants in Ohio and produces more than 240 million brick annually.

BHARAT HEAVY ELECTRICALS LTD +91 80 2218 2244
BHEL House Srin Fort New Delhi 110049 India
http://www.bhel.com
kumar@bhel.com
Ceramic Technological Institute, Corporate R&D, Bharat Heavy Electricals Ltd is engaged in industrial process and product development in ceramics, such as microwave sintering, ceramic membranes, coatings, nanomaterials, and CSP for energy sector.

BLASCHEMICAL ACCURACY INC 518-436-1263
580 Broadway
Albany NY 12204
http://blaschechemicals.com
cmoroni@blaschechemicals.com
Manufactures complex ceramic shapes requiring closely controlled tolerances and uniform composition and structure. Products include alumina, fused silica, and SiC items.

BLASTCRETE EQUIPMENT CO 800-235-4867
Annisont AL 36202
http://www.blastcrete.com
info@blastcrete.com
For 60 years, Blastcrete Equipment Co manufactures safe, reliable, and user-friendly solutions for the refractory and shotcrete industries. The company offers a complete product line of concrete mixers, pumps, and related products.
From manufacturing a new generation of precision electronics to enabling a world powered by clean, renewable energy, specialty glasses from Ceradyne Inc, a 3M Co, are inspiring innovation in electronic, solar power, and semiconductor applications. 3M specialty glass compounds and solar metallization paste additives are vital to many groundbreaking electronic and mechanical components. These versatile materials are precision-manufactured for unmatched consistency, batch after batch.Aland they are backed by Ceradyne’s 50 years of insight and experience. From glass design and engineering, to in-house analytical support and quality control, to scale-up and full-scale production, Ceradyne has the breadth and depth of knowledge to help customers make tomorrow’s breakthroughs today.

Ceramic fasteners in stock. Production. Diamond grinding for high precision components. Ceramic injection molding from prototype to high-volume sales@ceramtec.com

CERANDOMO INC 1467 E Main St PO Box 300 Center Conway NH 03813 http://ceramomicro.com sales@cerandomocos.com

A manufacturer of near-net shape technical ceramics by ceramic injection molding from prototype to high-volume production. Diamond grinding for high precision components. Ceramic fasteners in stock.

CERAMIC ARTS NETWORK 550 Polaris Pkwy Ste No 510 Westerville OH 43082 http://ceramicartsnetwork.org editor@ceramicartsdaily.org

Inspiration and instruction from ceramic artists and leading professionals in the field. The Ceramic Arts Network is an online community serving active potters and ceramic artists worldwide, as well as those who are interested in finding out more about this craft. The Ceramic Arts Network includes Ceramics Monthly, Pottery Making Illustrated, CLAYtalks, the International Ceramic Artists Network (ICAN), and Ceramic Recipes.

CERAMIC COLOR & CHEMICAL MFG CO 1100 13th St New Brighton PA 15066 http://ceramiccolor.com info@ceramiccolor.com

Manufactures ceramic colors and inorganic pigments. Producer of custom chemicals and compounds.

CERAMIC GLASS & CERAMIC RESEARCH INSTITUTE 118 Raja S C Mullick Rd Kolkata West Bengal 700 032 India http://cgrcri.res.in brmandal@cgcri.res.in

Provides scientific industrial research and development in the area of glass, ceramics, and related materials that maximizes the economic, environmental, and societal benefit for the people of India.

CERADYN INC, A 3M CO 2416 Merchant St Lexington KY 40511 http://www.3m.com/specialtyglass specialtyglass@3mm.com

800-831-0658

From manufacturing a new generation of precision electronics to enabling a world powered by clean, renewable energy, specialty glasses from Ceradyne Inc, a 3M Co, are inspiring innovation in electronic, solar power, and semiconductor applications. 3M specialty glass compounds and solar metallization paste additives are vital to many groundbreaking electronic and mechanical components. These versatile materials are precision-manufactured for unmatched consistency, batch after batch.Aland they are backed by Ceradyne’s 50 years of insight and experience. From glass design and engineering, to in-house analytical support and quality control, to scale-up and full-scale production, Ceradyne has the breadth and depth of knowledge to help customers make tomorrow’s breakthroughs today.

CERAMIC POWDER TECHNOLOGY AS 471 916 71 332 Kvenlidmyra 6 Tiller N-7073 Norway http://www.cerpotech.com sales@cerpotech.com

CerPoTech manufactures advanced ceramic powders for applications such as fuel cells, batteries, membranes, piezoceramics, and many more. With its unique process, CerPoTech synthesizes high quality ceramic powders that are tailored to specific requirements of customers and partners.

CERAMIC SERVICES INC 1060 Park Ave Bensalem PA 19020 http://www.kilnman.com kilns@kilnman.com

215-245-4040

Builds premium quality kilns and dryers. Provides experienced consulting for drying and firing problems. A fresh source for replacement parts and service for all makes of kilns and dryers.

CERAMITEC +49 89 94911378 Messegelände 1 Eingang Ost München 81233 Germany http://www.ceramitec.com info@ceramitec.com

Ceramitec is a leading trade fair for the ceramics industry— hub for sector-wide expertise and technology that brings the industry together.

CERAMTEC USA North America Corp 864-682-3215 1 Technology Pl Laurens SC 29360-0089 Fax: 648-682-1140

http://www.ceramtec.us sales@ceramtec.com

Produces a wide range of ceramics in 11 worldwide manufacturing locations, including a state-of-the-art laser facility in the U.S. Products include alumina and aluminum nitride substrates (pressed, stamped, lasered) and piezoceramics.

CeramTec-ETE is a CeramTec subsidiary that offers solutions made from ALOTEC advanced ceramics for wear and corrosion protection; ceramic armor for ballistic protection of personnel, vehicles, and assets; ALOSLIDE inert track systems for ski jumping events; and PELUCOR transparent ceramics.

CERANOVA CORPORATION 85 Hayes Memorial Dr Marlborough MA 01752 http://www.ceranova.com info@ceranova.com

CeraNova is an industry leader in product / process development and pilot-scale manufacturing of advanced ceramics. We specialize in near net shape, controlled microstructure, transparent ceramics, with superior optical and mechanical properties that provide unique, cost effective solutions for defense, aerospace, and commercial customers.

CERION NANOMATERIALS 585-271-5630 1 Blossom Road Rochester NY 14610 http://www.cerionnano.com sales@cerionnano.com

Cerion specializes in the manufacturing of production and decoration machines for the ceramic and glass industries: shaping and decorating machines, laser marking machines, turn-key plants for tableware, tools, and after sales services.

CERION NANOMATERIALS 585-271-5630 1 Blossom Road Rochester NY 14610 http://www.cerionnano.com sales@cerionnano.com

Cerion is a leader in the science of designing, scaling and manufacturing metal, metal oxide and ceramic nanomaterials for commercial, defense and life science companies developing products or systems. The cost of developing advanced expertise in nanomaterials is prohibitively expensive and time intensive, resulting in a significant barrier to entry for companies considering its adoption. Cerion provides companies with access to this expertise through all phases of the product lifecycle including applied research, development, scale-up, commercialization and manufacturing. Cerion’s position in the market is enabled by three strategic competitive advantages: a) precision design and customization of both nanoparticle size and technical attributes, b) robust processes to scale materials from prototype to low and high-volume production rates, and c) industry-leading, cost-effective manufacturing systems and production capacities.

CERITHERM +33 5 55 23 13 Hotel d’entreprises des Gareneres Rue de Poulouex Gradourad sur Vayres 87150 France http://ceritherm.org contact@ceritherm.com

Part of the Ceric group, manufactures kilns for the production of fine ceramics. Also provides advanced systems for automatic handling and production monitoring.

CERIX - GROW PLATFORM GMBH +49 0831 54075342 Albert Einstein Strasse 6 Kempten 87437 Germany http://www.cerix-ceramics.de info@cerix-ceramics.de

CERIX grow platform GmbH is a start-up company from Robert Bosch GmbH. We produce high-tech ceramics for various markets and offer functional components for sensors, medical products, consumer goods, automotive components, and industrial products made of alumina and zirconia. CIM in combination with in-mold labelling and 3D printing enable us to manufacture complex functional components with the highest degree of precision.

CELERASE +33 5 55 04 24 54 Parc d’Ester 2 Rue Columbia Limoges 87068 France http://www.celerase.com q.joly@celerase.com

Ceralase is an officially certified R&D center. Primary research lines are lasers for ceramics, glass and metal (sintering, melting, cutting), shaping processes for ceramics, decoration (laser sintering, total filter, heat decales) and heat treatment.

CHEMICAL ABSTRACTS SERVICE 614-447-3751 2540 Olentangy River Rd Columbus OH 43210-0012 http://cas.org help@cas.org

Established 1907. Publish Chemical Abstracts. Produces online information services to identify research studies and patents relating to chemistry, biotechnology, engineering, materials science, physics, and other scientific fields.
Testing lab provides investigative analytical chemistry to solve challenging problems. Services include deconvolution (reverses engineering), material/contaminant identification, polymer analysis, failure analysis, and litigation support. ISO 9001:200

CHERIM - A DIVISION OF EVANS ANALYTICAL GROUP
2672 Metro Blvd 314-291-6620
Maryland Heights MO 63043 Fax: 314-291-6630
http://www.cherim.com
info.cherim@eag.com

CHIZ BROS: REFRACTORY AND INSULATION SPECIALISTS
2117 Lincoln Blvd info@chizbros.com
Elizabethtown PA US 15037
412-384-5220

CHRISTY MINERALS LLC 636-585-2214
833 Booneslick Rd Fax: 636-585-2220
PO Box 159
High Hill MO 63350
http://www.christyco.com/minerals
sbower@christyminerals.com

COBER MUEGGE LLC 203-855-8755
30 Moffatt St Fax: 203-855-7511
Stratford CT 06615

COASTAL INSTRUMENTS CORP 603-445-0730
2922 N Division Fax: 402-362-2001
Reading PA 19606-3266

COUNCIL OF AMERICAN SCIENTIFIC INSTRUMENT MANUFACTURERS INC
2 Birchmont Dr Fax: 973-509-0013
Reading PA 19606-3266

CRODA 732-417-0800
CRODA INDIAN AUSTRALIAN CHEMICALS INC 800-221-3298
800-221-3298
http://www.crodaindustrialchemicals.com/}
info.chemir@eag.com

CWWA: WATER TECHNOLOGY CORPORATION
103 Dewey St Fax: 973-336-1625
Bloomfield NJ 07003-4237
http://www.cwwa.com
info@cwwa.com

Cyclonaire Corporation
119
DELKIC & ASSOCIATES 904-295-0200
PO Box 1726
Imomkaile FL 32040
International ceramic consultants specializing in energy-saving ceramic coatings and fiber modules.

DELTech INC (DELTech FURNACES) 303-433-5939
1007 E 73th Ave Unit E
Denver CO 80229
http://www.delttechfurnaces.com
mary@delttechfurnaces.com
Manufacturer of standard and custom electric lab and production scale furnaces, including glass melt and rotary models for 1,500–2,000°C operation in air, inert atmospheres, and under positive pressures. ISO 9001:2015 certified. NQA-1 compliant. Control systems certified by Intertek UL508A compliant.

DIAMORPH AB +44 161 872 2181
c/o Tenmat Ltd Ashtonburn Road
West Manchester M17 1TD UK
http://www.diamorph.com
sales@diamorph.com
Diamorph AB is an advanced material company dealing with especially demanding industrial applications.

DIGITAL PRESS INC 610-758-9860
90 S Commerce Way Ste 340
Bethlehem PA 18017-8611
Digital Press is leading the industry when it comes to hydraulic powder compacting presses.

DORST AMERICA INC 610-317-2000
64 S Commerce Way
Bethlehem PA 18017
info@dorstamerica.com
Designs and manufactures machinery, systems, and fully integrated plants for dinnerware, sanitaryware, advanced ceramics, soft and hard ferrite, and powder-metal industries. Program includes spray dryers, hydraulic presses, and isostatic dry presses.

DOW CORNING CORP 989-469-6000
2211 H.H. Dow Way
Midland MI 48666
http://www.dowcorning.com
sales@dowahightemp.com
Dow Corning manufactures high purity materials for glass-to-metal seals. Glass materials are used for wear-resistant parts, insulators, and much more. The unique design of the DORST MIXER allows for mixing, granulating, kneading, and suspending. The equipment is used for preparing refractory mixes for shaped and unshaped products, tap hole clay, silicate ceramics slurries for table and sanitary ware, technical ceramics for dental and ballistic protection application, propellants, and much more. The unique design of the DORST MIXER allows for mixing, granulating, kneading, and suspending. The equipment is used for preparing refractory mixes for shaped and unshaped products, tap hole clay, silicate ceramics slurries for table and sanitary ware, technical ceramics for dental and ballistic protection application, propellants, and much more. The unique design of the DORST MIXER allows for mixing, granulating, kneading, and suspending. The equipment is used for preparing refractory mixes for shaped and unshaped products, tap hole clay, silicate ceramics slurries for table and sanitary ware, technical ceramics for dental and ballistic protection application, propellants, and much more. The unique design of the DORST MIXER allows for mixing, granulating, kneading, and suspending. The equipment is used for preparing refractory mixes for shaped and unshaped products, tap hole clay, silicate ceramics slurries for table and sanitary ware, technical ceramics for dental and ballistic protection application, propellants, and much more.

DOWHAIGHTEMP.COM +91 80 2839 9917
1C 2nd Phase Peenya Industrial Area
Bangalore Karnataka 560058 India
http://www.dowahightemp.com
sales@dowahightemp.com
Manufacturer and supplier of industrial heat treatment furnaces with Japanese technology, including batch type integral sealed quench and soft nitriding furnaces, mesh belt furnaces, decarb annealing and bluing, and controlled atmosphere brazing.

DU-CO CERAMICS COMPANY 742-352-1511
155 S Rebecca St
PO Box 568
Saxonburg PA 15666
http://www.du-co.com
sales@du-co.com
Dry-press, roll compaction, and extruded forms in steatite, cordierite, MgO, forsterite, porcelain, mullite, and alumina. High purity materials are also available in MgO and alumina. Secondary operations include machining, glazing, grinding, and tumbling. Toll spray drying services are also available. Facilities in Saxonburg, Pa. (main) and Monroe, N.C.

DUNHUA ZHENGXING ABRASIVE CO LTD +86 433 634 0678
No 4 Industry Rd
Development Zone
Dunhua Jilin 133700 China
http://boroncarbide.cn
rules@boroncarbide.cn

DYNACUT INC 610-346-7386
3425 Funk Mill Rd
Springfield PA 18061
http://dynacut.com
rptf@dynacut.com

ELCAN INDUSTRIES INC 800-283-5226
20 Maribelle Rd
Tuckahoe NY 10707-3420
http://elcanindustries.com
info@elcanindustries.com
Eican sells advanced screening equipment that is unmatched in quality and performance. The company owns a large toll manufacturing facility in New York, where it sieves powders for companies and also does extensive testing for companies from all around the world.
The quality of E2O’s precast and refractory equipment is what sets the company apart from competing manufacturers. We work closely with our customers and listen to their needs before streamlining our equipment to better serve you.

This is why after nearly two decades of making model improvements our mixers are second to none. Our team is committed to pairing our customers with the equipment that suits their needs best. E2O’s Hog line is renowned for its longevity, customizable options and dedicated customer service team.

Endicott Clay Products Company, celebrating our 100th anniversary in 2020 is a leading family owned manufacturer of face brick, pavers, and thin brick. Producing over 100 million bricks a year from our four Kiln process our 300 employees are proud of our quality and customer service. Endicott continues to grow in numbers, robotics and automation by striving to be the very best.
FERROTEC CERAMIC PRODUCTS +86 571 8514 7487
2590 Nanhuai Rd Binjiang District
Hangzhou Zhejiang China 310600
http://ceramics.ferrotec.com/ceramics-home
lutfi@ferrotec.com.cn

We are a Japanese company with manufacturing location in China. Our ceramics and quartz division is the largest manufacturer of semiconductor components in China since 2007.

FINEWARY CERAMICS 226-526-9785
367 Aokon Ave
Windsor ON N9B 2X1 Canada
http://www.finewaryceramics.com
info@finewarync.com

Since 2008, Finewary Ceramics has been supplying advanced technical ceramics in North American markets. Finewary offers a range of industrial and advanced ceramics, including alumina, zirconia, silicon carbide, and silicon nitride. In addition, Finewary also provides ceramic raw materials, including silicon nitride, silicon carbide, and alumina powder.

FIREBIRD THERMAL PRODUCTS CO +86 371 6580 1713
Rm 4-39 Hongqian Rd No 111
Zhengzhou Henan 450002 China
http://firebirdproduct.en.ec21.com
firebirdcorpor@gmail.com

Firebird Thermal Products Co is founded on the principle of quality, value, and service. We apply ourselves to meet our customer’s various demands on high-temperature materials, and the quality of products, value, and service is what we care about most.

FIVES NORTH AMERICAN COMBUSTION INC
4455 E 71st St
Cleveland OH 44105
http://fives-combustion.com
fna@fivesgroup.com
Supplier of combustion systems, products, and controls.

FLUID ENERGY PROCESSING & EQUIPMENT CO 4300 Bethlehem Pike
Telford PA 18969
http://fluidenergygree.com/websales@fluidenergygree.com

Established 1955. Designs and manufactures ultrafine grinding and fluidizing systems as well as control toll grinding, crushing, coating, screening, blending, and micronizing of chemicals and refractory products.

FOSBEL INC 215-721-9990
20600 Sheldon Rd
Brook Park OH 44142
http://www.fosbel.com
fosbelinc@fosbel.com

Provides a range of furnace maintenance services, including ceramic-welding technology to repair all types of damaged refractories without furnace shutdown, rebrickings, checker cleaning and other hot repairs, inspections, and consulting.

FOUNDATION FLOORS 954-256-1447
4100 N Powerline Rd Ste B-3
Pompano Beach FL 33073
http://www.foundationfloors.com
matt@foundationfloors.com

Foundation Floors offers flooring materials from brands you know at the best prices. We carry bamboo, engineered, laminate, carpet, tile, vinyl, stone, and solid hardwood flooring. Visit FoundationFloors.com to learn more about our products.

FRAUNHOFER INSTITUTE FOR CERAMIC TECHNOLOGIES AND SYSTEMS IKTS +49 351 25537512
Winterbergstrasse 28 Dresden
Saxony 1277 Germany
http://www.iks.fraunhofer.de/en.html
alexander.michaelis@iks.fraunhofer.de

Covers advanced ceramics including the development and application of modern ceramic materials, production technologies, and components up to intelligent systems solutions in many industries for both structural and functional ceramics.

FRTSCH GMBH - MILLING AND SIZING +49 69 784 700
Industriestrasse 6 62051 Oberrhein
Fax: +49 69 784 7011
Rhinegold-Palatinate D-55743 Germany
http://www.fritscht.de
info@fritscht.de

Internationally respected manufacturer of application-oriented laboratory instruments used in sample preparation and particle size analysis for industrial applications in process control, quality assurance, and high-precision research.

FRTSCH MILLING & SIZING INC 919-229-0599
57 Grant Dr Ste G
Pittsboro NC 27312
http://www.fritscht-us.com
info@fritscht-us.com

FRTSCH—-an internationally respected German manufacturer of lab mills and particle size/shape instruments. Capabilities into the nano range. For size reduction, homogenization, mechanical alloying, mechano-chemistry, chemical activation, and more.

FURNACE PRODUCTS & SERVICES INC 724-285-3774
610 East Butler Rd
Butler PA 16002
http://fpands.com
sales@fpands.com

Independent representative organization providing insulating firebrick, machining services, furnace rebuilds, combustion systems, forehearts, and more.

FUSE TECH/HOT TECH GROUP 419-841-9323
3400 Silica Rd
Sylvania OH 43560
http://www.fusetech.com
sales@FuseTech.com

Fusion services. Ceramic welding and refractory services, including hot and cold repairs. The ceramic welding process was developed and originally designed for the in-situ repair of glass furnaces.

FUSION CERAMICS INC 330-627-2191
160 Scio Rd SE
PO Box 127
Carrollton OH 44615
http://www.fusionceramics.com
info@fusionceramics.com

Manufactures glass and ceramic frits for whiteware, pottery, tile, vitrified abrasives, refractories and metallurgical applications, decorating enamels for glasses and ceramics, and specialty pigments and specks. Prepares custom, dry-blended glazes, engobes (including Brikoite), bodies, and binders. Sells Reimbold & Strick stains, BMJ precious metals, ICA organic coatings, and raw materials.

GAMRY INSTRUMENTS 215-682-9330
734 Louis Dr
Warminster PA 18974
http://www.gamry.com
jketter@gamry.com

For more than 20 years, Gamry Instruments provides high performance electrochemical instruments (potentiostat/ galvanostat/chrono). A wide variety of experimental techniques are available for electrochemical testing.

GARG PROCESS GLASS INDIA PVT LTD +91 22 2883 0309
2/222 New Sonal Link Ind Est
Fax: +91 22 2888 3300
Link Rd Malad West
Mumbai Maharashtra 400064 India
http://gargglassindia.com

Garg manufacturer and exporter of scientific lab glassware and scientific equipment such as distillation unit and reaction unit.

GASBARRE PRODUCTS PTX PENTRONIX 814-371-3015
590 Division St
DuBois PA 15801
http://www.gasbarre.com
sales-gasbarre@gasbarre.com

Gasbarre Products Inc is an international designer, manufacturer, and marketer of capital equipment and related services. We focus on primary process equipment for powder metallurgy, particulate materials, and thermal processing industries worldwide. No matter what your challenging opportunity may be, we can supply the best technically engineered solution for your specific needs!

GASBARRE PRODUCTS INC 814-371-3015
590 Division St
PO Box 1022
DuBois PA 15801
http://gasbarre.com
press-sales@gasbarre.com

Manufactures mechanical and hydraulic powder compaction presses for dry pressing of ceramic powders. Compaction presses incorporating the flooding die table concept as well as a removable die set series, a lab series, and a standard series.

GE GLOBAL RESEARCH 518-387-6975
One Research Cir MB 159A
Niiskaya NY 12209
http://www.geglobalresearch.com

Making aircraft engines more efficient. Powering the world with flexible gas turbines. Crunching big data. Pioneering the Industrial Internet. Creating greener ground transportation. Refining medical imaging for the future. For more than a century, GE Global Research serves as the cornerstone of GE innovation. Currently, more than 3,000 of the world’s brightest scientists, engineers, and researchers are working together to deliver technical breakthroughs for GE customers.

GELLER MICRANALYTICAL LABORATORY INC 978-887-7000
426 E Borton St R I
Topfield MA 01983
Fax: 978-887-6671
http://www.gellermicro.com
sales@gellermicro.com

Specializes in quantitative analysis of boron, carbon, nitrogen, oxygen, etc., in micrometer-size areas. Elemental mapping, diffusion studies, failure analysis, reverse engineering, and phase are determinations.

GENERAL GLASS EQUIPMENT CO 609-345-7500
General Glass Bldg
900 W Lewis Ave
Pleasantville NJ 08232
http://generalglassequipment.com
engglass@generalglassequipment.com

Offers complete glass plants, engineering services, batch wetting systems, oscillating and standard nonoscillating batch chargers and controls, luminous furnaces, continuous glassmelting furnaces, automatic reversal systems, block cooling systems, and more.

GENERAL MATERIAL INDUSTRIAL CO 863-765-5700
206-353-2477
300 W Lewis Ave
Pleasantville NJ 08232
http://generalmaterialsco.com

Manufacturers and suppliers of glass melting furnaces, automatic reversal systems, block chargers and controls, luminous furnaces, continuous glassmelting furnaces, automatic reversal systems, block cooling systems, and more.

GENERAL MATERIAL INDUSTRIAL CO +86 575 8270 1478
2590 Nanhuai Rd Binjiang District
Hangzhou Zhejiang China
http://generalglassequipment.com
info@gmico.net

GMIC mullite insulating brick are made of calcined mullite and imported calcined alumina. Various types of GMIC insulating brick can meet the requirements of heat-process and chemical-physical applications, and are used in industrial furnaces.

GENERAL SPRAY DRYING SERVICE INC 908-353-2477
1001 Newark Ave
Elizabeth NJ 07208
http://gsdsoptonline.com
waltreed@generalspraydrying.com

Custom spray drying of glass, ceramics, metals, and chemicals. Moisture and particle-size control. Dry blending, powder cooling, and wet milling available. Test runs to full production.

122
Harper International

Harper is the world leader in complete thermal processing solutions and technical services for the production of advanced ceramic materials, including custom designed rotary, pusher, and belt conveyor furnaces. Harper’s experience spans a range of engineering ceramics, with extensive experience in designing for the production of silicon nitride, tungsten carbide, boron nitride, and aluminas. Additionally, Harper kilns are widely used to calcine powders and sinter components such as thermistors, varistors, and monolithic and multilayer capacitors.

HIGH TEMPERATURE MATERIALS LAB
Building 4515
PO Box 2008
Oak Ridge TN 37831-6062
http://www.h tome.ornl.gov
laracurzeo@ornl.gov

HTML is a DOE User Facility dedicated to solving materials problems that limit the efficiency and reliability of systems for power generation and energy conversion, distribution and use. Includes six user centers.

HINDALCO Industries Limited
Post Bag 1
Belagavi Karnataka 590 010 India
http://www.hindalco.com
hindalco@adityabirla.com

HARROP INDUSTRIES INC
3470 E 5th Ave
Columbus OH 43219-3816
614-231-3621
sales@harropusa.com

Established 1919. Engineers and constructs kilns, dryers, and ceramic process plants. Comprehensive expertise with field-built and prefabricated designs. Serves all segments of the ceramic industry with belt furnaces, forced-air bakeout ovens, and more.

HEARTLAND WOOD FLOORING
4100 North Powerline Rd Ste B-3
Pompano Beach FL 33073
754-600-9990
http://www.heartlandwoodflooring.com
admin@heartlandwoodflooring.com

Heartland Wood Flooring supplies laminate, marble, tile, carpet, vinyl, solid and engineered wood, and cork flooring.

HED INTL INC
609-466-1900
Ringoes NJ 08551
http://hed.com
info@hed.com

Manufactures and sells unique/perleny kilns and furnaces. Manufactures and supplies Isomax blue-flame burner systems. Specializes in tape-casting machines, custom-built equipment, and computer-controlled system integration. Import and export capabilities.

HERAEUS QUARTZ UK LTD
+44 191 262 5311
Neptune Rd
Wallsend Tyne & Wear NE28 6DD UK
http://www.heraeus-quarglas.com
quarglas@heraeus.com

Manufacture fused quartz and fused silica materials and products for semiconductor, optical, fiber-optics, and more. Products include fused quartz and synthetic fused silica ingots, optical components, tubes, and rods. Worldwide exporter. Manufacturing.

HIXON INC
614-996-2497
180 East Broad Street
Columbus OH 43215
http://www.hexion.com
service@hexion.com

Based in Columbus, Ohio, Hexion Inc is a global producer of epoxy specialty resins, modifiers, and curing agents. Hexion resin technologies encompass global operations that produce high performance phenolic, epoxy, and unsaturated polyester resin technologies.

HITACHI HIGH TECHNOLOGIES AMERICA, INC
22610 Gateway Center Dr Ste 100
Clarksburg MD 20871-2007
800-253-3053
http://www.hitachi-hightech.com/us/
hts-microscopy@hitachi-hightech.com

Hitachi provides technologically advanced imaging solutions to the materials science, biological and academic research, and industrial manufacturing sectors. Our innovative and reliable imaging technologies include SEM, TEM, dedicated STEM, FIB, Ion Milling instrumentation, tabletop microscopes, and sample prep systems. Hitachi’s new portfolio of SPM products offer extraordinary levels of performance and ease-of-use, including revolutionary environmental controls that support a variety of in-situ observations.

HITECH MATERIALS PTY LTD
60-62 Murray Park Rd
Fingree New South Wales 2525 Australia
+61 2191 991 930
http://www.hitechmaterials.com.au
info@hitechmaterials.com.au

We investigate refractory and ceramic failures, offer testing and analysis services to any standard or nonstandard method, prepare expert witness reports, independently compare materials from different supplier, and validate material properties.

HOCKMEYER EQUIPMENT CORP
6 Kitty Hawk Ln
Elizabeth City NC 27909
252-338-4705
252-338-6540
https://www.hockmeyer.com
sales@hockmeyer.com

Hockmeyer Equipment is a leader in the wet grinding and dispersion industry and offers custom designed process equipment for mixing, blending, dispersing, and particle size reduction as fine as 25 nanometers.

HORIBA INSTRUMENTS INC
9755 Research Dr
Irvine CA 92618
949-466-1790
http://www.horiba.com
labinfo@horiba.com

Offering a wide range of analytical instruments, including particle-size and shape analysis, particle composition, surface area, water quality, ICP, Raman, X-ray microscopy, process gas analysis, and gloss metering.

HOTEK ALLIANCE LTD
Century Rd
Zhangdia Zibo Shandong 255000 China
+86 533 381 1405
+86 533 381 1827
http://www.hotekalliance.com
hoteksales@163.com

Established in 1988, Hotek Alliance Limited is a leading manufacturer of heating elements in China. 90% of its products are sold internationally to Europe (U.K., Poland, Germany, France), U.S.A., Canada, South Africa, Australia, Russia, South Korea, and Japan.

HUNTERLAB
11491 Sunset Hills Rd
Reston VA 20190
703-471-6870
703-471-4237
http://hunterlab.com
sales@hunterlab.com

Manufactures systems that measure reflected and transmitted color, and quantify how color appears to the human eye. Measures incoming material as well as in-process and final product inspection. Systems measure color, achromaticity, whiteness, and more.

HYSITRON INC
9625 W 76th St
Minneapolis MN 55344
+61 835-6366
http://www.hysitron.com
info@hysitronindia.com

Hysitron is the world leader in developing nanomechanical test instruments and designs cutting edge technology for the scientific community since 1992. As the pioner in in-situ imaging with nanomechanical property measurement capabilities, Hysitron grew with the nanotechnology market and has been able to remain on the cutting edge of technology.

II-VI Aerospace & Defense
36570 Briggs Road
Murrine CA 92653
http://iiiad.com
sales@iiiad.com

II-VI Aerospace & Defense (II-VI A&D) brings together several leading optical brands under II-VI Inc. Our expanding and extensive capabilities cover a wide range of products and applications making us the most advantageous supplier of optical and laser components and subassemblies, engineered materials, and specialty solutions. As an integrated provider, II-VI A&D is uniquely positioned to offer critical and complex design, engineering, and production requirements of customers in the aerospace and defense industries. From concept design development through production, we collaborate with our customers to integrate the design and manufacture of systems that consistently exceed expectations. We are transforming our ideas into cutting edge solutions for a safer tomorrow.

I Squared R Element CD
1260 Clarence Rd
Akron NY 14001
716-542-5511
Fax: 716-542-2100
http://www.isquaredrelement.com
sales@isquaredrelement.com

Established 1964. Manufacturer of Starbar SPC and Molot-D MoS2 heating elements for use in a wide rage of applications up to 1,850°C element temperature. Offers free furnace design consultation.

IBF Insulating Firebrick INC
899 Bedford St
Claysburg PA 16625
724-282-1012
Fax: 724-431-9944
http://insulatingfirebrick.com
sales@insulatingfirebrick.com

Offers a complete line of high-temperature insulating firebrick and in-house capabilities to provide arches, keys, wedges, and skews. Most grades and strengths are stocked.
JAMES INSTRUMENTS
3727 N Kedzie Ave
Chicago IL 60618
http://www.nptjames.com
info@nptjames.com
Manufactures nondestructive test equipment for concrete and other coarse-grained materials. Supplies ceramic materials testing instruments that measure and analyze strength, structure, corrosion, and moisture in concrete, and more.

JAPAN FINE CERAMICS CENTER
+81 52-871-3500
2-4-1 Mutsuno Atsuka-ku
Nagoya Aichi 456-8587 Japan
http://www.jfcc.or.jp
Established 1985. R&D-based organization for standardization, quality improvement, and expansion of use of applications of advanced ceramics, engineering ceramics, and electronic ceramics. Offers contract-basis tests and research.

JENIKE & JOHANSON
978-649-3300
400 Business Park Dr
Tyngsboro MA 01879
https://jenike.com/
info@jenike.com
Jenike & Johanos specializes in solids handling with expertise in storage, feeding, conveying, and processing. Our skilled, highly technical team of experts and industry-leading innovations has successfully delivered engineering solutions for 50 years. We are the world’s leading technology company in this field. Our solutions achieve reliable solids flow with minimized variations based on proven theories and extensive project experience.

Typical project focuses include raw material storage and metering, mixed batch handling and process/furnace feeding, root cause investigation of mixed batch variations due to segregation, as well as finished powder storage and packing. Understanding material flow properties is at the core of all our work, including the effects of temperature, storage times, humidity/moisture migration and other process conditions.

JEOL USA INC
978-535-5900
11 Dearborn Rd
Peabody MA 01960-3823
http://www.jeolusa.com
salesinfo@jeol.com
Since 1949, the JEOL legacy is one of outstanding innovation in developing instruments used to advance scientific research and technology. JEOL has 60 years of expertise in the field of electron microscopy, more than 50 years in mass spectrometry and NMR spectrometry, and more than 40 years of e-beam lithography leadership.

JET EDGE WATERJET SYSTEMS
12070 43rd St NE
St Michael MN 55376
http://jetedge.com
sales@jetedge.com
Jet Edge manufactures precision waterjet cutting machines, water jet intensifier pumps, and waterjet parts. Jet Edge also makes mobile waterjet cutting systems and ultrahigh pressure water blasting systems for cleaning and surface preparation applications.

JIFFY MIXER CO INC
951-272-0838
1691 California Ave
Corona CA 92881-3375
http://jiffymixer.com
sales@jiffymixer.com
Produces a portable, non-electrical, all-purpose mixer hand tool.

JOHNSON MATTHEY TECHNOLOGY CENTRE
Blounts Court Rd
Reading RG 1 9HD UK
http://www.matthey.com
group.info@matthey.com
Johnson Matthey is a specialty chemicals company focused on its core skills in catalysis, precious metals, fine chemicals, and process technology.

JOURNAL OF THE AMERICAN CERAMIC SOCIETY
550 Polaris Pkwy Ste 510
Westerville Ohio 43082
866-721-3322
Fax: 614-794-5892
http://ceramics.org
customerservice@ceramics.org
This publication is one of the top sources for ceramic and glass science research, providing scientists, engineers, and students with critically assessed, original research for over 100 years.

JTF MICROSCOPY SERVICES, LLC
607-292-6808
9064 Wixson Dr
Hammondsport NY 14840-9334
http://www.jtfmicroscopy.com
 territorial@jtfmicroscopy.com
JTF Microscopy Services LLC is an independent company that provides microscopic defect analysis and glass technology services to glass manufacturers around the world and related industries such as raw materials, refractory, furnace repair and cullet/recycling, as well as pharmaceutical & automotive components.

JYOTI CERAMIC INDUSTRIES LTD
91 253 235 0120
C-21 N.I.C.E.
Sapur Nashik Maharashtra
422007 India
https://www.jyoticeramic.com
info@jyoticeramic.com
Manufactures standard and custom made industrial ceramics in a variety of ceramic compositions such as aluminum oxide, zirconium oxide, zirconia-toughened alumina, mullite, cordierite, and forsterite. Exports worldwide.

KEITH CO
800-545-4667
8323 Loch Lomond Dr
Pico Rivera CA 90606-2507
http://www.keithcompany.com
info@keithcompany.com
Provides furnace systems for processing electronics and advanced materials, as well as specialty metals from 500–1,800°C. Fifty-four years of experience providing furnaces for high temperature, precise temperature, and atmosphere control.

KERNEOS INC
877-527-6367
1316 Priority Ln
Chesapeake VA 23324
http://kerneos.com
kus.info@kerneos.com
Manufactures six refractory cements with alumina content (purity level) ranging from 40–80%.

KOREA INST OF INDUSTRIAL TECHNOLOGY
7-47 Songdo-dong Yeonsu-gu
Incheon Sudogwon Korea
+82 10-7633-0902
http://www.ikt.re.kr
master@ikt.re.kr
Knight institute to help develop technologies for the domestic industry, with focus on export competitiveness and SMEs. Receives government and private funding, distributes its research grants to private companies.

KOYO BEARINGS NORTH AMERICA
864-770-2100
7 Research Dr
Greenville SC 29607
http://www.koyo.com
info@koyo.com
Manufactures and supplies ball and roller bearings, including bearings for extreme special environments.

KYANITE MINING CORP
30 Willis Mountain Plant Ln
Dillwyn VA 23936
434-983-2085
Fax: 434-983-3696
http://www.kyanite.com
hankjamarson@kyanite.com

KYOCERA INTERNATIONAL INC
619-576-2600
8611 Balboa Ave
San Diego CA 92123-1580
http://global.kyocera.com
fscales@kyocera.com
Established in 1959, Kyocera’s track record in Fine Ceramics is unmatched. Expanding its reach into everyday products and fostering discoveries into uncharted territories, we utilize our extensive resources in research, development and production to select the optimal raw materials and manufacturing methods for each application. Breakthroughs and improvements in a wide range of industries are facilitated by the unique qualities of Kyocera’s Fine Ceramics.

L&L KILN MFG INC
856-294-0077
505 Sharpstown Rd
Swedesboro NJ 08085
http://hotkils.com
sales@hotkils.com
Manufactures ceramic electric kilns for more than 70 years. Services the industrial, professional, institutional, and hobby ceramics markets with top-loading, bell-lift, car bottom, and front-loading kilns that use ceramic Dyna-Glow element holders. Temperatures up to 2,350°F.

L&L SPECIAL FURNACE CO INC
261-459-9216
20 Kent Rd
PO Box 2129
Aston PA 19014
http://lifurnace.com
sales@lifurnace.com
Manufactures industrial electric and gas-fired furnaces and kilns up to 1,700°C maximum temperature. Features include car bottom, bottom loader, box furnace, controlled atmosphere (including hydrogen), pusher, and continuous types.

LAIS GMBH
+352 27 61 21 09
Am Schierlecker 7 Wecker
L-6868 Luxembourg
http://laais.eu+352 27 61 20
info@laais.euProduces high-performance hydraulic presses, dryers, and kilns, mainly for refractories, advanced and technical ceramics, fine ceramics, building material, and other applications.

LAGUNA CLAY CO
626-330-0631
14400 Lomitas Ave
City Of Industry CA 91746
http://lagunaday.com
info@lagunaday.com
Manufactures dry, pugged, and slip clay (custom and stock), powder and liquid glazes (custom and stock), Pacifica potter’s wheels, Laguna kickwheels, gas kilns, banding wheels, and ware racks. Supplies raw materials, hydraulic presses, jiggers, and mixers.

LANCASTER PRODUCTS
717-273-2111
920 Mechanic St
LebanonPA 17046
https://www.lancasterproducts.com
info@lancasterproducts.com
Produces mixers (rotating pan, counterhigh, current intensity, and muller mixer as well as pug mills), KT pneumatic conveyors with bulk-bag unloader, double-roll crushers, table feeders, AutoBrik molded brickmaking machines, and custom machines.
MCLEAN ADVANCED CERAMIC TECHNOLOGIES LLC
510 Ninth Ave
724-848-8300
Beaver Falls PA 15010-4700
Fax: 724-943-5644
http://mcleanadvancedceramics.com
sales@mcleanadvancedceramics.com
Manufactures industrial and technical ceramics from alumina, mullite, zirconia, fused silica, and SiAlON. Specializes in developing custom prototypes to full-scale production of ceramic components.

MEMPRO MATERIALS CORP
888-868-9222
http://mempro.com
sales@mempro.com
MemPro manufactures ceramic nanofibers, polymeric nanofibers, and catalyst products. It continually works with customers to develop and supply new materials for innovative technologies. MemPro produces the highest quality materials backed by unrivaled knowhow.

MERKLE INTERNATIONAL INC
815-777-2100
Fax: 815-777-2106
http://merkleintern.com
sales@merkleintern.com
Designs and supplies custom suspended refractory systems for glass melting, copper, aluminum, steel pelletizing, and reheat furnaces and incinerators. Manufactures blanket batch charger for glass-melting furnaces.

METTLER-TOLEDO INC
800-638-8537
Fax: 614-438-4900
http://www.mt.com
labinsofsales@mt.com
Oﬀers a complete range of products to complement laboratory needs. Laboratory products include balances, titrators, pH meters, density meters, refractometers, moisture analyzers, and thermal analysis equipment.

MICROMERITICS INSTRUMENT CORP
770-602-3668
Fax: 770-602-3696
http://www.micromeritics.com
sales@micromeritics.com
Micromeritics materials characterization analytical instruments and contract services determine surface area, porosity, particle size, particle shape, zeta potential, material density, catalytic activity, vapor sorption, powder strength, and thermal analysis equipment.

MICRON INC
302-998-1184
Fax: 302-998-1836
http://micronanalytical.com
micronanalytical@compuserve.com
For over 50 years, Micron specializes in fouler transform infrared testing (FTIR), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), optical microscopy, electron spectroscopy chemical analysis (ESCA), auger electron microscopy (AES), X-ray diﬀraction (XRD), thermal analysis (DSC, TGA), and metallography.

MICROTRAC INC
727-507-9770
Fax: 727-507-9774
http://microtrac.com
yjay@microtrac.com
Supplies advanced laser-based particle-size systems. Measuring particle size from 0.0008 nanometers to 3,000 microns.

MIDWESTERN INDUSTRIES INC
330-837-4203
Fax: 330-837-4210
http://midwesternind.com
info@midwesternind.com
Manufactures a complete line of durable screening products, including round and rectangular screening equipment, custom wire cloth, screens and panels, as well as replacement parts and motors. Oﬀers free full-scale test facility.

MILESTONE DECAL ART LLC
914-906-2733
Fax: 914-906-2734
http://www.milestonedecalart.com
info@MilestoneDecalArt.com
We are committed to providing the highest quality glass fusing and ceramic decals available. We provide silkcreened water decals as well as digital decals. Our custom decal printing service provides all available decal options on the market.

MINERAL RESEARCH PROCESSING
+33 6 82 99 29 72
7 Rue Francis Garnier Meyzieu
Fax: +33 4 78 31 11 76
Rhone-Alpes 69530
France
http://www.mineralresearchprocessing.com
francosisorrentino@sfr.fr
Research and development of synthetic minerals with controlled chemistry and mineralogy in the field of silicates, aluminates, phosphates, titanates. Synthetic minerals are devoted to labs in ceramic research.

MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY
1400 N Bishop
223 McNeill Hall
Rolla MO 65409-0340
Fax: 573-541-6934
http://mse.mst.edu
matisscm@mst.edu
Oﬀers BS, MS, and PhD in ceramic engineering as well as MS and PhD in materials engineering. Undergraduate curriculum emphasizes application of scientific principles to solve engineering problems and includes extensive hands-on experience.

MIXER SYSTEMS INC
262-691-3100
Fax: 262-691-3184
http://www.mixersystems.com
daveb@mixersystems.com
Mixer Systems designs and manufactures four diﬀerent high & low shear mechanical batch mixers for the ceramic and glass industry. Turbin, planetary, twin shaft, and single shaft mixers give quick, homogeneous blending for wet or dry mixing.

MODERN TIMES LEGAL
617-401-2460
Fax: 617-401-3867
http://mtdlegal.com
contact@moﬁdel.com
Law ﬁrm specializing in the drafting and prosecution of patent applications, particularly relating to ceramics, in the United States and internationally. Patent attorney Bob Sayre is a member-at-large of the New England Section of ACRs.

MOISTTECH CORP
941-229-8096
6408 Parkland Dr Ste No 104
Sarasota FL 34243
Fax: 941-727-1810
http://www.moisttech.com
info@moisttech.com
MoistTech is a world leader in NIR moisture measurement technology for instant on-line, oﬄine, and laboratory moisture instrumentation. MoistTech near infrared (NIR) gauges and sensors provide the most accurate and repeatable measurements for manufacturing and quality control processes. Inexpensive to material variations, such as particle size, material height, and color, MoistTech moisture sensors provide continuous, reliable readings. Sensors are one-time calibration, maintenance free, and have a non-intrusive optical design, allowing operating personnel to conﬁdently make immediate process adjustments based on real-time measurements.

MOMENTIVE PERFORMANCE MATERIALS INC
260 Hudson River Rd
Waterford NY 12188
Fax: 614-986-2496
http://www.momentive.com
commercial.services@momentive.com
Provide high-purity quartz and advanced ceramic materials for the semiconductor, telecommunications, lighting, electronics, personal care, water puriﬁcation, and other industries. Ceramic products include boron nitride powder coatings/sprays and hot-pressed BN.

MONOFRAK LLC
1707 New York Ave
Falconer NY 14733-1740
Fax: 716-483-7200
http://monofrax.com
info@monofrax.com
For more than 70 years, Monofrax manufactured fused cast refractories for use in the glass, light metal, steel and chemical industries. Our recently expanded product line includes 12 fused cast refractory compositions, five fused grain composites, and a new refractory machining service.

MORGAN ADVANCED MATERIALS
510-491-1100
2425 Whipple Road
Hayward CA 94544
Fax: 510-491-1297
http://morgantechnicalceramics.com
Design and manufacture products for demanding applications in a variety of markets using a comprehensive range of advanced ceramic, glass, precious metal, piezoelectric, and dielectric materials.

MORGAN THERMAL CERAMICS AUBURN
13079 Earhart Ave
Auburn CA 95602
Fax: 530-823-3410
http://morgantetheramicceramics.com
wendy.svends@thermalceramics.com
Morgan Thermal Ceramics designs, manufactures, and installs a broad range of thermal insulation products that signiﬁcantly reduce energy consumption and emissions in a variety of high temperature processing applications.
NANOFILM
10111 Sweet Valley Dr
Valley View OH 44125-4249
216-447-1199 Fax: 216-447-1137
http://www.nanofilmtechnology.com
nanofilm@nanofilmtechnology.com
Nanofilm UltraSeal coatings for glass and ceramic provide a water- and grease-repellent surface with higher abrasion resistance than untreated surfaces. Treated surface is easier to clean. They are easy to apply and cure quickly at room temperature.

NOSCIENCE INSTRUMENTS
10008 S 51st St Ste 110
Phoenix AZ 85044
480-758-5400 Fax: 480-758-5401
http://www.nosciences.com
info@nosciences.com
Nanoscience instruments sells and supports laboratory instrumentation for microscopy and surface science applications. Its team of scientists and engineers have backgrounds in chemistry, biochemistry, material science, physics, and engineering. Its portfolio includes desktop electron microscopes, atomic force microscopes, optical profilers, micromechanical testing systems, nanoinstruments, and correlative microscopy systems.

NETZSCH INSTRUMENTS NA LLC
3025 Boardwalk
Ann Arbor MI 48108
800-222-6267
http://www.ncmsa.org
contact@ncmsa.org
The National Center for Manufacturing Sciences (NCMS) is the nation’s largest cross-industry technology development organization, dedicated to improving the competitiveness and strength of the U.S. industrial base. As a member-based consortium, NCMS leverages its network of members and partners to research, develop, demonstrate and transition innovative technologies more efficiently, with less risk, and at a lower cost than going it alone. NCMS connects industry, government, and education to work together on technology development and engage in unique growth opportunities for their businesses.

NEOPTIX
1415 Boul Charlevoix Ste 220
Quebec QC G1N 4N7 Canada
418-687-2500 Fax: 418-687-2524
info@neoptix.com
neoptix@neoptix.com
Designs and manufactures fiber-optic temperature sensors for temperature monitoring under microwaves and rf. Made of dielectric materials, these temperature sensors are immune to radiation and other interferences.

NETZSCH INSTRUMENTS NA LLC
129 Middlesex Turnpike
Burlington MA 01803
781-272-5353 Fax: 781-272-5225
http://www.netzsch-thermal-analysis.com
nfb_sales@netzsch.com
Thermal analysis and thermal property measurements, plus contract testing services: DSC; DTA-DSC; TGA; DTA-TGA; coupling for FTIR and MS dilatometers; laser flash thermal diffusivity, thermal conductivity, and more.

NETZSCH PREMIER TECHNOLOGIES LLC
125 Pickinger Way
Exton PA 19341
800-676-6455 Fax: 610-280-1299
http://www.netzsch-grinding.com
info.npt@netzsch.com
Provides proven nanotechnology solutions for a broad range of industries. Manufactures grinding and dispensing machinery for media milling, powder processing, dispensing, de-aerating, and filling. Comprehensive global resources in engineering and R&D.

NORCROSS VISCOSITY CONTROLS
10111 Sweet Valley Dr
Valley View OH 44125-4249
800-758-6455 Fax: 610-280-1299
info.npt@netzsch.com
Provides proven nanotechnology solutions for a broad range of industries. Manufactures grinding and dispensing machinery for media milling, powder processing, dispensing, de-aerating, and filling. Comprehensive global resources in engineering and R&D.

Norcross Viscosity Controls
NORECS AS
Oslot Science Park
Gaustadalleen 21 Oslo 349 Norway
http://norecs.com
post@norecs.com
Manufactures high-temperature sample holder system for electrical and other characterization at high temperatures used in SOFC research and testing of ceramic membranes.

NORTH STAR EQUIPMENT INC
1341 W First St
Cheyney WA 99004
http://www.northstarequipment.com
info@northstarequipment.com
American manufacturer of slab rollers, extruders, ware trucks, drying/damp cabinets, studio work tables, and throwing bats. North Star makes custom dies for any brand extruder or pugmill, any die material, and any shape or size. Custom dies are inexpensive and generally ship in 7–10 days.

NOVABONE PRODUCTS LLC
904-807-0140
1501 Atlantic Blvd Ste 105
Jacksonville FL 32207
http://www.novabone.com
information@novabone.com
Focused on developing bone grafting materials based on advancements in biomedical engineering to meet surgeons’ needs. Products are used in over a million patients with success demonstrating the safety and efficiency of our patented technology.

NOVOMER INC
781-672-2525
One Bowdoin Square Ste 300
Boston MA 02114
http://novomer.com
info@novomer.com
Novomer is a materials company pioneering a family of competitively priced high-performance green plastics, polymers, and other chemicals.

NYACOL NANO TECHNOLOGIES INC
800-468-7657
211 Megunko Rd
PO Box 349
Ashland MA 01721
http://www.nyacol.com
info@nyacol.com
Nyacol produces a wide variety of inorganic fine particles specialized in sub-200 nm metal oxides, including silica, alumina, antimony pentoxide, tin oxide, antimony tin oxide, ceria, titania, ytteria, zincia, zinc oxide, and barium titanate for use in structural, refractory, and electrical ceramics.

OBJECT RESEARCH SYSTEMS, INC
514-843-3061
780 rue St-Paul West Suite 101
Montreal Quebec Canada H3C 1M4
http://www.theobjects.com
info@theobjects.com
Designed for researchers and engineers in the fields of material and life sciences, geology, nanotechnology, and the environment, Dragonfly provides qualitative and quantitative data for material characterization, surface analysis, process evaluation, quality control testing, or any analysis function that requires a high-degree of accuracy. Already distributed with the high-end imaging products of renowned manufacturers such as Carl Zeiss Microscopy and TESCAN, Dragonfly’s software architecture allows for extensible workflows and sophisticated 3D visualizations and robust analyses.

OCEAN OPTICS INC
727-733-2447
8060 Bryan Dairy Rd
Largo FL 33777
http://oceanoptics.com
info@oceanoptics.com
Manufactures spectral instrumentation, precision optics, and optical components for online and lab UV–VIS–NIR applications. Optical-sensing systems also can be configured for testing a variety of ceramic materials, components, and coatings.

O’KEEFE CERAMICS INC
719-687-0888
845 Research Drive
Woodland Park CO 80863
http://www.okeefe ceramics.com
info@okeefe ceramics.com
Precision Ceramic Machining since 1984. For over 30 years, O’Keefe Ceramics has served the aerospace, medical, energy, and semiconductor industries with high quality precision ceramic components. At O’Keefe Ceramics our mission is to continue to provide industries with a premier world class supplier of Precision Ceramic parts, with uncompromised quality, service, and value.

OLD HICKORY CLAY CO
270-247-3042
962 State Route 1241
Hickory KY 42051
http://oldhickoryclay.com
info@oldhickoryclay.com

OPF ENTERPRISES
406-403-1102
5750 N Sam Houston Pkwy E Ste 109
Houston TX 77032
http://www.orthopantfloor.com
info@orthopantfloor.com
Worldwide consulting and management services specializing in ceramic raw materials, processing, and plant design. Physical and analytical testing of materials in our Houston laboratories. OPF stands for “On the Plant Floor” for our experience and approach to problem solving. Current clients range from individual start-ups to multinational corporations. Also provide custom marketing solutions and investigations for multiple markets. OPF also represents Eirich Machines in Arkansas, Louisiana, Texas, and Oklahoma.

OPTIPRO SYSTEMS LLC
585-265-0160
6368 Dean Pkwy
Ontario NY 14519
https://www.optipro.com
sales@optipro.com
OptiPro Systems is a world leader in designing and manufacturing advanced equipment for ceramics machining and optical fabrication. OptiPro is dedicated to helping customers prosper through innovative manufacturing solutions, including CNC ultrasonic machining centers as well as CNC optical grinding and surface machining. In addition, it provides state-of-the-art contact and noncontact metrology systems.

OPTOCOM AG
+49 351 8435980
Washingtonstrasse 16/16a
Dresden Saxony D-01139 Germany
http://www.optocom.de/en/company
info@optocom.de
We are the specialist for your fiber optic temperature measurement needs, including fiber optic thermometers and fiber optic temperature sensors.

ORTECH INC
916-549-9696
6720 Folsom Blvd Ste 100
Sacramento CA 95819
http://www.ortecceramics.com
info@ortecceramics.com
Ortec Inc is a worldwide leader in the development and production of advanced technical ceramics. The company provides a wide selection of technical and advanced ceramics, including alumina oxide, zirconia oxide, silicon carbide, and silicon nitride, which improves and extends the performance of products, processes, or systems. Whether customers need high-temperature stability, hard and wear-resistant surfaces, improved stiffness to weight ratio, new or improved alloys, or other benefits, Ortec can deliver. The company offers significant performance and cost advantages to meet customer needs. Search Ortec’s selection of technical ceramics, including its technical ceramics materials and advanced ceramics standard products.

OSRAM SYLVANIA INC
978-570-3000
200 Ballardvale St
Wilmingtom MA 01887
https://www.osram.us/cb
john.kelso@sylvania.com
Research, development, and manufacturing of advanced ceramics for lighting applications.

OUTOTEC RESEARCH OY
+358 20 529211
Kuparitie 10
Pori Satakunta Finland
http://outotec.com/hsc
hsc@outotec.com
Provides plants, equipment, and services based mainly on its proprietary technologies. In-house-developed HSC software simulates chemical reactions and processes on a thermochemical basis.

OWENS-ILLINOIS INC
567-336-5000
1 Michael Owens Way
Perrysburg OH 43551-2999
http://www.o-i.com
Produces glass and plastic packaging systems for the food, beverage, and pharmaceutical industries for commercial and retail use. Consulting/purchasing agreements available for technical assistance to noncompetitive glass producers and users.

NSL ANALYTICAL SERVICES INC
216-438-5200
4450 Cranwood Pkwy
Cleveland OH 44128
http://www.nslanalytical.com
nsl@nslanalytical.com
Commercial testing lab specializing in elemental chemistry, metallurgy, and polymer analysis. Certifications include ISO/IEC 17025 and NADCAP. Techniques include trace elemental analyses using ICP/MS and dc arc, classical wet chemistry, and ICP-OES.

NUTECK BICKLEY
855-209-9566
Carr Saltillo-Monterrey Km 62.5 No 100
66395 Ciudad Sata Catarina NL Mexico
sales@nuteckbickley.com
Nuteck Bickley designs and manufactures kilns to fire ceramics attending the following industries: sanitaryware, technical ceramics, refractories, insulators, clay pipe and abrasives. Industrial kilns and furnaces with the best performance for firing refractories, technical ceramics, sanitaryware, electrical insulators, clay pipe and abrasives. Industrial Furnaces with the best technology in insulation systems, combustion equipment, instrumentation & controls, and heat recovery systems.
QUALITY THERMISTOR INC 800-554-4784
2108 Century Way
Boise ID 83709
http://thermistor.com
qtsales@thermistor.com
Our ISO:09001:2000 and AS9100 certified manufacturing and testing facilities in Idaho enhance our ability to meet the needs of today’s challenging temperature measurement and control applications.

QUANTACHEM CHROME INSTRUMENTS 561-731-4999
1900 Corporate Dr
Boynton Beach FL 33426
qc.sales@quantachrome.com
World leader in design and manufacture of laboratory instruments for characterizing properties of porous materials and powders. Specialize in instruments for the determination of surface area, pore size, pore volume, and density.

QUANTACHEM UK-ANTON PAAR 804-550-1051
10215 Timber Ridge Dr
Ashtabula WA 23005-8135
http://www.quantachrome.co.uk
info@anton-paar.com
From particle creation to particle characterization, Quantachrome UK offers the most advanced technological solutions to the particle technology community.

QUINTUS TECHNOLOGIES LLC 614-891-2732
8270 Green Meadows Dr N
Lewis Center OH 43035
http://quintustechnologies.com
support@quintus TEAM.com
Quintus Technologies offers high-pressure sheet metal forming presses plus hot and cold isostatic presses for densification of advanced materials. Its systems are backed by an extensive service and support program.

RAM PRODUCTS INC 614-443-4634
1091 Stimmel Rd
Columbus OH 43223
http://ramprocess.com
info@ramprocess.com
Manufacture Ram press, Ram process, power units, hydraulic presses, presses, ceramic dies, porous resign dies, models, and special tooling. Worldwide distribution. Sell replacement press parts and Ram process die-making supplies.

RATH INC 302-793-0283
501 Silverside Rd Ste 131
Wilmington DE 19809-1377
http://www.rath-usa.com
rathinfo@rath-usa.com
Manufactures and supplies high-temperature and high-temperature custom insulating materials and refractories, including ceramic-fiber insulation, coatings, adhesives, rigidizer and mastics for use up to 1,800°C as well as specialty dense and high-alumina refractories.

RAUSCHERT INDUSTRIES INC 949-421-9804
1170 Howell Mill Road Suite 300
Atlanta GA 30316
http://www.rauschert.com
craymair@rauschert.com
Manufacturer of custom advanced ceramic components, offering an extensive product range of ceramic materials used in applications requiring high corrosion, erosion and wear resistance, high-temperature capability, and low electrical conductivity.

RAYMOND BARTLETT SNOW — SCHNECK PROCESSING 630-836-7460
The Raymond Bartlett Snow Division is a leader in the design, manufacture, and construction of size reduction, classification, and thermal processing equipment for over 130 years. The company works with customers from initial concept and development of equipment and systems, through pilot plant testing, equipment manufacturing, and commissioning, followed by the full capability to provide OEM replacement parts and technical services.

RE CARROLL INC 609-695-6211
201 Acorn Dr
Yardley PA 19067
http://reecarroll.com
info@reecarroll.com
Incorporated 1925. Distributes domestic china clays, ZrO2, magnesium carbonate, soda ash, lubricants, alumina trihydrate, and limestone. Warehouses at Trenton, NJ; Akron, OH; Dalton, GA; and Dallas, TX.

READE ADVANCED MATERIALS 401-433-7000
850 Waterman Ave
Providence RI 02914
http://www.reade.com
info@reade.com
A global distributor and value add toll chemical processor/ packager of specialty chemical particle solids (metal, mineral, ceramic, composite) with four customer-care facilities in the Americas. Visit our 4.500 page website.

RECO Furnaces 800-545-4567
8323 Loch Lomond Dr
Pico Rivera CA 90660-2507
http://www.recofurnaces.com
info@recofurnaces.com
Provides furnace systems for processing electronics and advanced materials, as well as specialty metals from 500–1,800°C. Fifty-four years of providing furnaces for high temperature, precise temperature, and atmosphere control that may include automation.

R.D. WEBB COMPANY INC 508-650-0110
6 Haron Dr
Natick MA 01760
http://www.rwebb.com
RDWEBB@ALUM.MIT.EDU
Manufactures air-cooled laboratory and small-production vacuum furnaces for use up to 2,200°C under vacuum or inert gas. Furnaces need no cooling water and consume 24W of power. Furnace application include active metal brazing, sintering, and annealing.

REFRACTORY CONSULTING SERVICES 513-378-0190
121 Old Farm Road
Oxford OH 45056
http://refractoryexpert.com
ruthenberg@refractoryexpert.com
Refractory consultant with more than 35 years experience specializing in comprehensive approach for improved refractory life, refractory failure analysis, expert witness, for insurance analysis, training, and more. Extensive experience with many different industries such as iron, steel, aluminum, copper, silicon, power, and others.
Research, development, and application of glass and ceramics, includes developing glasses, glass-ceramics for hermetic seals, studying electro-optic effects, improving processes for making ferroelectric ceramics, and studying fracture of ceramics.

SCHOTT is a leading international technology group in the areas of specialty glass and glass-ceramics. More than 130 years of outstanding development, materials, and technology expertise, the company offers a broad portfolio of high-quality products and intelligent solutions. SCHOTT is an innovative enabler for many industries, including the home appliance, pharma, electronics, optics, life sciences, automotive, and aviation industries. SCHOTT strives to play an important part in everyone’s life and is committed to innovation and sustainable success. The group maintains a global presence with production sites and sales offices in 34 countries.
SILICON CARBIDE PRODUCTS INC 607-562-8599
361 Daniel Zenerk Dr Fax: 607-562-7585
Horseheads NY 14845
http://scprobond.com
snc@sprobond.com

Manufacturer of custom silicon carbide specialty shapes for demanding industrial wear, corrosion, and high-temperature applications. SDP offers SCProbond ‘N Reaction Bonded SiC. ISO 9001: 2000 certified.

SOMANY CERAMICS LTD 800-103-0004
Kasair Bahadurpah Fax: +91 1276 241 006
Haryana 124507 India
http://www.somanyceramics.com
gph@somanytiles.co.in

SONYA CERAMICS (EXPORT DIVISION) +91 79 2220 2588
711 Near Anil Starch Mill
Ahmedabad Gujarat 380025 India
http://www.sonyceramics.com
info@sonyceramics.com

We specialize in manufacturing and exporting technical ceramics made of porcelain, steatite, cordierite porcelain, cordierite refractory, alumina refractory, and high alumina of different grades.

SPARKLER CERAMICS PVT LTD +91 91 20 3066 2578
J-506 MIDC Bhosari Fax: +91 20 2713 0955
Pune Maharashtra 411026 India
http://www.sparklerceramics.com
piexp@sparklerceramics.com

Manufactures lead zirconate titanate and lead-titanate- based piezoelectric elements for ultrasonic cleaners, welders, atomizers, and NDT probes; hydrophones, sonars, sensors, accelerometers, armament impact fusing, energy harvesting, and scores of other applications.

SPECIALITY GLASS INC 813-855-5779
305 Marborough St Fax: 813-855-1584
Oldsmar FL 34677
http://sgglass.com

Founded in 1977, Specialty Glass Inc (SGI) excels at utilizing innovative production techniques to become a leading manufacturer specializing in glass melting and processing for a wide array of industries within global markets. Examples include glass solutions for the following: abrasives, computer heads, vitrified-bonded grinding wheels, dental glass fillers, electronics, sealing, wood preservation, plus many other technical glass applications.

SPECIALIZED LABORATORIES 724-334-4140
155 Prominence Dr Fax: 724-334-4143
New Kensington PA 15068
http://www.specializedlaboratory.com

Chemical testing services are used to evaluate glass, ceramics, raw materials, cements and concretes, slag, corrosion, refractory bricks and castings, anions, and aggregates.

SPECTRONICS CORP 800-274-8888
906 Brush Hollow Rd Fax: 516-491-6688
Westbury NY 11590
http://spectroline.com
info@spectroline.com

Manufactures UV lamps used to cure ceramics, adhesives, and coatings in applications ranging from withstand repairing to spot curing on PC boards. Offer radiometers to check the intensity of UV lamps for curing. Lamps also custom-made for specific curing.

SPONTANEOUS MATERIALS 303-955-8537
8505 E Temple Dr Unit 474
Denver CO 80237
http://spontaneousmaterials.com
stuart@splee.org
A consultancy specializing in the rare earths, magnetic materials, technical training, and technical writing.

SPRAY DRYING SYSTEMS INC 410-549-8090
5320 Enterprise St Ste J Fax: 410-549-8091
Eldersburg MD 21784
http://www.spraydrysys.com
sales@spraydrysys.com

Designs and sells spray dryers. SPS spray dryers produce free-flowing ceramic powders with a controlled particle size. High yields and quality products, at competitive pricing.

SRI INTERNATIONAL 650-855-2000
333 Ravenswood Ave
Menlo Park CA 94025-3493
http://sri.com
customer-service@sri.com

An independent, nonprofit research institute conducting client-sponsored R&D for government agencies, commercial businesses, foundations, and other organizations.

STARR SYSTEMS INC 847-719-0360 Fax: 847-719-0361
200 Sheridan Springs Rd
Lake Geneva WI 53147
http://starfirmsystems.com
info@starfirmsystems.com

Offers the solution for high-temperature materials creating high-performance products. Our chemistry enables control of molecular structures combining ceramic materials with other materials to produce composites, laminates, and coatings.

STEDMAN MACHINE CO 812-716-4471
129 Franklin St Fax: 812-926-3482
Aurora IN 47001
http://stedman-machine.com
sales@stedman-machine.com

Since 1834, Stedman provides customers with material size reduction solutions for crushing, pulverizing, fine grinding, blending, or lump breaking a broad range of materials for applications from +60 inches to +10 microns.

STUDIOX - HOME DECOR 888-423-9599
PO Box 563
Lincolnshire IL 60069
http://studiox.com
info@studiox.com

Traditional and contemporary ceramic vases, bowls, platters, and other decorative objects. Contemporary, decorative, and colored art glass vases, bowls, and platters.

SUNROCK CERAMICS CO 708-344-7600 Fax: 708-344-7636
2625 S 21st Ave
Broadview IL 60155
http://www.sunrockceramics.com
info@sunrockceramics.com

U.S. manufacturer of high-alumina ceramics and specialty refractories, including kiln furniture for firing advanced ceramics. Many formulations available for demanding high-temperature applications with a wide assortment of pressed or cast shapes, plus flexibility to quickly and economically make new and custom shapes.

SURMET CORP 302-427-4000 Fax: 302-427-4001
31 B St
Burlington MA 01803
http://www.surmet.com
sales@surmet.com

A specialty materials manufacturing company known for its leadership in ALON, the superior lightweight transparent armor. Surmet’s transparent spinel is stronger and tougher. Surmet produces and supplies aluminum nitride powder/products in tons.

TAKASAGO INDUSTRY CO LTD +81 572-69-8899
159 Lukens Dr Fax: +81 572-69-8899
New Castle DE 19720
http://thermophysical.tainstruments.com
info@tainstruments.com

TA Instruments, the world leader in thermal analysis, rheology, and calorimetry, provides innovative technology for advanced materials characterization by DSC/TGA, dilatometry, thermal conductivity and diffusivity, high temp viscometry, and more.

TABER INDUSTRIES 716-694-4000 Fax: 716-694-1450
455 Bryant St
North Tonawanda NY 14120
http://www.taberindustries.com
sales@taberindustries.com

Manufacturer of test instruments that aid the understanding of material physical properties including abrasion and scratch resistance. Test results assist R&D, process control, and quality assurance for ceramics, coatings, and other materials.

TAKASAGO INDUSTRY CO LTD +81 572-59-8899
2321-2 Dachi-cho Gifu Fax: +81 572-59-3848
Toki-city 509-54 Japan
http://www.takasago-inc.co.jp
hitoshi_ando@takasago-inc.co.jp

Designs and manufactures electric-heated and gas-fired induction furnaces. Specializes in roller hearth kilns, rotary kilns, tunnel kilns, periodic kilns including shuttle kilns, microwave kilns, microwave-electric or ‘gas hybrid kilns, various dryers, and more.

TAKASAGO INDUSTRIAL CORP LTD 718-575-2658 Fax: 718-575-2658
1442 Building 2 No 21
Nanjing Rd New2 Community
Shanghai China
http://www.takasago-ceramics.com
info@takasago.com

Design, development, and manufacture of mechanical ceramic components, with batching, mixing, molding, sintering, and machining of ceramics fully in house.

SUPERIOR CERAMICS INC 800-226-1085
500 Industrial Park Rd
St Albans VT 05478
http://www.ceramics.net
sales@ceramics.net

Established 1898. Manufactures custom technical ceramics components using extruding, dry-pressure, isopressing, injection molding, green-forming, and diamond-machining techniques. Also manufactures prototype-through-production quantities on contract.

SUPERIOR GRAPHITE CO 800-527-7726
650 Industrial Park Rd
St Albans VT 05478
http://www.superiorgraphite.com
CustomerService@SuperiorGraphite.com

Produces alpha- and beta-SiC powder for use in sintered wear parts, toners, MMCs, and abrasives. Produces PS SiC tile for armor. Produce advanced (graphite) materials for use in many industries.

SUNTECH ADVANCED CERAMICS (SHENZHEN) CO LTD
http://www.suntechceramics.com
info@suntech.com

A consultancy specializing in the rare earths, magnetic materials, and other decorative objects. Contemporary, decorative, and colored art glass vases, bowls, and platters.
ZENITH 573-889-6795
control, and pneumatic conveying systems. Operations reduction and classification, mixing and blending, air pollution mktinfo@younginds.com
YOUNG INDUSTRIES INC 570-546-3165
ceramic, boron nitride, and machinable glass ceramic. We aim Unipretec is a professional manufacturer for advanced ceramic industries. Our materials include alumina ceramic, zirconia ceramic, boron nitride, and machinable glass ceramic. We aim to provide high quality products and solutions for our customers.

XIAO XIN UNIPRECET CERAMIC TECHNOLOGY CO LTD No 151 Yuehua Rd Huli District +86 592 551 0319 Xiamen Fujian 361006 China
http://www.uniprectec.com
info@uniprectec.com
Uniprectec is a professional manufacturer for advanced ceramics. Our materials include alumina ceramic, zirconia ceramic, boron nitride, and machinable glass ceramic. We aim to provide high quality products and solutions for our customers.

YOUNG INDUSTRIES INC 570-546-3165
16 Painter St Fax: 570-546-1888 Muncy PA 17756
http://youngnds.com
mkforty@youngnds.com
Designs and manufactures process equipment, including size reduction and classification, rinsing and blending, air pollution control, and pneumatic conveying systems. Operations include national sales network and engineering services.

ZENITH No 416 Jiange Rd S Jingqiao Area Pudong Shanghai 201206 China
http://www.miningplant.org
info@miningplant.org
We hold “Pursuing the Zenith Technology and Quality” as our management concept all the time. In addition to our full efforts, we rely on world-leading absorbing, crushing, and powder processing technology; advanced management; and a quality control system.
We thank our Corporate Partners for their support!

3DCERAM-SINTO Inc
Adamant Co Ltd
AdValue Technology LLC
AGC Inc (Sapphire)
Akron Porcelain & Plastics Company
Allied Mineral Products, LLC
Almatis, Inc (Sapphire)
ALTEO Gardanne
AluChem, Inc
American Elements
APC International Ltd
Applied Ceramics, Inc
Applied Research Center
Associated Ceramics & Technology Inc
Astral Material Industrial Co, LTD
AVS, Inc
AVX Corporation
Balai Besar Keramik
Blasch Precision Ceramics
Boca Bearing
Bomas Machine Specialties Inc
Borregaard LignoTech
Buehler
Bullen Ultrasonics, Inc
California Nanotechnologies Inc
Cancarb Limited
Capital Refractories Limited
CARBO Ceramics
Centerline Technologies LLC
Centorr Vacuum Industries, Inc
Central Glass and Ceramic Research Institute (Sapphire)
Central Ohio Technical College (Sapphire)
Ceramco Inc
Ceramic Color & Chemical Mfg Co
Ceramiseal LLC
CeramTec GmbH (Sapphire)
Ceranova Corporation
Cerion Nanomaterials
Chiz Bros
Christy Minerals LLC
CMC Laboratories Inc
CM Furnaces, Inc
CoorsTek (Sapphire)
Corning Incorporated (Diamond)
Covia
Dalmia Institute of Scientific & Industrial Research
DCM Tech
Deltech Inc
Deltech Kiln and Furnace Design, LLC
Denka Corporation
Digital Press, Inc
Dorst America, Inc
Du-Co Ceramics Company
Edward Orton Jr Ceramic Foundation
Eirich Machines Inc
Elan Technology
Elcon Precision LLC
Endicott Clay Products Co
Equipceramic S.A.
Exothermics, Inc
Ferro-Ceramic Grinding Inc
Fineway Ceramics
FIVEN AS
Fraunhofer Institute for Ceramic Technologies & Systems IKTS
Fritsch Milling and Sizing, USA Inc
Fusion Ceramics Inc
Gasbarre Products (PTX Pentronix, Inc)
GeoCorp, Inc
Gorka Corporation
GrainBound LLC
Greenlee Diamond Tool Company
Grow Platform GmbH- CERIX- A Bosch Company (Sapphire)
Haiku Tech, Inc
Harbison Walker International (Sapphire)
Harper International (Sapphire)
Harrop Industries, Inc (Diamond)
Hindalco Industries Limited
Hitachi High Technologies America, Inc
Höganäs Germany GmbH
Howmet Aerospace
Imerys (Diamond)
International Ceramic Engineering
IPS Ceramics Ltd
I Squared R Element Co, Inc
II-VI Aerospace & Defense (Sapphire)
Ivoclar Vivadent AG
Iwatani Corporation of America
J. Rettenmaier USA
JACO Manufacturing, Inc
Japan Fine Ceramics Center
Karlsruhe Institute of Technology (KIT)
Keith Company
Korea Institute of Industrial Technology
Kyanite Mining Corporation
KYOCERA Corporation
KYOCERA International, Inc (Sapphire)
Lithoz America, LLC
Lucideon
Magneco/Metrel, Inc
Materials Research Furnaces, LLC
Materion Ceramics
Matmatch GmbH
McDanel Advanced Ceramic Technologies LLC (Sapphire)
Mineral Research Processing (M.R. PRO)
Missouri Refractories Co, Inc
Mohr Corporation
Mo-Sci Corporation (Diamond)
MSE Supplies LLC
Murata Mfg. Co Ltd
Nabatel Tech AG
Nabertherm, In.
Nanoe
National Center for Manufacturing Sciences (Diamond)
NETZSCH Instruments North America, LLC
NETZSCH Premier Technologies, LLC
Nexceris, LLC
NGK Spark Plug Co Ltd
Niokem Inc
NSL Analytical
Nuteck Bickley SA de CV
O’Keefe Ceramics Inc
Object Research Systems, Inc
OptiPro Systems LLC
Owens-Illinois, Inc
Oxy-Gon Industries, Inc
Pacific Ceramics, Inc
Particle Technology Labs
Paul O. Abbe
Plibrico Company LLC
Powder Processing & Technology, LLC
Praxair Surface Technologies, Inc
PremaTech Advanced Ceramics
QuantumScape
Rauscher Industries Inc
Raymond Bartlett Snow/Schenck Process
Refractory Minerals Company Inc
Refractron Technologies Corp
Reno Refractories Inc
RHI Magnesita
Robocasting Enterprises LLC
Roca Sanitario S.A.
Saint-Gobain Ceramics & Plastics (Diamond)
Sandia National Laboratories
Sauereisen Inc
SCHOTT North America, Inc (Sapphire)
SELEE Corporation
Semiconductor Energy Laboratory Co, Ltd (SEL)
SHOEI CHEMICAL INC
Sigma Advanced Materials
SINTX Technologies
Sowam Ceramics Limited
Specialty Glass, LLC (Sapphire)
SPT Roth Ltd
Sunrock Ceramics Company
Superior Graphite Co
Superior Technical Ceramics (Diamond)
Surmet Corporation
Swindell Dressier International Company
Technical Products, Inc (Sapphire)
Tethon 3D
TevTech, LLC
Thermcraft Inc
Thermo Fisher Scientific
TOTO LTD
Trans-Tech Inc (Sapphire)
U.S. Borax
Vanderbilt Minerals, LLC
Verder Scientific Inc
Washington Mills North Grafton, Inc
WesBond Corporation
Xiamen Innovacera Advanced Materials Co LTD
Zircar Ceramics Inc (Sapphire)
Zircar Zirconia, Inc
Zircoa, Inc

Interested in Corporate Partnership?
Contact Kevin Thompson at kthompson@ceramics.org or 614-794-5894 to learn more.
www.ceramics.org/corporate
Periodic Table of Elements

- Hydrogen (H)
- Helium (He)
- Lithium (Li)
- Beryllium (Be)
- Boron (B)
- Carbon (C)
- Nitrogen (N)
- Oxygen (O)
- Fluorine (F)
- Neon (Ne)
- Sodium (Na)
- Magnesium (Mg)
- Aluminum (Al)
- Silicon (Si)
- Phosphorus (P)
- Sulfur (S)
- Chlorine (Cl)
- Argon (Ar)
- Potassium (K)
- Calcium (Ca)
- Scandium (Sc)
- Titanium (Ti)
- Vanadium (V)
- Chromium (Cr)
- Manganese (Mn)
- Iron (Fe)
- Cobalt (Co)
- Nickel (Ni)
- Copper (Cu)
- Zinc (Zn)
- Gallium (Ga)
- Germanium (Ge)
-Arsenic (As)
- Selenium (Se)
- Bromine (Br)
- Krypton (Kr)
- Rubidium (Rb)
- Strontium (Sr)
- Yttrium (Y)
- Zirconium (Zr)
- Nb (Niobium)
- Mo (Molybdenum)
- Tc (Technetium)
- Ru (Ruthenium)
- Rh (Rhodium)
- Pd (Palladium)
- Ag (Silver)
- Cd (Cadmium)
- In (Indium)
- Sn (tin)
- Sb (Antimony)
- Te (Tellurium)
- I (Iodine)
- Xe (Xenon)
- Cs (Cesium)
- Ba (Barium)
- La (Lanthanum)
- Ce (Cerium)
- Pr (Praseodymium)
- Nd (Neodymium)
- Pm (Promethium)
- Sm (Samarium)
- Eu (Europium)
- Gd (Gadolinium)
- Tb (Terbium)
- Dy (Dysprosium)
- Ho (Holmium)
- Er (Erbium)
- Tm (Thulium)
- Yb (Ytterbium)
- Lu (Lutetium)
- Hf (Hafnium)
- Ta (Tantalum)
- W (Tungsten)
- Re (Rhenium)
- Os (Osmium)
- Ir (Iridium)
- Pt (Platinum)
- Au (Gold)
- Hg (Mercury)
- Tl (Thallium)
- Pb (Lead)
- Bi (Bismuth)
- Po (Polonium)
- At (Astatine)
- Rn (Radon)
- Fr (Francium)
- Ra (Radium)
- Ac (Actinium)
- Th (Thorium)
- Pa (Protactinium)
- U (Uranium)
- Np (Neptunium)
- Pu (Plutonium)
- Am (Americium)
- Cm (Curium)
- Bk (Berkelium)
- Cf (Californium)
- Es (Einsteinium)
- Fm (Fermium)
- Md (Mendelevium)
- No (Nobelium)
- Lr (Lawrencium)
- Rf (Rutherfordium)
- Db (Dubnium)
- Sg (Seaborgium)
- Bh (Bohrium)
- Hs (Meitnerium)
- Mt (Moscovium)
- Ds (Lawrencium)
- Rg (Oganesson)
- Cn (Nihonium)
- Fl (Flerovium)
- Mc (Livermorium)
- Tc (Technetium)
- Wn (Wolframium)
- Re (Rhenium)
- Os (Osmium)
- Ir (Iridium)
- Pt (Platinum)
- Au (Gold)
- Hg (Mercury)
- Tl (Thallium)
- Pb (Lead)
- Bi (Bismuth)
- Po (Polonium)
- At (Astatine)
- Rn (Radon)
- Fr (Francium)
- Ra (Radium)
- Ac (Actinium)
- Th (Thorium)
- Pa (Protactinium)
- U (Uranium)
- Np (Neptunium)
- Pu (Plutonium)
- Am (Americium)
- Cm (Curium)
- Bk (Berkelium)
- Cf (Californium)
- Es (Einsteinium)
- Fm (Fermium)
- Md (Mendelevium)
- No (Nobelium)
- Lr (Lawrencium)
- Rf (Rutherfordium)
- Db (Dubnium)
- Sg (Seaborgium)
- Bh (Bohrium)
- Hs (Meitnerium)
- Mt (Moscovium)
- Ds (Lawrencium)
- Rg (Oganesson)
- Cn (Nihonium)
- Fl (Flerovium)
- Mc (Livermorium)
- Tc (Technetium)
- Wn (Wolframium)
- Re (Rhenium)
- Os (Osmium)
- Ir (Iridium)
- Pt (Platinum)
- Au (Gold)
- Hg (Mercury)
- Tl (Thallium)
- Pb (Lead)
- Bi (Bismuth)
- Po (Polonium)
- At (Astatine)
- Rn (Radon)
- Fr (Francium)
- Ra (Radium)
- Ac (Actinium)
- Th (Thorium)
- Pa (Protactinium)
- U (Uranium)
- Np (Neptunium)
- Pu (Plutonium)
- Am (Americium)
- Cm (Curium)
- Bk (Berkelium)
- Cf (Californium)
- Es (Einsteinium)
- Fm (Fermium)
- Md (Mendelevium)
- No (Nobelium)
- Lr (Lawrencium)
- Rf (Rutherfordium)
- Db (Dubnium)
- Sg (Seaborgium)
- Bh (Bohrium)
- Hs (Meitnerium)
- Mt (Moscovium)
- Ds (Lawrencium)
- Rg (Oganesson)