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In modern times, the demand for 
materials with highly engineered func-

tionalities has spurred the need for rapid 
innovation. This demand is accentuated 
by advancements in the fields of digital 
manufacturing, 3D printing, and internet 
of things platforms, where technological 
disruption is happening at a rapid pace.

Traditional trial-and-error methods of materials discovery 
struggle to meet this demand. So, researchers are adopting arti-
ficial intelligence (AI) and machine learning (ML) techniques to 
speed up the development process.1,2

AI and ML systems leverage vast datasets and advanced algo-
rithms to identify novel compositions and structures in a much 
shorter timeframe and with greater accuracy than traditional 
methods. In addition, these technologies can quickly analyze 
vast amounts of data on structure–property relationships, 
which enables the development of engineered materials with 
properties optimized for various applications.

Glass, a disordered material obtained by the fast quenching 
of liquids, presents an ideal candidate for data-driven modeling 
due to several key factors.3 First, their formation is highly versa-
tile, as almost all elements or combinations thereof can create a 
glass when cooled at the required rate. Second, unlike crystalline 
materials, glass properties are dictated primarily by composition 
and processing conditions owing to their disordered structure. 
This feature allows for continuous tuning of the compositions, 
facilitating tailored design. Finally, there exists extensive experi-
mental data on glass properties, which is ideal for modeling.

Consequently, the glass community has increasingly embraced 
AI and ML approaches to address various challenges in glass 
development, including property prediction, tailored design, 
understanding underlying physics, and expediting modeling pro-
cesses. This paper highlights one such system, Python for Glass 
Genomics (PyGGi),4 and describes how it aims to help predict 
and optimize the composition–property relationships in glasses.

AI and ML for materials discovery 
In the realm of materials science, understanding and 

predicting the complex relationships between composition, 
structure, and properties is pivotal for developing innovative 
materials. AI and ML systems accomplish this understanding 
through a three-step cyclic process (Figure 1).

The first step involves curating the information that has been 
created thus far by researchers and published in the scientific 
literature. Natural language processing algorithms can play 
a major role in this regard by extracting data from scholarly 
journals and books and organizing the information within large-
scale databases.5,6 This process allows for data extraction and 
dissemination at an unprecedented scale and pace compared to 
manual data curation.

The second step involves exploiting this information to pre-
dict new materials. Specifically, understanding the intricate pat-
terns in the data and decode these patterns to discover tailored 
materials. Here, again, ML models combined with optimization 
can play a crucial role in accelerated materials discovery.7,8

The final step involves the actualization of the material, i.e., 
fabricating the computer-designed material in a laboratory. This 
step often involves high-throughput experiments, which can be 
automated using robotics, planning, and AI.9 Such approaches 
are now possible, more than ever, due to the advent of large 
language models.10

While work remains to support the adoption of these meth-
ods in industry, the scientific studies referenced above and 

Figure 1. Three-step cyclic process of AI-based materials 
discovery. 
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others provide strong evidence to conclude that AI and ML 
systems hold huge promise to disrupt and accelerate materials 
modeling, design, discovery, and manufacturing.

Obtaining data for computer-driven discovery
In the domain of glass science, engineering, and technology, 

two significant challenges obstruct the adoption of AI and ML 
systems: (1) the need for high-fidelity experimental datasets 
and (2) the automation of data extraction from literature.

The first challenge hinges on the requirement for consis-
tent and reliable datasets, encompassing properties such as 
density, elastic moduli, hardness, glass transition temperature, 
and liquidus temperature, among others. Current databases, 
such as Interglad11 and SciGlass,12 suffer from inconsistencies 
and outliers, while proprietary data from companies such 
as Corning Inc. (Corning, N.Y.) remain inaccessible to the 
broader research community.

Addressing this challenge calls for an international collab-
orative effort to establish a universally accepted experimental 
glass property database allowing for the development of 
high-quality data-driven models. Initiatives such as PyGGi, 
described in the next section, offer platforms for sharing data 
that align with the FAIR data principle (findability, accessibil-
ity, interoperability, and reusability) and thus foster collabora-
tion within the glass community.

The second challenge revolves around automating the 
extraction of data from literature, a task currently reliant on 
manual curation, which is inefficient for the vast amount of 
potentially relevant information available. Recent advance-
ments in AI present opportunities to streamline this process, 
as seen in other fields such as materials science with the 
ChemDataExtractor toolkit.13 However, the complex represen-
tations of glass compositions pose a unique challenge, neces-
sitating the development of a glass-specific information extrac-
tion system to accurately parse and extract data from literature.

While natural language processing algorithms have shown 
promise in other domains,5 a tailored approach for glass sci-
ence literature currently is lacking, representing a crucial hur-
dle to overcome for the automated extraction of datasets from 
the literature. Addressing this challenge would significantly 
enhance the accessibility and utilization of valuable informa-
tion within the glass research community, ultimately accelerat-
ing progress in glass science, engineering, and technology.

There have been recent efforts to combine and exploit existing 
databases such as SciGlass and Interglad to develop AI algorithms 
that can extract information from the literature. DiSCoMaT, 
which uses Interglad data along with data from other papers to 
create tables of compositions in an automated fashion, is one 
such model.6 However, evaluating the performance of these mod-
els at scale for creating large databases is still an open problem.

Further, there have been several works that employ ML to 
predict properties of glasses.14 However, most of these models 
are limited to a small range of compositions or properties. 
In addition, these models are either closed source and not 
accessible to a larger crowd or require high-level knowledge of 
computation and programming to use.

Thus, a SciGlass- or Interglad-like package that people 
can use on their own desktop for applications ranging from 
undergraduate education to development of commercial glass 
composition is a need of the hour. One such package that is 
developed with the aim to democratize glass discovery and 
make knowledge accessible to a wide range of audiences is 
Python for Glass Genomics (PyGGi).

Python for Glass Genomics
PyGGi is a pioneering software package developed by 

Substantial Artificial Intelligence (New Delhi, India), a startup 
aimed at accelerating and democratizing materials discovery. 
The software, which leverages machine learning algorithms to 
predict and optimize the composition–property relationships 
in glasses, comprises three main packages:

•	 PyGGi Bank facilitates exploration of a vast composition–
property database, aiding users in retrieving glass composi-
tions based on selected compounds and properties.

•	 PyGGi Seer employs data-driven techniques to predict up 
to 25 different properties for various glass compositions, 
crucial for material development.

•	 PyGGi Zen focuses on composition optimization, assist-
ing users in discovering new glass compositions meeting 
specific property requirements.

The data-driven models developed for PyGGi are trained on 
extensive datasets of more than 300,000 glass compositions, 
encompassing more than 180 compounds and 25 different 
properties. By doing so, PyGGi can handle the nonlinear 
behavior exhibited by glasses as a function of their composi-
tion, making it a robust tool for material innovation.

Properties in the PyGGi database include optical, mechani-
cal, electrical, and physical characteristics, among others. 
Compositions include oxides (e.g., SiO

2
, B

2
O

3
, Al

2
O

3
), halides 

(e.g., LiF, NaF, MgF
2
), and other compounds.

PyGGi is meant to be useful in both academic and industrial 
settings. From a teaching perspective, PyGGi is an excellent tool 
to explore different glass compositions and their properties. The 
glass selection chart allows a student to choose glass composi-
tions with targeted properties. Further, the ternary diagram gives 
insights into the nonlinear and complex behavior of glasses. This 
feature is equally useful for an industry professional working on 
glasses for a variety of applications to either finetune their glass 
compositions or to discover new glass compositions with tar-
geted properties, as demonstrated in the next section.

Case study
To demonstrate the capabilities of PyGGi, the authors used 

it to develop an alumina-based phosphate glass with high refrac-
tive index and Abbe number for low dispersion applications.

Reason for study
Due to its excellent optical properties, glass has been used 

extensively as a component in communication technologies, 
including as touch screens for smartphones and other dis-
plays, core and cladding materials for fiber optic cables, and 
substrates for liquid crystal displays. There are several factors 
to consider when designing glasses for these purposes. 
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Glass can have high dispersion, resulting in colors corre-
sponding to different wavelengths with different focal points. 

Smartphone screens and other display glasses are manu-
factured using traditional melt cooling processes followed by 
expensive finishing operations, such as grinding and polish-
ing. Therefore, a high temperature is required to form the 
glass, requiring additional post-treatment at a lower tempera-
ture to make it usable.

To address these challenges, glasses with excellent opti-
cal properties and a low glass transition temperature are 
desirable. To this extent, phosphate glasses are an attractive 
candidate due to their unique structure and optical and ther-
modynamic properties.

Step-by-step process
Step 1: Search the PyGGi Bank glass database to find 

similar glasses available in literature. PyGGi Bank can be 
searched iteratively to look at the Abbe number and refrac-
tive index of different kinds of phosphate glasses.

Step 2: Based on the required characteristics of the glass 
and the glass compositions searched in the first step, the next 
step is to choose the components. The following components 
were chosen: B

2
O

3
, Al

2
O

3
, MgO, CaO, BaO, Li

2
O, ZnO, 

La
2
O

3
, Gd

2
O

3
 and P

2
O

5
.

Step 3: Run an optimization in PyGGi Zen with the fol-
lowing parameters (Figure 2):

1.	 Methodology: Genetic algorithm
2.	 Target property: Abbe number (maximized)
3.	 Components: Use the ones selected in Step 2
4.	 Constraints on components: 60% ≤ P

2
O

5
 ≤ 100%

5.	 Constraints on other properties: Refractive index ≥ 1.55
Step 4: Analyze the results obtained in Step 3. To optimize 

the results, run the algorithm iteratively in PyGGi Zen while 
adding constraints to the various glass components. Table 1 
shows compositions obtained after running the optimization.

Step 5: After satisfactory results are obtained, optimized 
glass compositions from Step 4 are downloaded. These com-
positions are then input to PyGGi Zen and other properties of 
interest such as hardness, refractive index, glass transition tem-
perature, and liquidus temperature are predicted (Table 2).

Step 6: The results obtained in Steps 4 and 5 can be graphi-
cally analyzed using the tools available in PyGGi Zen and 
PyGGi Seer.

Outlook
It goes without saying that AI and ML systems are revolu-

tionizing different phases of human life. While the impact 
in areas such as computer science, computational modeling, 
automation, and coding are more visible, it is impacting 
other sectors such as materials, construction and manufactur-
ing, and medicine as well, albeit at a slower pace.

In the realm of glasses, modeling advancements in the 
last two to three decades have accelerated innovation in this 
field at an incredible rate compared to the material’s develop-
ment over the last 5,000 years. In addition, packages such as 
PyGGi have allowed researchers and companies with limited 

R&D resources to contribute innovations by reducing reliance 
on the expensive and tedious trial-and-error discovery process. 
Furthermore, such approaches cut the environmental footprint 
of glass development during the discovery, manufacturing, and 
deployment period by supporting the identification of glass com-
positions with low carbon footprints and process optimization.

Overall, embracing a collaborative human–AI approach to 
advanced glass science and discovery enables a future where 
novel materials and technologies are adopted quickly and effi-
ciently through inclusive, sustainable, and scalable development.
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Figure 2. Screenshots showing how the parameters and glass 
components decided in Step 2 are input into a) the desktop and 
b) web versions of PyGGi Zen. 
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Table 1. Optimized glass compositions (wt.%). 

Table 2. Properties of optimized glass compositions. 

Sample #	 B2O3	 Al2O3		 MgO	 CaO	 BaO	 Li2O	 ZnO	 La2O3	 Gd2O3	 P2O5

1 	 15.54	 3.39		  0.92	 2.72	 15.78	 3.38	 0.32	 0.57		 1.38	 56

2	 15.54	 3.39		  1	 3.05	 11.75	 3.38	 0.32	 0.57		 0.97	 60.03 

3 	 16.82 	 3.01 		  0.8 	 3.72 	 14.61 	 2.35 	 0 	 0.47		 1.15 	 57.07 

4 	 17.14 	 3.31 		  1.13 	 3.72 	 13.75 	 0 	 0 	 0.47		 1.15 	 59.33 

5 	 20.86 	 3.31 		  0.8 	 0.53 	 13.75 	 0 	 0 	 0.47		 1.15 	 59.13 

6 	 18.54 	 0.39 		 1.33 	 2.72 	 11.75 	 3.38 	 0.32 	 0.57		 0.97 	 60.03 

7 	 17.32 	 2.01 		  0.8 	 3.72 	 14.61 	 2.35 	 0 	 0.47		 1.15 	 57.57 

8 	 17.32 	 2.51 		  0.8 	 3.72 	 14.11 	 2.35 	 0 	 0.47		 1.15 	 57.57 

9 	 17.32 	 2.51 		  0 	 3.72 	 14.11 	 2.35 	 0 	 0.47		 1.15 	 58.37 

10 	 21.54 	 2.39		  1.4 	 2.72 	 9.9 	 0.38 	 0.32 	 0.57		 0 	 60.78 

1 	 1.559625	 66.39965 	 728.69 	 5.17 	 1131.3 

2 	 1.551692 	 67.01077 	 723.75 	 5.18 	 1137.73 

3 	 1.557878 	 66.55641 	 731.31 	 5.13 	 130.61 

4 	 1.554092 	 66.74953 	 760.63 	 5.18 	 1139.35 

5 	 1.548762 	 67.06789 	 749.45 	 4.96 	 1129.12 

6 	 1.552433 	 66.36196 	 715.77 	 5.13 	 1129.78 

7	 1.557966 	 66.3882 	 726.69 	 5.12 	 1128.95 

8 	 1.557154 	 66.50497 	 728.85 	 5.11 	 1130.28 

9 	 1.556245 	 66.63231 	 724.2 	 5.09 	 1128.41 

10 	 1.54524 	 67.4689 	 740.76 	 5.07 	 1135.72 

Sample #	 Refractive 
index

Abbe  
number

Glass transition 
temperature (K)

Hardness 
(GPa)

Liquidus 
temperature 
(K)
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