Materials Issues for H₂ R&D in Canada

Defence R&D Canada Atlantic
Rod McMillan, NRC
Outline

• Canadian Interests

• History

• R&D&D Programs

• Research Networks

• Materials Research Projects
Canadian Interests

• H₂ Production, Delivery, and Utilization
 – Electrolysis, gasification (biomass, carbon (CO₂ neutral)), novel methods (process by-product, etc)
 – H₂ ICE

• Fuel Cells
 – PEM, DMFC, SOFC, Alkaline
 – Stack and system development
 – Manufacturing
 – Transportation, stationary,
 – portable, and mobile

• Codes and Standards
Range of Power Source Applications

Forces Need Wide Range of Power Systems

- Battlefield Awareness
- C4ISR
- Directed Energy Weapons
- Active Protection
- LAV
- Relocatable Temp Camps
- Ships & Main Battle Tank

100 Milliwatt
101 Portable Battery Packs
102 Soldier Systems
103 Tactical Power
104 UAV
105 LAV
106 Relocatable Temp Camps
107 Ships & Main Battle Tank

R & D pour la défense Canada • Defence R&D Canada
• 1982 first contract for Ballard Power Systems
• Through Government-industry partnerships
 • fuel cell transit bus 1997
 • Ford P2000 engine, the first prototype fuel cell engine for the Ford Motor Company
 • Vancouver Fuel Cell Vehicle Project - demonstration of fuel cell cars in real-world fleet applications 2005-2008
 • 10,000 psi (700-bar) H₂ fuelling station
 • 250 kw pre-commercial SOFC CHP system
Canadian Programs

Universities

National Research Council

Natural Resources Canada

National Defence

Environment Canada

Transport Canada

Industry Canada

R & D pour la défense Canada • Defence R&D Canada
Hydrogen and Fuel Cell Demonstration

Hybrid Fuel Cell / Ultra-capacitor Transit Bus

- Successfully demonstrated in Winnipeg, Manitoba last summer
- 25% improvement in energy efficiency
- Partners: Hydrogenics, NRCan, Dynetek, New Flyer, Government of Manitoba, ISE Research and Maxwell Technologies
Canadian Networks

• **International Networks**
 – Government (NRC, NRCan), industry, and university participation
 – IPHE, IEA, HIA, AFCIA, BSIA

• **Academic Networks**
 – Funded by NSERC
 – Hydrogen, PEMFC, SOFC,
 – FCRC, OFCRIN, SOFC Canada, WCFCI. PEMFC Network, CANH2

• **SOFCC Canada**
 – Four themes: Fuel processing, C/S tolerant anodes, system integration, cell substrates

• **FCRC- OFCRIN**
 – Performance, reliability, & durability, reduced costs through material design
 – Five Themes: Fuel Storage & supply, reliability & durability, system modelling, materials development, systems analysis
SOFC Canada

Metal-supported Planar SOFC

Porous electrolyte support Micro-tubular SOFC

R & D pour la défense Canada • Defence R&D Canada
Hydrogen Production Materials Issues

- Splitting H_2O
 - Solar electrolysis
 - Nano structured high surface
 - Band gap
 - Dye sensitized

- Electrolysis
 - Increased stability & durability of cathode in alkaline media
 - Increase energy density to 855 mA/cm² at 1.80 V and 70°C
Hydrogen Storage Today: Gas and Liquid
Hydrogen Storage Materials Issues

- 700 Bar Compressed H_2
 - Al carbon fibre reinforced – weight and cost issues – Dynetek
 - 1kg/L, 19,000 fill cycles

- Magnetic Refrigeration

- Complex Hydrides & metal Hydrides

- Nanostructured Materials
Continuum of Hydrogen Binding Energies

For reversible systems, equilibrium between gas and solid is given by:

\[P = \exp(-\Delta H/RT + \Delta S/R) \]

- Want lower enthalpy or higher temperature
- Increase rate of desorption
Issues with hydride storage

- Materials investigated do not meet goals
 - Lower enthalpy by destabilization
 - Use nano-catalysts to increase rates of H_2 release
 - MgH$_2$ nanocomposites with LiAlH$_4$
Mechanosynthesis of Mg(AlH$_4$)$_2$

MgCl$_2$ + NaAlH$_4$ \rightarrow Mg(Al$^{3+}$H$_4^-$)$_2$·NaCl \rightarrow MgH$_2$ + Al0 + 3H$_2^0$

1

2

Theoretical 9% except for salt*
Irreversable ca. 3 wt% H @ 150 C

Stage 1: synthesis via metathesis reaction

Stage 2: decomposition via redox disproportionation
Hydrogen Ball Milling

• Controlled mechanical modes of milling: Impact or Shear Mode
• Sequential supply of hydrogen gas
• Angular positions of Nd-Fe-B supermagnets under shear mode. The angular positions of external magnets can be changed for each of the controlled modes of milling.
MgH$_2$/LiAlH$_4$ nanocomposite

MgH$_2$ destabilization by chemical hydride

R2=0.97

![Graph showing the relationship between peak temperature of MgH$_2$ and content of LiAlH$_4$.]

1 bar, 60% LiAlH$_4$

![Graph showing hydrogen desorption over time at different temperatures.]
Challenges for Materials and Operation of PEMFC

2 A problem of scales

<table>
<thead>
<tr>
<th>Distance Scale (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^{-10}</td>
</tr>
</tbody>
</table>

Molecular scale, nanoscale
- Proton conductors: Higher Temperature
- Electrocatalysis: Pt dissolution

Mesoscale
- Carbon support: stability

** Macroscale**
- Effective properties: Active surface area

R & D pour la défense Canada • Defence R&D Canada
Design Challenge: Multiple Scales

> 10 orders of magnitude,
Multidisciplinary materials approach

- High temperature PEMFC for Transportation (>100 C)
 - Durable, Low cost materials
 - Membrane, low-humidity proton conductors
 - Less Pt, CO tolerance, non Pt
 - Low cost bipolar plates
Controlled Synthesis of Bimetallic Nanoparticles for DMFC

Modified polyol method using small stabilizers

- Relative high performance for “low” noble metal catalyst loadings for DMFCs (<3mg cm⁻²)
 Max. 100 mW cm⁻²,
- ~6 times less catalyst than reported
Polynitrile PEM Materials from Commercial Monomers

- Inexpensive
- High proton conductivity
- Low dimensional swelling
- Good catalyst adhesion
- Excellent cell performance
- Stable under MEA conditions

Proton conductivity

Swelling 17% @ 80°C 16-20% @ 80°C
• High cathode voltage cycling causing Pt dissolution and recrystallization
Reduced Temperature SOFC

- intermediate temperature metal supported SOFCs

![Graph showing cell voltage and power density vs. current density](image)

- metal supported cell of SSC//SDC/ScSZ//Ni-SDC//SS substrate (H$_2$ in Ar/air)

![Degradation graph](image)

- Degradation of metal supported cells of LSCF//GDC//Ni-SDC//SS substrate at 600 °C (H$_2$ in Ar/air)

R & D pour la défense Canada • Defence R&D Canada
Canadian Interests

• **H₂ Production, Storage, and Delivery**
 – Electrolysis- more efficient electrocatalysts
 – Gasification- gasifier materials, carbon capture materials
 – Materials for thermo-nuclear water splitting cycles
 – Materials that provide sufficient storage for automobiles

• **Fuel Cells**
 – PEM, DMFC- Hybrids – electrocatalysts (low Pt, & non-noble), proton conducting membrane materials. battery materials
 – SOFC- materials for low temperature operation
 – DCFC (MCFC)- stable cathode materials