Tritium Aging Effects on Forged Stainless Steel

We Put Science To Work

Michael Morgan

Materials Innovations in an Emerging Hydrogen Economy February 24-27, 2008 Hilton Oceanfront | Cocoa Beach, Florida USA

- Pressure vessels for tritium service are constructed from stainless steel forgings.
- Tritium and its decay product, helium, change the structural properties of stainless steels and make them more susceptible to cracking.
- Material and forging specifications have been developed for optimal material compatibility with tritium. They include: Composition, tensile properties, and select microstructural characteristics like grain size, flow line orientation, inclusion content, and ferrite distribution and content.
- For years, the forming process of choice was high-energy-rate forging (HERF)
- Today, some reservoir forgings are being made that use a conventional, more common process known as press forging (PF or CF).
- Conventional hydraulic or mechanical forging presses deform metal at 4-8 ft/s, about ten-fold slower than the HERF process.
- The material specifications continue to provide successful stockpile performance by ensuring that the two forging processes produce similar reservoir microstructures.

The purpose of this study was to measure and compare the fracture toughness properties of Type 21-6-9 stainless steel for:

- High-energy-rate and conventional forgings; in the
- Unexposed, hydrogen-exposed and tritium-exposedand-aged conditions.

Effect of Tritium Exposure on Stainless Steels

Tritium-Exposed & Aged

Helium Hardened Microstructure

Table I. Composition	s of Stainless Steel F	Forgings, Plates and	Weld Filler Wires	(Weight %)

		Sample													
Material HERF*	Forging	ID '	Cr	Ni	Mn	Р	Si	Со	Мо	С	S	Ν	0	AI	Cu
21-6-9 CF**	A4582	F97-X	19.4	6.4	8.5	0.021	0.33			0.04	<.001	0.28	0.0022	<.001	
21-6-9 CF**	B7073	H94-X	19.1	6.7	9.9	0.01	0.41			0.03	0.004	0.28	0.001	0.005	
21-6-9 Filler	B6275	F9-X	19.3	6.7	9.9	0.01	0.38			0.03	0.001	0.28	0.002	0.004	
Wire 308L	308L Weldment	98-X	20.5	10.3	1.56	0.006	0.5	0.068	<0.01	0.028	0.012	0.055	-	-	0.015

*High-Energy-Rate Forged **Conventionally Forged Manufacturers' supplied compositions

Forging and Sample Orientation

Forging A4582 - - 21-6-9 SS

Mechanical Properties and Grain Size

Sample ID	Yield Strength psi	Ultimate Strength psi	% EL	Grain Size
F9 (CF)	87100	131400	48.3	10/7; 7 < 5%
H94 (CF)	99400	139300	44.3	10/7; 7 < 5%
F97 (HERF)	104800	139400	37.6	5/3

Sample Cartridge and Aging Calculation

- Hydrogen and Tritium exposures conducted at 350 C for three weeks
- Tritium samples aged at -40C to build-in decay helium
- All samples were tested at ambient temperature in air

Fracture Toughness Testing

J-R Curves for CF and HERF Steels

Fracture Appearance Unexposed Heats

High-Energy-Rate Forged

Conventionally Forged Microstructures

90 ksi Y.S. Heat

100 ksi Y.S. Heat

HERF Microstructures

J-R Curves for As-Received and Heat-Treated Steels

Fracture Appearance Heat Treated Steels

Conventionally Forged

High-Energy-Rate Forged

Effect of Hydrogen Exposure on J-R Behavior

Conventionally Forged Type 21-6-9 Stainless Steel

Effect of Hydrogen on Fracture Appearance

Conventionally Forged Type 21-6-9 Stainless Steel

Effect of Hydrogen, Tritium, and Decay Helium on J-R Behavior

Conventionally Forged Type 21-6-9 Stainless Steel

Effect of Decay Helium on Fracture Toughness

Tritium Aging Effects on Fracture Appearance

627 appm Helium

Tritium Aging Effects on Fracture Appearance

253 appm Helium

627 appm Helium

Fracture Appearance of Tritium Exposed HERF Type 21-6-9 Stainless Steel

627 appm Helium

Fracture Toughness - Heat Treated

Comparison of Fracture Appearance – Heat Treated vs. Tritium-Exposed-and-Aged

Heat Treated 650 C 24 h

Tritium-Exposed-Aged for Seven Years (627 appm helium)

- HERF Type 21-6-9 stainless steels had lower fracture toughness values than Conventionally Forged Type 21-6-9 steel because of its larger grain size and sensitization that occurred during the forging process.
- Hydrogen and tritium exposures lowered the JQ values and Jda curves. The degree of sensitization did not seem to affect the fracture toughness at high helium levels.
- Fracture modes of the forged steels were dominated by the dimpled rupture process in unexposed, hydrogen-exposed and tritium-exposed steels and welds.
- Heavily sensitized steels had a similar fracture appearance as tritium-exposed-and-aged steels

