Utilization of Scrubber Waste in

Dry Cast Concrete Products

Presented by:

Tanya Turpin Brad Cobbledick

Company:

Brampton Brick Limited

Presentation Outline

Background
Purpose
Batch Design

- Mix Design
- Materials
- Machinery

Physical Properties Measured

- Colorimeter
- Compression
- Absorptions

Plant Locations

Background

Brampton Brick Scrubber Limestone Waste

•100 Tons per Month

Peel Block Concrete Plant Raw Materials

•1280 Tons per Month

Substituting Raw Material

•7%-8% •89.6 Tons- 102.4 Tons

Purpose

To manufacture a durable concrete product using limestone waste from a scrubber, as a substitute for a portion of the aggregates.

Raw Material

Fine Aggregate

Coarse Aggregate

Scrubber Waste

Sieve Analysis Raw Material

Median Particle Diameter

Sample Date

Experimental Results of Scrubber Limestone Addition Sieve Analysis

-6% Limestone

--- 12% Limestone

─8% Limestone

— 10% Limstone

Laboratory Scale Batch Design

Table 2: Laboratory Batch Design

Product	Total Cementitious Material (g)	Total Fines (g)	Total Coarse (g)	Total Aggregates (g)	Batch Total (g)
Masonry	315	2100	2700	5000	5315

Batch Design

Table 1: Peel Block Aggregate Percentages

Product	Fines in	Coarse	Cementations
	Batch	in Batch	Material in Batch
	(%)	(%)	(%)
Masonry	54.6	39.1	6.3

Machinery

Diagram 1: Laboratory Compression and Vibration Machine

Final Product

Concrete Puck

Physical Properties of the Final Product

Colorimeter Data

Compressive Strengths

Water Absorptions

Colorimeter Data

Diagram 1: 3-D Colorimeter Wheel

Lightness

- •Measure of brightness.
- ■Represented as "L".

Hue

- Measure of colour.
- ■Represented as "a".

Chroma

- Measure of intensity or charity.
- ■Represented as "b".

Color Difference

Absolute Error = ΔE

$$\Delta E = \sqrt{(\Delta L)^2 + (\Delta a)^2 + (\Delta b)^2}$$

Color Difference Between Samples

Compressive Strength vs Limestone Addition

24 hr Cold Water Absorption

5 hr Boil Water Absorption

Saturation Coefficient

Future Trials

Replace Screeningwith the Sand

□ Freeze -Thaw

Plant Trial

Acknowledgements

To Paul-Francis D'Arcey and Brad Cobbledick for their assistance and suggestions throughout the process.

Questions Comments