Sharing What We Know Pre-Competitively, Or Is it Time for Nano-Informatics?

John Rumble Senior Vice President Information International Associates Oak Ridge TN

INFORMATION INTERNATIONAL ASSOCIATES (IIA)

www.iiaweb.com

Our Journey Today

- What is Informatics
- Why is it important for nanotechnology and EHS issues in nanotechnology?
- How can informatics help nanotechnology?
- What are the challenges in using informatics?

First, Pre-Competitive Sharing

Pre-Competitive

- Conference presentations
- Published papers
- Grey literature papers
- Standards
- Public databases
- Round robin testing
- Product information sheets

First, Pre-Competitive Sharing

Pre-Competitive

- Conference presentations
- Published papers
- Grey literature papers
- Standards
- Public databases
- Round robin testing
- Product information sheets

Competitive

- Patents
- Copyrights
- Internal reports
- Proprietary information and data
- Actual products
- Manufacturing agreements

What is Informatics

- Informatics includes the science of information, the practice of information processing, and the engineering of information systems. (circa 1957-67)
- Informatics studies the structure, algorithms, behavior, and interactions of natural and artificial systems that store, process, access and communicate information. (1994)

(Wikipedia)

What is Nanotechnology Informatics

 The use of the fruits of the Information Revolution to advance nanoscience and nanotechnology

(Rumble 2006)

Informatics is the study and use of

- Database technology
- Modeling and simulation
- Software
- Networking and connectivity
- Data and resource integration
- Visualization
- Advanced algorithms computational and numerical
- High-performance computation
- Knowledge discovery

What is Nanotechnology Informatics?

 The ability to do nanoscience and nanotechnology much differently than 60 years ago!

What is Nanotechnology Informatics?

 The ability to do nanoscience and nanotechnology much differently than 60 years ago! Data

- Generation
- Collection
- Management
- Visualization
- As input to models
- For advanced analysis
- For knowledge discovery

Why is Nanotechnology Informatics Important?

- To reduce the time to commercialize nanotechnology
- To understand and predict nano-behavior
- To design and test nanomaterials and nanodevices systematically
- To optimize nano-performance
- To predict and direct service characteristics of nanomaterials and nanodevices

Why is Nanotechnology Informatics Important?

 To improve nanotechnology, especially on a precompetitive basis

How Can We Use Informatics to the Advantage of Nanotechnology?

- Database technology
- Modeling and simulation
- Software
- Networking and connectivity
- Data and resource integration
- Visualization
- Advanced algorithms computational and numerical
- High-performance computation
- Knowledge discovery

How Can We Use Informatics to the Advantage of Nanotechnology?

- Database technology
- Modeling and simulation
- Software
- Networking and connectivity
- Data and resource integration
- Visualization
- Advanced algorithms computational and numerical
- High-performance computation
- Knowledge discovery

Data and Resource Integration

- Nano research is a small group effort
- 1000s of groups generate and report results
- The aggregated data and resources are of far greater value than just their sum
- New work is being done and reported as an increasing rate
- Data and resource (models, software, visualization tools) are spread across many disciplines

Data and Resource Integration

- Some disciplines now have highly integrated resources
 - Genomics: GenBank
 - > Protein Structure: Protein Data Bank
 - > Astronomy: International Virtual Observatory
- Researchers now or soon will have access to all results and many tools
- Google Scholar; SciFinder; blogs, wikis, listservs link researchers together and help find results

Data and Resource Integration

- Non-specialist users still have difficulty
 - > finding data and resources
 - > understanding quality
 - > knowing terminology
- Multi-disciplinary fields such as nanotechnology face formidable obstacles
- Additional multiplicity of EHS aspects of nanotechnology make things even harder
- Is a National Nano Data Center needed?

Knowledge Discovery

- Not just finding new fundamental insights:
 > E = MC²
- Most discoveries and advances are incremental, not *de novo*
- Consider materials design

Materials Design is Design

- Rules of design apply
- Data requirements differ by design type
- Computerized data can be reused

Types of Design

- Redesign modify an existing design
- Routine design use a series of rules
- Mature design reuse of the same design every time
- Selection choosing from a catalog
- Configuration design how to assemble
- Parametric design find values from characterizing parameters
- Original design develop something that does not exist

Parametric Materials Design

Finding parametric equations for performance from microscopic and atomic models

- > Especially needed for complex phenomena
- > Quantitative structure activity relationships
- Can equations describe materials behavior? Of course.
- Can one equation describe many types of materials behavior ???
- In the virtual world, can try full range of parameters

Materials Redesign

Adapting or changing an existing material

- Most important type of materials design
- Often just to improve one property
- To be done well need considerable information
- In the virtual world, can try many changes

Original Materials Design

Designing something that is totally new

- When do we do original design?
- How often do we start from the beginning?
- Can we define functionality and then start?
- Original does not equal originality
- What we usually mean is creative design
- In the virtual world, we can play

Back to Knowledge Discovery

 Clearly in the context of nanomaterials, indeed, all of nanotechnology, knowledge discovery from large integrated resources will reduce time and effort for physical experimentation and testing

Back to Knowledge Discovery

- Clearly in the context of nanomaterials, indeed, all of nanotechnology, knowledge discovery from large integrated resources will reduce time and effort for physical experimentation and testing
- For EHS, especially important as human and animal testing may not always be possible
- All combinations far exceeds our capacity to measure

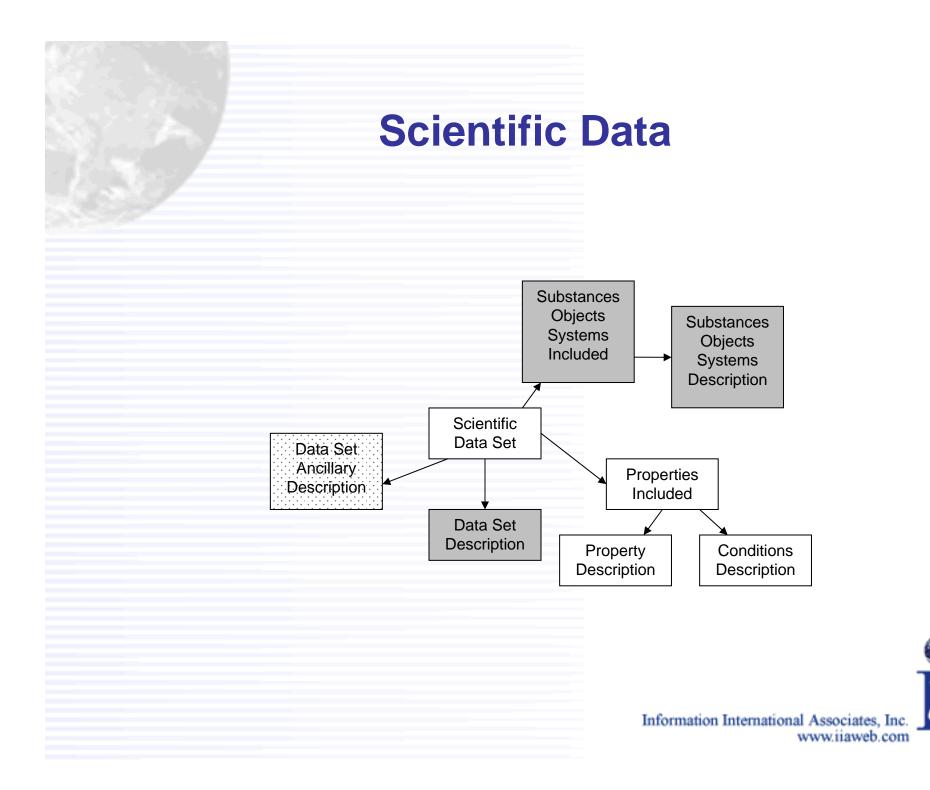
Our Challenges to Using Informatics

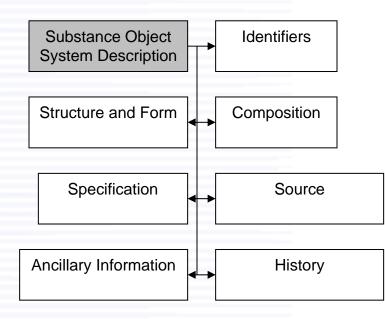
- Data collection and preservation
- Data maturity
- Standards
- Data accessibility
- Motivation

Data Collection and Preservation

- Multi-disciplinary nature of nanotechnology makes it difficult to create large collections of nano-related data
- Ila Workshop in January 2007 at Oak Ridge explored some of the issues about a National Nano-Information Center
- No central repositories exist for most nanorelated data, especially larger data sets that cannot be published in archival literature

Data Maturity


- Most nanotechnology research is still immature and exploratory
- By immature is meant that many independent variables – in composition, processing, reactivity – are still unknown
- Measurement technology is still changing significantly
- Property data not yet stable


Standards for Nanotechnology Data

- No good nomenclature system
 - > Beyond chemical bonding
 - Macroscopic nomenclature is not always appropriate
- Goals on material description
 - Uniqueness differentiate a material from every other nanomaterial
 - Equivalency two nanomaterials are the same to degree specified and data sets can be combined

Components of Materials Description

Standards for Nanotechnology Data

- Test procedures still evolving
- EHS issues are very test dependent
 - Good models/data collections/knowledge discovery help reduce need for physical testing
 - Nanomaterials and nanoparticles interactions with biological materials extremely complex
 - Many Standards Development Organizations are moving ahead

Federated Searches and Data Accessibility

- Searching across data resources very difficult because lack of standards
- Especially true for interactions between nanomaterials and biological materials
- Long term experience with nanomaterials and nanoparticles (e.g., pigments) not easily characterized in nano terminology

Data Accessibility

- Need for nano data collections on a nonproprietary basis
- Pre-competitive data and resource sharing are needed
- Extremely complex science, not easily characterized exactly
- National competitiveness

Nano Informatics

- The tools of the Information revolution have changed how experimental, theoretical, and calculational science is done
- Nano informatics can greatly speed up the development and commercialization of nanotechnology
- Provides alternate methods for addressing EHS issues
- Standards will play a significant role
- National coordination will be needed

National Nano Information Center

- Modeled after National Center for Biotechnology Information
- Repository for pre-competitive information
- Private-public partnership
- Special emphasis on data set completeness, standards and data quality
- Can be a virtual center, with federation of interested parties
- Speed up commercialization and increase national competitiveness

