

Ceramic Applications in the Automotive Industry

Michael. J. Hoffmann

Institute for Applied Materials - Ceramics in Mechanical Engineering

KIT – University of the State of Baden-Württemberg and National Large-scale Research Center of the Helmholtz Association

www.kit.edu

Ceramics components in automotive applications

filter, catalyst carrier

Functional Ceramics

spark and glow plugs, oxygen sensor, knocking sensor, parking distance control, PTC heaters, fuel injection systems

Ceramics components in automotive applications

filter, catalyst carrier

Structural Ceramics

pump components (sealings), brake discs, catalyst support, particulate filter,

Institute for Applied Materials- Ceramics in Mechanical Engineering

Projection of Total Energy Demand and Energy Mix

Energy Demand (x10¹⁸ J)

- Liquid fuels will still significantly contribute to up-coming energy demands
- Combustion engines are necessary in the next decades
- Individual transport: long range distance, trucks, hybrids

European Fuel-Economy Goal up to 2025

Downsizing concept

Downsizing is based on the principle of a reduction in engine size in order to reduce consumption without affecting power.

Measures:

- Reduction of number of cylinders
- Supercharging (use compressed air)
- Direct injection systems

Challenges and Needs:

- Injection control system
- High pressure fuel pump
- High thermal and mechanical loading

Downsizing can reduce the CO_2 emissions between 5% for diesel models and 40% for gasoline models by 2020. These engines should be able to remain dominant for a long time in the car market.

Downsizing concept

Downsizing is already reality in the present US market

Outline

- High pressure pump systems for gasoline engines
- Spark plugs
- Porous ceramics for local reinforcement of metal matrix composites
- Piezoelectric injection systems
- PTC heating elements
- General conclusions

Piezoelectric Driven Common Rail Fuel Injection Technology

Piezo technology increases efficiency and reduces emission \rightarrow already used in Diesel systems, but with a high potential for gasoline systems

Piezoelectric Driven Common Rail Fuel Injection Technology 14 metal parts droplet size SMD [µm] 12 ceramic parts 10 8 -40 % 6 4 0 10 20 30 50 60 40 fuel injection pressure [MPa] Pfister et al. Cer. Trans. (2011) High fuel injection pressure is needed to reduce droplet size (-40%), \rightarrow decrease of fuel consumption and pollutant emissions (-80%)

Fuel evaporation in combustion chamber

3-Piston High Pressure Pump for Gasoline Engines

Cam/sliding-shoe contact is tribological highly loaded due to an insufficient lubrication of petrol with increasing pressure \rightarrow ceramic components can be a solution

Friction coefficient in the cam/sliding-shoe contact

Silicon carbide and SiAIONs indicate a similar behaviour with a very low friction coefficients at a system pressure of 50 MPa

Effect of surface texturing of the cam/sliding-shoe contact

The texture significantly improves the performance of self-mated silicon carbide at low speed or low contact force

Outline

• High pressure pump systems for gasoline engines

Spark plugs

- Porous ceramics for local reinforcement of metal matrix composites
- Piezoelectric injection systems
- PTC heating elements
- General conclusions

Gasoline direct injection system

Source: KIT / IFKM, Spicher

An ignitable mixture for low and high loads is only formed in a very narrow spatial zone

Future trends for spark plugs in fuel-efficient engines

Challenges

- Distance between electrodes will increase
- Higher voltage will be applied
- \rightarrow longer spark
- Pressure increase in combustion chamber
 - \rightarrow higher thermal and mechanical loading
- reduction in size

Strength distribution and typical failure mechanisms of commerical spark plugs

Strength distribution reflects also the electric breakthrough behaviour \rightarrow Most current commercial materials do not match the requirements

Institute for Applied Materials- Ceramics in Mechanical Engineering

Future trends for spark plugs in fuel-efficient engines

Challenges:

- $\mbox{ \bullet smaller diameter } \rightarrow \mbox{ higher thermal and mechanical loading }$
- \rightarrow strength must be increased by enhanced processing conditions
- adjustable resistance
- high voltage \rightarrow increase in electrical breakthrough

Outline

- High pressure pump systems for gasoline engines
- Spark plugs
- Porous ceramics for local reinforcement of metal matrix composites
- Piezoelectric injection systems
- PTC heating elements
- General conclusions

Metal Matrix Composites for Highly Loaded Engine Parts

Karlsruhe Institute of Technology

Engine part manufactured by pressure die casting of Al-based alloys

Inhomogeneous cooling causes thermal stresses that can be minimized by a local reinforcement with ceramics (preform concept).

Local reinforcement of pressure die-casted Al-MMCs

Preparation of Porous Ceramic Preforms

Pore filler concept

Porosity: up to 75% Pore size and shape depend on filler Freeze casting

Porosity: 20-85% Ice crystals form final pores

Ceramic foams

Porosity: 85-95% cell size depends on polymer foam

Mattern et al., JECS (2004).

Different types of ceramic preforms can be manufactured by using powder technology processes.

Preparation of freeze-casted AI-MMCs

Waschkies et al., JACS (2009)

2 mm

Estimation of failure probability for different perform types 1E-9 foams · MPa] freeze casting permeability · strength [m² 1E-10 E-11 with pore fillers Failure region E-12 1E-13 pressure squeeze 0.0 ve melt velocity [n casting casting Mattern et al., JECS (2004).

Freeze casted preforms can be used for pressure casting, while preforms with pore fillers and bottle neck pores will break

Outline

- High pressure pump systems for gasoline engines
- Spark plugs
- Porous ceramics for local reinforcement of metal matrix composites
- Piezoelectric injection systems
- PTC heating elements
- General conclusions

Typical strain of a donor-doped Pb(Zr,Ti)O₃ ceramic (PZT): 0.15 - 0.2 % at 20-30 kV/cm \rightarrow Multilayer device

Piezoelectric Driven Common Rail Fuel Injection Technology

Requirements for piezoelectric actuators for fuel injection systems

- cofiring with internal electrodes (multilayer device)
- high strain
- operating temperatures from -40 to 150 °C
- small temperature dependence of strain
- high reproducibility (mass production)
- "low cost"
- challenge: replacement of PZT by lead free ferroelectrics

Comparison of Pb(Zr,Ti)O₃ and a lead-free ceramic

Lead-free ceramics show a lower strain for a similar electric field strength and exhibit a much stronger temperature dependence of strain

Outline

- High pressure pump systems for gasoline engines
- Spark plugs
- Porous ceramics for local reinforcement of metal matrix composites
- Piezoelectric injection systems
- PTC heating elements
- General conclusions

Heat deficiency for car heating systems with efficient engines

Diesel and Gasoline direct injection (12V)

400W- 2.000W

Mild Hybride, Start-Stop Systems with 42-144V

Full Hybride, E-Cars, Fuell cell driven cars with up to 500V power supply

source: eberspächer catem, Germany

The increasing efficiency of fuel saving cars requires a supplementary heat system based on functional ceramics showing a positive temperature coefficient resistance (PTCR) effect.

- PTC-effect is based on the temperature depended potential barrier at the grain boundary → high electrical resistance above T_C
- \cdot The ferroelectric phase equals the charge of the potential barrier below $\rm T_{\rm C}$
 - \rightarrow low electrical resistance

Highly efficient cars do not produce enough "waste energy" for heating

PTC effect in donor-doped BaTiO₃-based ceamics

OEMs favour different local heating elements to reduce total energy consumption

Outline

- High pressure pump systems for gasoline engines
- Spark plugs
- Porous ceramics for local reinforcement of metal matrix composites
- Piezoelectric injection systems
- PTC heating elements
- General conclusions

Requirements and Challenges for Materials Research

 \rightarrow Reduction of product development time due to shorter product life cycles

"This could be the discovery of the century. Depending, of course, on how far down it goes."