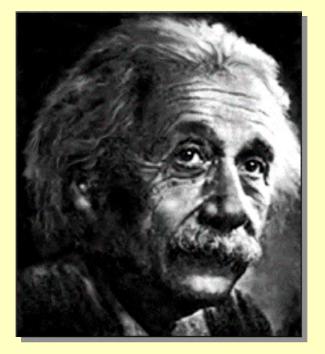
Energy After Oil

Materials Challenges in Alternative and Renewable Energy Conference Clearwater, FL February 27, 2012

B. B. Rath Naval Research Laboratory Washington, DC 20375 Rath@nrl.navy.mil

Global Issues


- Energy <</p>
 - Water
 - Environment

The Energy Challenge Our Generation's Challenge

When asked shortly after WWII:

"Prof Einstein, what do you see as the greatest threat to mankind?"

His prompt reply:

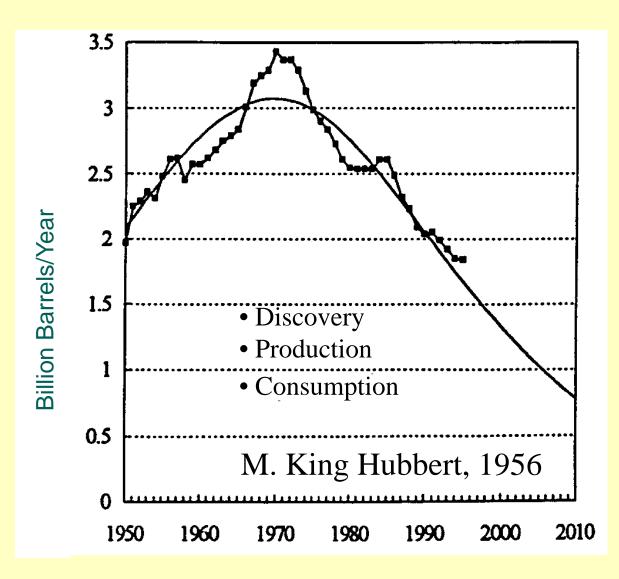
"Exponential growth."

The ENERGY REVOLUTION (The Terawatt Challenge)

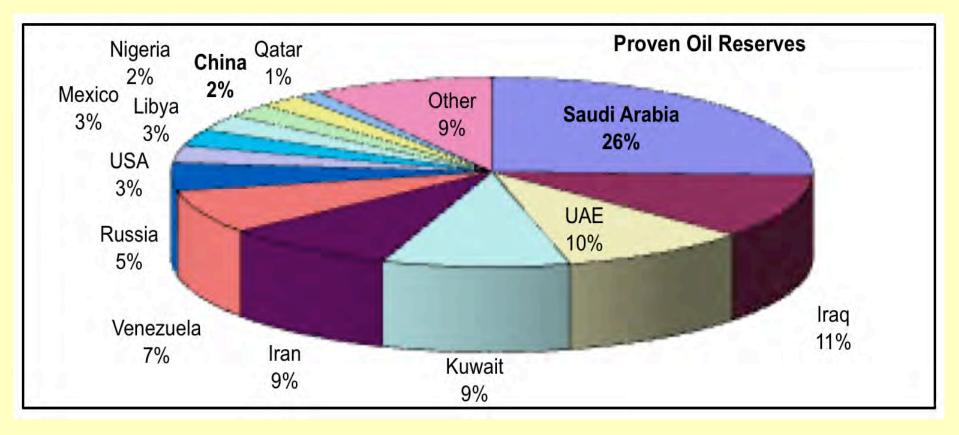
Sources of Energy Supply - Worldwide

Source: International Energy Agency

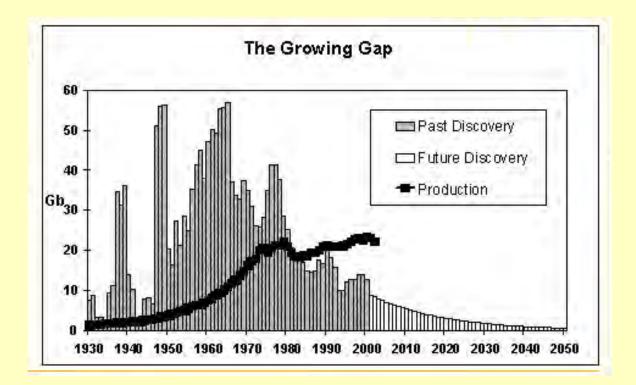
Setting the Stage: A Global Overview


 Consider in 1900 less than 1 million barrels of oil per day vs. today at ~87 million barrels per day

• "By 2015 we need to find, develop and produce new oil that is equal to 8 out of 10 bbl being produced today." President Exxon Mobil 2003



Crude Oil Production in the Lower 48



World Proven Oil Reserves

Depletion of Oil Reserves

World oil reserves accumulated since 1930 are now being depleted. Industrial growth in Asia will accelerate the depletion

The Coming Oil Crisis, Colin J. Campbell

Alternatives (Renewables & Non-renewables)

Conservation / Efficiency

Renewables

- Biomass
- Hydrogen
- Wind
- Nuclear Fusion
- Solar terrestrial
- Geothermal
- Waves / Tides / Currents
- Ocean thermal
- Hydroelectric
- Synthetic fuel

Non-renewables

- Clean Coal / CTL
- Nuclear Fission
- Natural Gas
- Oil shale
- High energy density fuel
- Methane Hydrates

- -- not enough
- -- large land mass, cost?, aviation?
- -- cost? safety? Beyond horizon for large scale use
- -- commercial, not enough
- -- technology challenges, cost? Beyond horizon
- -- commercial, large land mass, cost?
- -- not enough
- -- not enough, coastal issues
- -- confined to tropical / equatorial regions, cost?
- -- not enough
- -- technology challenges
- -- sequestration?, cost?
- -- radioactive waste?, cost??
- -- not enough / resource limits
- -- Technology? Environment? Cost?
- -- research challenges
- -- clean and in abundance
- (• DOE R&D Emphasis)
- (• Active research at NRL)

Renewables

Biomass: A Potential Renewable Energy

Biomass: A Potential Energy Resource

- The oldest known energy source since the discovery of fire
- World's 4th largest energy source (47 quads/year; 13.6x10¹⁵ watt hr; 47x10¹⁵ BTU)
 - Domestic Biomass Source for Energy
 - Agricultural Waste
 - Forestry Waste
 - Municipal Solid and Industrial Waste
 - Energy Crops (Grown for Fuel)
- US Goals for Energy Contribution from Biomass by 2020 (NREL/DOE)
 - 10% Transportation Fuels
 - 5% Electric Power Production
 - 18% Chemicals and Materials

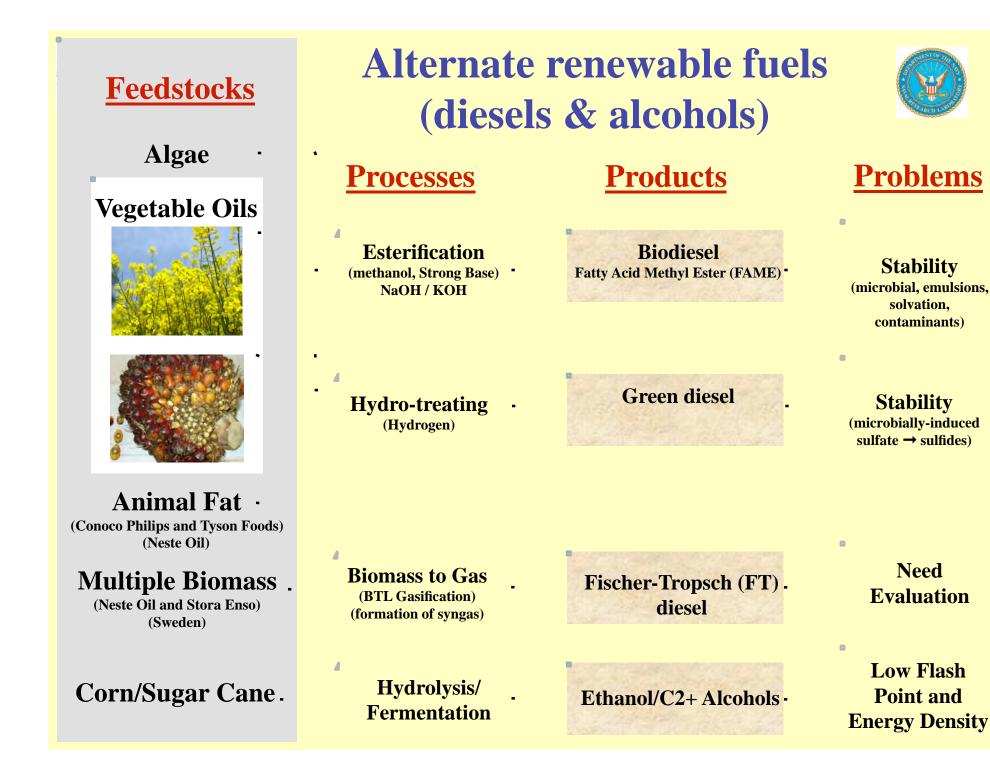
Robert Armstrong, NDU Report

Range in Biofuel Production (ethanol & diesel)

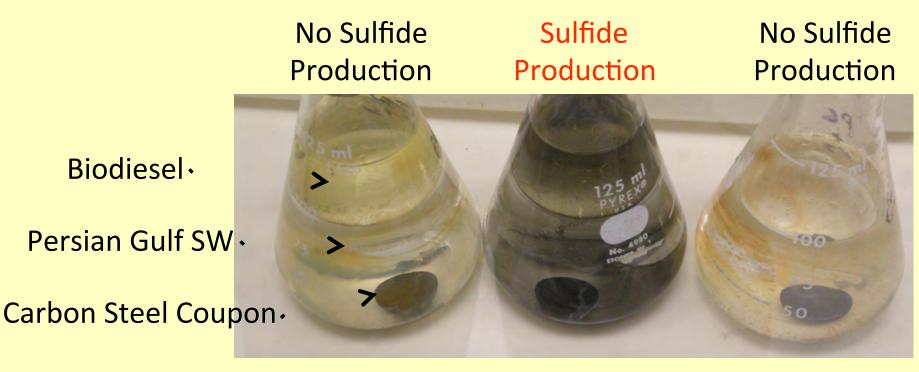
Gallons of Oil / Acre / Year
~350
48
83
102
127
635
1000-5000**
125
662
410
374
75-100
low

- † Production of ethanol
- * Non food crops
- ** requires massive CO₂ injection for higher gallon number

Gasoline Gallon Equivalent


Fuel Type	BTUs/gal	Gallon Equivalent
Gasoline, regular unleaded	114,100	1.00
Diesel (typical)	129,800	0.88
Methanol	56,800	2.01
Ethanol	76,100	1.50

Ethanol from Biomass Controversy (Corn)


- Energy costs for corn production and conversion to one gallon of ethanol are 131,000 BTUs. Energy value of one gallon of ethanol is 76,000 BTUs (~70% more energy is needed than that derived from ethanol).
- Ethanol costs \$ 1.83/gallon compared to \$1.00/gallon for gasoline.
- An average car running 10,000 miles/year on ethanol fuel needs 850 gallons, grown on 11 acres of ground.
- \$1.5+ Billion/year in subsidies are provided by federal and state governments for ethanol production

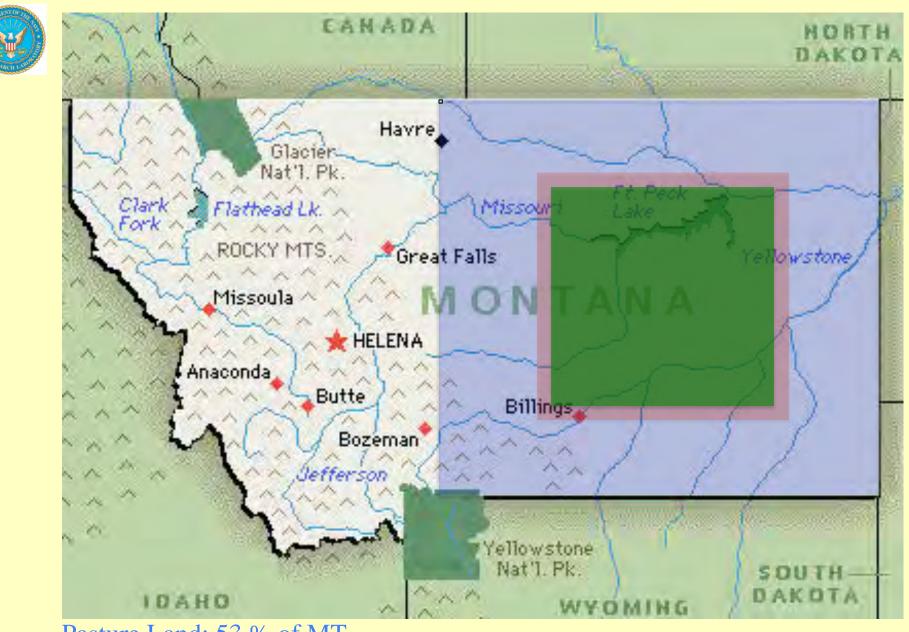
David Pimentel, Cornell U. (Encyclopedia of Phy. Sci. & Tech.)

Biodiesel provides carbon source for microbial growth resulting in sulfide production and corrosion

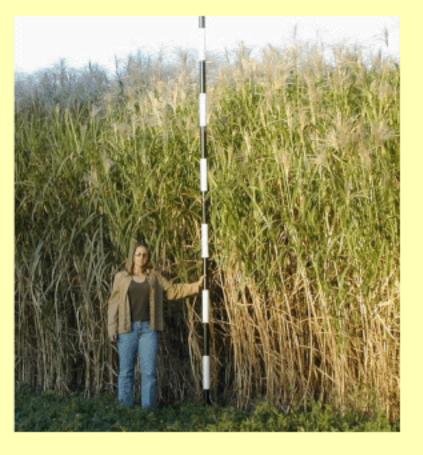
Sterilized Persian Gulf Seawater + Biodiesel Natural Persian Gulf Seawater + Biodiesel Natural Persian Gulf Seawater

Algae to Jet Fuel (produce 5 x10⁹ gal / yr from a yield of 1250 gal / acre / yr)

• Need high solar flux, abundant water, CO₂ and nutrients and massive land areas


- 1250 gallons "oil" / acre / year requires 6000 square miles
- 233 coal fired power plants in south east US burn about 330 million tons of coal per year and produce about 860 million tons CO₂ per year.
 5x10⁹ gallons "oil" / yr requires 260 million tons CO₂ per year (high CO₂ transportation cost if not adjacent)
- Massive water requirements 5x10⁹ gallons "oil" / yr requires 4.5 trillion gallons of water per year
- 1 % S in coal will acidify the water to pH from ~ 5 to 3 (killing algae harvest)
- Costs of fuel could (if the algae ponds and coal fired power plants are adjacent) be ~ \$2 / gallon, excluding capital investment (if CO₂ is transported the cost will be \$35 40 / gallon)

Camelina to Jet Fuel (1.4 Billion gallons / year - Montana project) (Excluding land acquisition cost)


- Grows on non-arable (non-food) land.
 (80 100 days for harvest)
- Camelina at <100 gal / acre / yr, requires 14 million acres (¼ of pasture land in Montana)
- Fertilizer (~100 x 10⁶ lbs / yr), cost \$100 Million / yr
- Planting & harvesting cost at ~\$280 Million / yr
- Processing costs to jet fuel ~ \$3 Billion / yr
- Processing costs to bio diesel fuel ~ \$300 Million / yr
- Market demand will favor FAME over jet fuel
- Crop rotation with dry land wheat is uncertain

Pasture Land: 53 % of MT Crop Land: 19 % of MT Camelina for Navy Fuel: 15 % of MT

Switchgrass to Ethanol

- A perennial grass native to the Great Plains
- Grows in marginal land
- · Needs seeding once / decade
- Cultivation requires fertilizers (~ 100 lbs N_2 / acre) and irrigation
- 100 gal ethanol / acre / yr
- With higher cost enzymes for bioreactors, cost / gal about that for corn

Jatropha to Biofuel

- Crop grows on marginal land but needs ample water supply
- Claimed to produce more fuel / acre than corn
- Production: a) variable, depending on soil quality, b) highly labor intensive, c) depends on plant life
- Leaves & seeds highly toxic
- Requires tropical climate: (Myanmar, India, China, Philippines, etc.)

- Most promising site in North Atlantic Florida Straits
 - Incident energy flux: ~ 18 GW
 - Extracted energy: 3-4 GW
- Disadvantages:
 - Wake loss
 - Drag on supporting structures
 - Internal turbine and transmission losses
 - High cost
 - Usable energy transmitted to the grid: 1-2 GW

Hydrokinetic Energy from Marine Environ.

Tides, Waves, Ocean/River Currents, and Ocean/Thermal

Tidal Energy

Variations in sea levels (twice daily) due to the gravitational effects of the sun and the moon turn immersed turbines

Advantages:

- Large scale investment (100 MW+)
- Proven technology
- Protection from coastal flooding

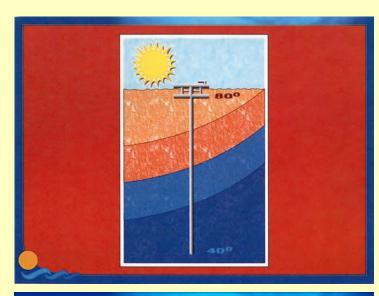
Disadvantages:

- Specific sites (40 world wide)
- Intermittent operation (4 flows/day)
- High capital investment (\$3-10K/kW)
- Environmental issues
- Navigation limits

Wave Energy

Rise and fall of waves moves cylinder which drives electric generator

Advantages:

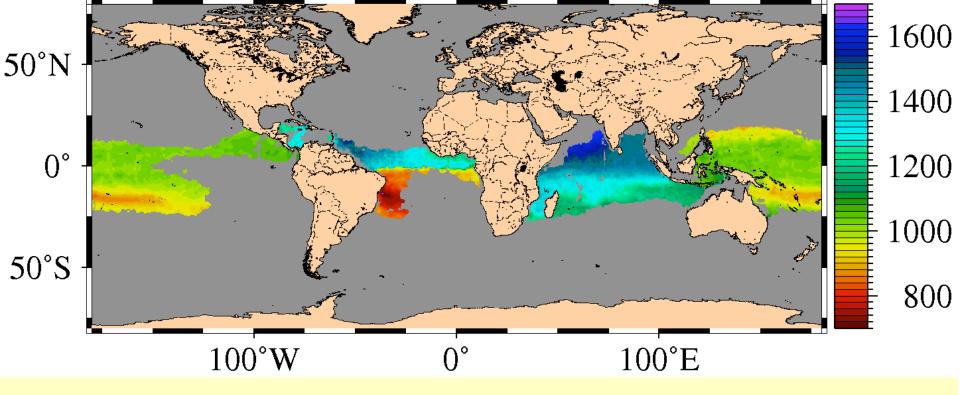

- Single buoy (50 kW)
- Existing technology (tested at New Jersey by OPT)
- No environmental impact

Disadvantages:

- Coastal navigation
- High sea states
- Fisheries
- Capital investment

Ocean Thermal Energy Conversion (OTEC)

- First proposed in 1881 d'Arsonval
- Oceans are the largest solar energy collector on earth
- Stored energy in the equatorial / tropical oceans equals ~ 300 times the world's energy consumption (best operation for $\Delta T = 40$ °F)
- Energy conversion is 24 hours per day. Advantage over tides, solar & wind
- Energy extraction is environmentally neutral (tested in Hawaii: 50 kW in 1979, 1 MW in 1980)

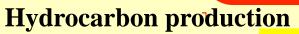

Technology Challenges for Ocean Thermal Energy Conversion For 100 MW Net Power

- Continental shelf closer to coastline
- Tropical ocean with minimum seastate fluctuation and currents
- Internal tides near islands (Hawaii)
- ~30 feet diameter pipeline extended ~ 3000 feet in ocean column
- Water pumping at a rate of ~ 13,000 cubic feet / sec
- ΔT equals ~ 40°F for ammonia as a heat exchanging fluid
 Power output α (ΔT)²

Generalized Digital Environmental Model (GDEM)

Depth (m) of 40F isotherm where SST is at least 80F month 01 from NRL GDEM 4.0

Synthetic Fuel from the Sea


Synthetic Hydrocarbon Fuel for Enhanced Operational Readiness and Logistics Independence

Objective

Fuel independence that is costeffective and CO_2 neutral. Fuel synthesis using H_2 produced by electrolysis of seawater and CO_2 extraction from seawater.

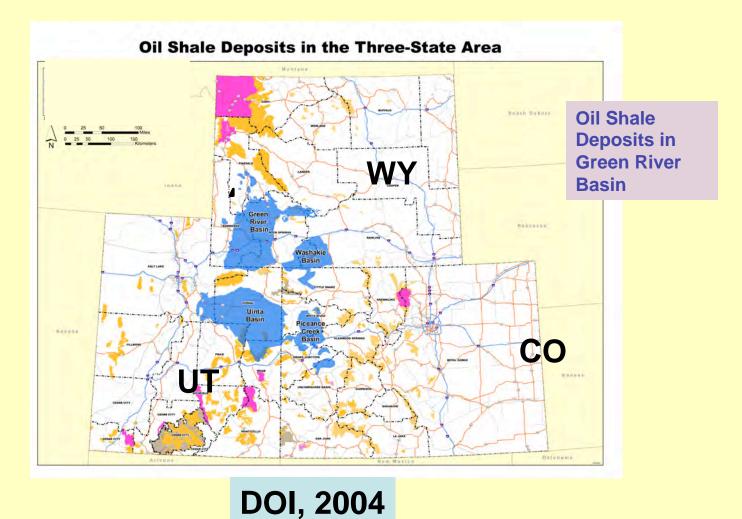
1. Sea Based Application

Fuel production plant Lily Pad Energy Nuclear/OTEC

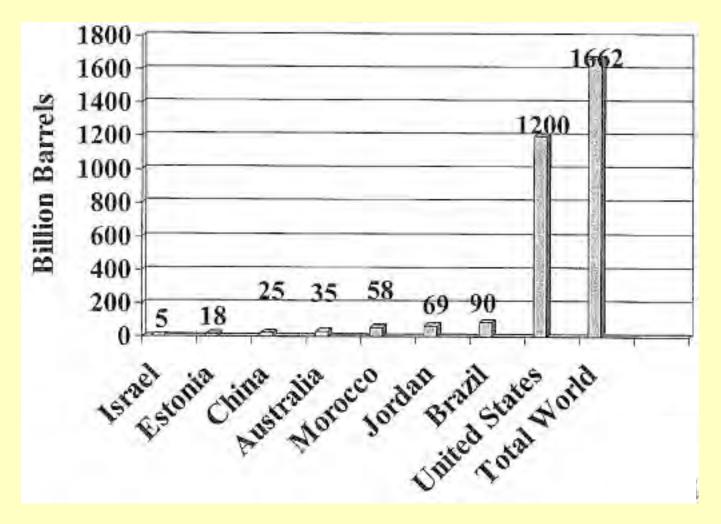
2. Fuel Ship Application

CO₂ from seawater:

 $\begin{array}{l} H_2O \twoheadrightarrow H + O_2 \\ H+H_2O + CaHCO_3 \twoheadrightarrow HCO_3 + CaOH \\ H_2CO_3 \twoheadrightarrow CO_2 + H_2O \end{array}$


A 100 MW power plant could produce 41,000 gal. of fuel / day

Non Renewables


Petroleum from Domestic Oil Shale CO, UT & WY

30

Major World Oil Shale Reserves

Tony Dammer, 2004

Comparison of Principal Factors Influencing the Economics of Producing Refinery Crude Oil

Characteristic	Athabasca Tar Sands (Canada)	Green River Oil Shale (US)	
Reserves	More than 1 trillion bbl	More than 1 trillion bbl	
Grade (Richness)	25 gallon bitumen/ton	25 gallon kerogen oil/ton	
Hydrogen Content	10.5%	11.8%	
N and S requiring removal	6.2 Wt%	4.0 Wt%	
Loss to Coke	33 lb/ton-ore	nil (burned for energy)	
Net yield of oil	0.50 bbl/ton mined	0.58 bbl/ton mined	
Quality of oil	34°API	34°API 20	

Tony Dammer, 2004

Petroleum From US Oil Shale

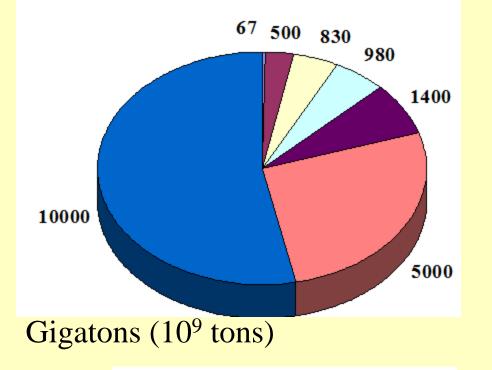
- Maximum deposits estimated at 1.5 x 10¹² barrels (USGS 1965; DOE 2005; largest in the world)
- Recoverable oil: 1.0 to 17 x 10¹⁰ barrels (M. K. Hubbert 1969)
- Extraction technology: (mine and retort (old); in situ extraction (thermal energy, Shell Oil, 2000)
- Advantages
 - Large domestic deposits
 - **Excellent finished product (JP-5)**
- Issues
 - Disposal of spent shale High levels of arsenic High volumes of water for processing Hydrogen upgrading Meeting regulatory standards CO₂ emissions) Cost? (Dol, BLM estimates)

Abundance of Frozen Clean Energy from the Sea (Methane Hydrates)

Global Estimate of the Methane Hydrates

Estimate of global volume of hydrate-bound gas (x 10¹⁵ m³

10000


1000

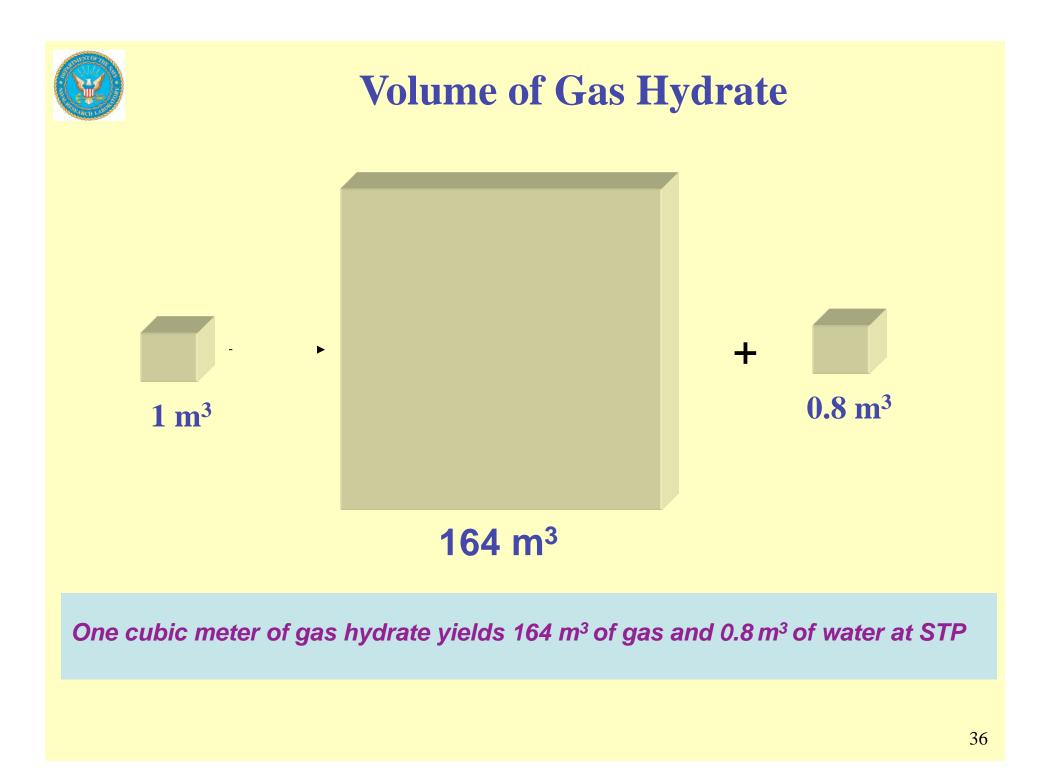
100

10

0.1

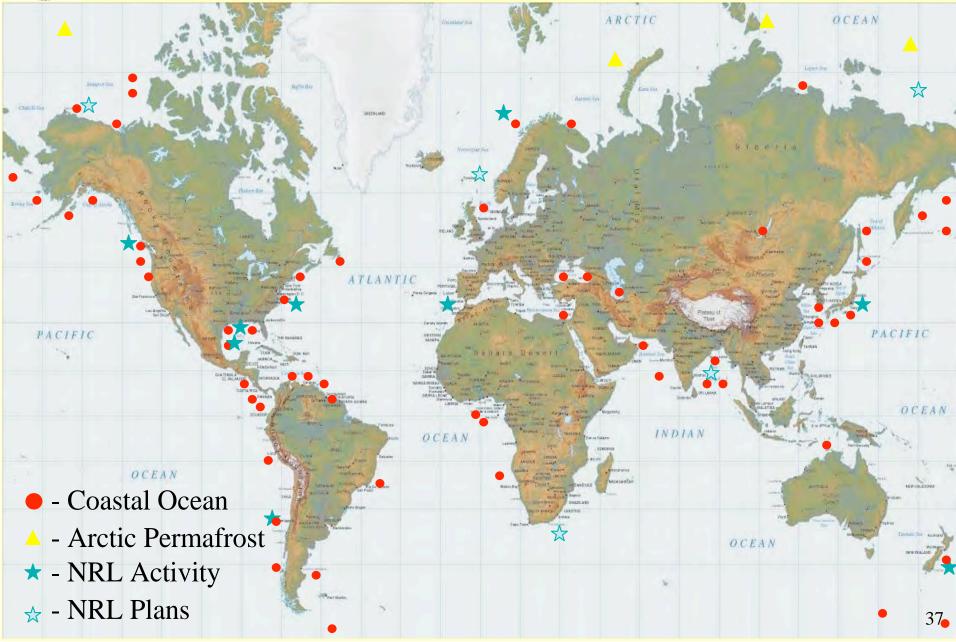
1980

- Waste material
- Peat
- Land (animals and plants)
- Dissolved organic matter in water
- Soil
- **Total fossil fuels (gas, oil, coal)**
- Methane hydrates


Global gas-in-place estimates vary but 700,000 tcf is most widely cited estimate

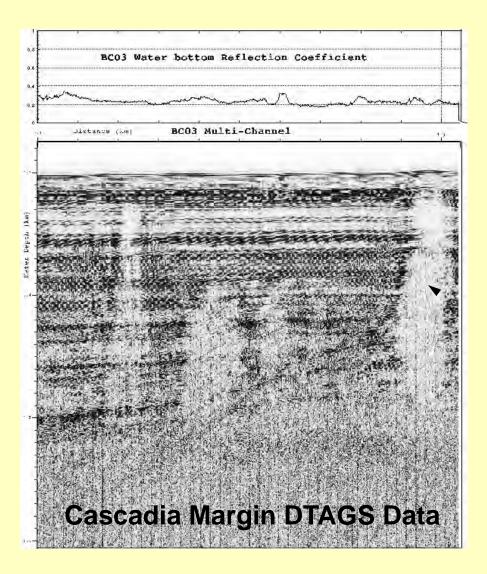
1990

2000


Year of Estimate

2010

World Methane Hydrate Distribution


US Methane Hydrate Distribution

CH₄ deposit > 300 x 10¹⁵ Cu Ft US annual consumption ~ 22 x 10¹² Cu Ft

DTAGS Application on the Cascadia Margin

"Wipe Out" zones related to dissociation of hydrates

Materials Challenges in Alternative and Renewable Energy (needed for all technologies on alternate energy production)

- Corrosion / stress corrosion and corrosion fatigue resistance
- Materials for deeper ocean drilling
- Advanced catalysts and enzymes
- Environmentally friendly anti-fouling paints and coatings
- New low cost ferrous alloys for hydrogen transport
- Structural materials for OTEC application
- Hybrid plants with improved photosynthetic efficiency
- Genetic engineering to accelerate microbial processes

Energy for the 21st Century

"The crisis facing our nation would make the Depression years look like good times"

Congressman Bartlett

Thank you

B. B. Rath rath@nrl.navy.mil