Ceramic Anode-Supported Solid Oxide Fuel Cells with High Performance and Tolerances towards Carbon Deposition and Sulfur Poisoning

Fanglin (Frank) Chen, Associate Professor
Department of Mechanical Engineering, University of South Carolina

Fuel cell electrical efficiency, defined as: \(\eta = \frac{\Delta G}{\Delta H} \)

<table>
<thead>
<tr>
<th>Synthesis</th>
<th>Modeling</th>
<th>Characterization</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Solution based chemistry</td>
<td>• Multiphysics</td>
<td>• Structure & microstructure</td>
</tr>
<tr>
<td>• Freeze-tape casting</td>
<td>• Structure – property</td>
<td>• Electrochemical performance</td>
</tr>
<tr>
<td>• Sintering aids</td>
<td>• Predicting and explanatory</td>
<td>• In situ techniques</td>
</tr>
</tbody>
</table>

Collaborators:
China University of Mining & Technology, Beijing: M. Han—Freeze casting, sintering aids
University of South Carolina: K. Reifsnider & P. Majumdar—Multiphysics, 3D tomography
Oak Ridge National Laboratory: In-situ neutron diffraction
Brookhaven National Laboratory: X-ray absorption fine structure (XAFS)

Reforming by partial oxidation: \(\text{C}_4\text{H}_{10} + 2\text{O}_2 = 4\text{CO} + 5\text{H}_2 \)
\(\Delta H (\text{kJ/mol}) \) \(\Delta G (\text{kJ/mol}) \) \(\eta(\%) \) \# e
1. \(-2,660 \) \(-2,810 \) 106 26
2. \(-2,370 \) \(-1,760 \) 74 18

Direct oxidation: \(C_4H_{10} + 6\frac{1}{2}O_2 = 4CO_2 + 5H_2O \)

After reforming: \(4CO + 5H_2 + 4\frac{1}{2}O_2 = 4CO_2 + 5H_2O \)

In situ techniques:

Chemical reaction:

\[J_i = -nF D_{H_2} \frac{e}{r} \left(C_0 - C_{H_2} / \delta \right) \]