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Discrete element modeling— 
A promising method for refractory  
microstructure design   

By M. H. Moreira, T. M. Cunha, M. G. G. Campos,  
M. F. Santos, T. Santos Jr., D. André, and V. C. Pandolfelli

Discrete element modeling is a tool with great potential for 

modeling refractory materials—if challenges to applying 

DEM for continuous problems are overcome.

Refractory materials are required to 
keep their structural stability when 

subjected to extreme mechanical and chemical 
environments. Thermal shock spalling, corro-
sion, creep, and other complex phenomena 
may take place while using them. Therefore, 
mechanical behavior of refractory materials is of 
great interest.

In recent years, researchers reported various technical problems 
and industrial challenges concerning refractory materials that are 
not easily solved using conventional experimental methods. Thus, 
numerical computational tools emerged to better understand the 
physical problems and to analyze such complex conditions.

The finite element method (FEM) is one of the most popu-
lar approaches for studying thermomechanical problems. It is a 
numerical method that subdivides a large system into smaller, 
simpler parts for easier analysis through the use of a mesh, i.e., a 
geometrical representation of the domain of interest that comprises 
all elements to be analyzed.

This technique is suitable to solve elliptic and parabolic prob-
lems, and it is not restricted to linear or isotropic cases. The 
mesh makes it geometrically flexible and able to model complex 
domains. Additionally, this technique is easily implemented as 
computer codes and is also robust because most mathematical 
problems can be stated as a variational problem where FEM can be 
applied. However, one of the main disadvantages to FEM is the dif-
ficulty of analyzing microscopic situations and material discontinui-
ties, as the equations associated with the problem are derived based 
on a continuous materials assumption.1

Trying to overcome this issue, researchers developed the FEM 
remeshing technique, which solves complex problems by updating 
the mesh to consider discontinuities, but this procedure can affect 
its performance.2 Möes et al.3 developed the extended finite ele-
ment method (XFEM) to model fracture and interfacial problems, 
using discontinuous basis functions on the nodes where cracks may 
occur. The advantage of this procedure is that it is not necessary to 
update the mesh. Nevertheless, this method also has a high com-
putational cost and the study of complex features, e.g., crack initia-
tion at multiple locations, is still an ongoing research.1

In contrast to FEM, meshfree methods have been studied, 
developed, and proposed as an alternative approach. Some 
examples are the smoothed-particle hydrodynamics (SPH) and 
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its modified approach (corrective SPH 
and discontinuous SPH),4 the moving 
least square (MLS),5 and the element-
free Galerkin method (EFGM).6 These 
techniques aim to study a problem 
with a random distribution of nodes 
without a mesh or connection between 
them. Nevertheless, they are very time-
consuming and may undergo several 
numerical issues, such as low accuracy 
near the boundaries and difficulties to 
impose Dirichlet boundary conditions.1

Another approach to modeling dis-
continuous problems is through discrete 
methods, such as molecular dynamics 
(MD)7 and the discrete element method 
(DEM).8 These methods differ from FEM 
because the body is not represented by a 
continuous mesh where constitutive laws 
are obeyed but rather by a set of discrete 
bodies or particles that interact with its 
neighbors following contact or distant 
interaction laws at the microscale.

Such interactions create emergent 
properties that can be measured on a 
macroscale as an apparent property that 
results from the multiple interactions at 
the microscale. This possibility enables 
DEM to be a tool with great potential 
for modelling cracks and representing 

microstructures that have a large number 
of discontinuities, such as inclusions, 
cracks, debonding, and porosity, which 
is the case of refractory materials. In 
addition, the major advantage of DEM is 
the likelihood of investigating both crack 
initiation and propagation, as well as the 
phenomena of coalescence and bifurca-
tion, which can be used to understand 
and simulate the macroscopic behavior 
of the materials9 (Figure 1).

Various studies used DEM for ceram-
ics applications (continuous problems), 
regarding problems related to compres-
sion tests,10 crack initiation and propaga-
tion in alumina,11 and the effect of aver-
age grain size on the toughness of alumi-
na ceramics.12 André et al.13 studied the 
Young’s Modulus of a borosilicate glass 
matrix with alumina inclusion affected by 
microcracks. Wang14 analyzed the fracture 
propagation in concrete to evaluate the 
difference in strength due to aggregates 
and aggregate/mortar interfacial transi-
tion zone (ITZ), yielding insights concern-
ing the effect of the microstructure on its 
mechanical behavior.

Nevertheless, DEM has not been 
extensively applied to model commer-
cial refractory materials, although it can 

improve the link between the material’s 
microstructure (which has a large number 
of discontinuities) with their macroscopic 
properties during application.13 Such 
approach can optimize the processing 
and applications of refractory materials, 
increase their performance, and save time, 
effort, and resources in the industry.

There are two major challenges to 
applying DEM for continuous problems: 
the choice of the contact model between 
the particles and how to find the cor-
responding microscopic parameters 
that describe the macroscopic behavior 
of the material (the calibration step). 
The present work is based on previous 
research that proposed a straightforward 
approach to overcome such challenges.9

The aim of this study was to explore 
the possibilities of applying discrete ele-
ment modeling as a tool for analyzing 
mechanical tests of refractories. The 
results attained can lead to models that in 
the future could help global key players 
to overcome, for example, the challenges 
of evaluating the mechanical and thermal 
damage in steel plant installations, which 
are not easily developed experimentally.

Thus, an alumina castable considering 
Alfred’s grain size distribution was studied 

MODELING DISCONTINUITIES

Discrete element modeling, which models 

interactions of discrete particles, can model 

microstructures with a large number of discon-

tinuities, such as refractory materials.

CHALLENGES TO DEM

DEM faces two challenges modeling continuous 

problems: choosing a contact model between 

particles and finding corresponding microscopic 

parameters that describe a material’s macro-

scopic behavior.

A MANUAL FIX

A manual calibration using Brazilian and 

uniaxial compression tests results in a DEM 

model capable of reproducing the mechanical 

behavior of a continuous problem.

Capsule summary

Figure 1. (a) Schematic representation of features of a refractory material and its connection with DEM, (b) SEM micrograph of a spinel 
containing alumina castable refractory showing all multiple phases, pores, and microcracks. (TA: tabular alumina; CA6: CaO.12Al2O3; 
MA: MgAl2O4)
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with GranOO, an opensource discrete 
element workbench.15 The calibration 
process was carried out by an automatic 
algorithm developed by Andreá et al.9 and 
by a manual calibration accomplished 
using the Brazilian and uniaxial compres-
sion tests. The three-point bending test 
was used in a further validation step.

Materials and methods
Discrete element method (DEM)

DEM is fundamentally different 
from continuum methods, such as 

FEM. Instead of considering the 
regions of interest as a continu-
um media, where known consti-
tutive laws describe its behavior 
in a grid (the domain’s mesh in 
FEM), in DEM the domain of 
interest is expressed by a set of 
rigid spherical bodies that inter-
act following specific laws.1

For the representation of 
mechanical phenomena, DEM, 
which originated as a tool for 
simulating naturally discrete 
problems such as granular 

flow, powder compaction, and related 
problems, can be of great benefit 
when specifying laws of bonding 
between elements.16

The bond between particles can be 
based on distinct models. The most com-
mon ones are the contact bond (simple 
spring) model, the dual spring model, 
the parallel bond and flat joint models,16 
and the recently developed cohesive 
beam model.9 Figure 2 presents a sche-
matic representation of some common 
bond models.

Each bond model is characterized by 
a set of variables, which are commonly 
referenced as micro (or local) param-
eters. Because the mechanical behavior 
of the whole structure is an emergent 
property that arises from the interaction 
of each element, two distinct scales are 
separately considered: the macroscopic 
(the scale of the material sample that will 
be simulated and is represented in the 
model) and the microscopic (the discrete 
element scale), as seen in Figure 3a.

The physical features of the whole 
sample are referenced as macroscopic 
properties, whereas the quantities related 
to the bonds and individual elements are 
the already mentioned microparameters. 
Although studies were conducted in 
order to propose analytical relationships 
between the set of micro- and macro-
parameters,17,18 there are no direct laws 
that correlate the set of microparameters 
and the experimentally measured proper-
ties of the material.17

Thus, a calibration step is commonly 
needed to find the set of microvalues that 
best represent the mechanical behavior 

(Figure 3c). Usually, experi-
mental tests with a homo-
geneous stress state, such 
as uniaxial compression, 
are used for the calibration 
step, whereas an experimen-
tal one with a nonhomoge-
neous stress state is applied 
to validate the model 
obtained with the optimal 
set of microparameters.18

GranOO workbench
The Granular Object-

Oriented workbench 
(GranOO) was used for 
the DEM simulations. 
GranOO is not a software 
but rather a set of C++ 
libraries that was originally 
developed to study tribo-
logical problems,19 and it 
was redesigned in order to 
be generalized and used in 
multiple DEM simulations. 
Based on the open source 
nature of this project, any 
contact bond model can 
be implemented; however, 
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Figure 3. Common procedure for a DEM simulation. a) Describes both scales and the cohesive beam 
model and its properties, including the beam’s length (Lμ), its radius (rμ), the Young’s Modulus (Eμ), 
and the Poisson ratio (νμ). b) Shows the actual sample and the assumptions made (an elastic material 
described by its Young’s Modulus (E

E
) and the Poisson ratio (ν

E
). c) Presents the automatic calibration 

algorithm used and its mathematical meaning, the minimization of the difference between simulated 
macro properties and the experimental ones (adapted from Reference 1).

Figure 2. Schematic representation of the most common 
cohesive bond models. Recreated from Reference 1.
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a default cohesive beam model is avail-
able, which is described by the beam’s 
properties: L

μ
, r

μ
, E

μ
, and ν

μ
 (Figure3a). 

The fundamental idea is to use the Euler-
Bernoulli theory of beams to express 
their mechanical behavior.

GranOO workbench also has an 
algorithm solution for the creation of 
the DEM domain. This step is impor-
tant as there are three properties for the 
geometric representation of the domain 
that should be assessed in order to have 
DEM models for continuous materials: 
the homogeneity, the isotropy, and the 
fineness. Further details can be found in 
André et al.19

Next, GranOO also presents an algo-
rithm for the automatic calibration of 
the microparameters. This algorithm is 
based on a number of quasistatic tests 
carried out in a model material and is 
fully described by André et al.9 This algo-
rithm minimizes the difference between 
the macro properties that arises from the 
DEM model and the experimental prop-
erties, as described in Figure 3c.

The last step is a dynamic calibration 
of the density of the discrete elements 
to ensure that the overall mass of the 

DEM domain equals 
the continuous body 
density, compensating 
the virtual porosity due 
to the spherical shape 
of the DEM elements.9 
Finally, a failure cri-
terion needs to be set 
for the DEM model to 
define the bond break-
age, thus the approach 
used on the GranOO 
workbench and the 
manual calibration procedure.

Failure criteria and manual calibration
The discrete nature of DEM makes 

it a good candidate for modeling the 
failure of materials. However, a failure 
model needs to be defined in order to 
have a qualitative comparison with the 
experimental results.1 There are two 
major classes of approaches to model a 
fracture within the DEM framework: a 
local description (in the cohesive beam) 
and a nonlocal one.

Both methodologies were compared, 
and the nonlocal description was found 
to better represent the behavior of the 
failure of brittle materials, both at a 

micro- and macroscale. This approach 
consists of using the virial stress and con-
verts it into the equivalent Cauchy stress 
tensor for each discrete element, taking 
into account its interaction with each 
neighbor.1 Finally, any of the common 
failure criteria, e.g., hydrostatic, von 
Mises, Tresca, Rankine, or Griffith, can 
be considered using the Cauchy stress 
tensor of each discrete element.

The present work uses the Rankine 
criterion for the results obtained via 
GranOO’s automatic calibration algo-
rithm. In addition, another approach 
was applied in the current work using 
an asymmetric Rankine criterion in both 
tension and compression defined as 
σ

1
 > σ

μ,t
 or σ

3
 < –σ

μ,c
 (considering the 

three principal stress σ
1
 > σ

2
 > σ

3
). 

However, as already described, both 
limits of microstress in tension (σ

μ,t
) and 

compression (σ
μ,c

) need to be calibrated, 
leading to a second group of results. 
Such limits were obtained by applying a 
fixed set of microparameter values and a 
manual calibration of σ

μ,t
 and σ

μ,c
 using 

the Brazilian and the uniaxial compres-
sion results, validated by a three-point 
bending test. All three experiments are 
commonly used for mechanical charac-
terization of refractories.

Experimental procedure and modeling 
assumptions

A 6 wt.% of calcium aluminate cement 
alumina castable (Table 1) was developed 
to assess DEM, following Alfred’s Packing 
Model (q = 0.26). The samples were 
molded as cylinders (40 mm in diameter 
and 40 mm in height) for the Brazilian 
test, cylinders (50 mm 3 50 mm) for the 
uniaxial compression test, and as bars 
(25 3 25 3 150 mm³) for the three-point 
bending test.

Figure 4. Experimental setup (a), (c), and (e), and DEM representation, (b), (d), and (f). 
The yellow discrete elements represent the set that will be displaced (black arrows) or 
clamped (black fixed support).
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 Table 1. Calcium aluminate cement (CAC) alumina castable  
	 composition characterized in the present work.
	 Raw Material	 Supplier	 wt.%

 Tabular alumina 6–3		  Almatis	 25

 Tabular alumina 3–1		  Almatis	 10

 Tabular alumina 1–0.5		  Almatis	 21

 Tabular alumina 0.6–0.2		  Almatis	 7

 Tabular alumina 0.2–0		  Almatis	 18

 Tabular alumina < 45 μm		  Almatis	 6

 Reactive alumina	 CT3000	 Almatis	 2

		  A1000SG	 Almatis	 5

 CAC	 Secar 71	 Imerys	 6

 Dispersant castament FS60		  BASF	 0.2

 Water			   4
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The experiments were conducted fol-
lowing ASTM C133 for the three-point 
bending test and the uniaxial compres-
sion measurements, using universal test-
ing systems MTS (MTS810, MTS Systems 
Corp) or Instron 5500R, respectively. The 
Brazilian test was carried out with a fixed 
displacement of 1.3 mm/min and parallel 
plates as supports. All samples were evalu-
ated after curing for 24 hours in a climate 
chamber with 80% of relative humidity 
and dried at 110°C for another 24 hours.

To reproduce the mechanical tests, 
constant displacements were fixed on 
positions of the DEM domain in a man-
ner to simulate the experimental condi-
tions (Figure 4). The explicit dynamic 
algorithm of GranOO automatically 
computes an optimal time step and the 
displacements are defined per incre-
ment. For the current work, the displace-
ment used was 2 3 10–9 m/iteration.

The material is considered homoge-
neous, isotropic, perfectly elastic, and 
brittle on the simulations. Such assump-
tions are considered reasonable when 
considering the experimental results of 
the mechanical tests.

Automatic calibration results
Each experimental test was reproduced 

in discrete element domains of the same 
dimensions of the real samples. The mac-
roparameters used were: Young’s modulus 
of 62.04 GPa measured with an optical 
extensometer (Instron AVE 2663-821) on 
a uniaxial compression test equipment 
(Instron 5500R), Poisson ratio of 0.25 
measured by impulse excitation technique 

(Sonelastic), and tensile failure strength of 
9.06 MPa (measured by the Brazilian test).

Brazilian test
This test yields a tensile stress state in 

the samples that generates cracks from 
the middle of the cross section to the 
loading contact of the machine.20 There 
are also shear failures in the regions 
close to the loading area. Figure 5 shows 

the crack propagation evolution and a 
picture of the experimental sample fail-
ure after the Brazilian test.

The crack propagation in the numeri-
cal model (Figure 5a-d) agrees qualitative-
ly with the proposed description of the 
tensile and shear failure mechanisms. 
In Figure 5e, the photograph shows the 
failure of an experimental sample that 
presented the expected crack pattern.

Three-point bending test
The three-point bending test results 

can be analyzed in Figure 6. In (a-d), the 
crack originates between the lower load-
ing rods, in the region where the tensile 
stress is the highest. This qualitative 
benchmark is important as it agrees with 
the results observed experimentally.

In Figure 6e, the comparison of 
the numerical and experimental force-
displacement curves shows a good 
agreement between the macro Young’s 
modulus for the linear regime of the 
experimental curves. The experimental 
results considered a correction factor 
due to the loading device deformation, 

Figure 5. (a-d) Results for the Brazilian test broken bounds density progress and (e) photo-
graph of the tested sample failure. 
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Figure 6. (a-d) Results for the three-point bending test broken bound density prog-
ress and (e) force-displacement curve for the simulation and the experiments.
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however, the precision of such experi-
ment could be improved with the aid of 
digital image correlation (DIC), which 
could provide a more accurate descrip-
tion of the actual behavior of the mate-
rial. Nevertheless, there is a difference 
of 16.2% regarding the loading failure, 
which could be related to the Rankine 
failure criterion used for the automatic 
calibrated simulations.

Uniaxial compression test
For this test, a homogeneous compres-

sion stress state that can yield two main 
types of failures was assumed: shear 
failure or columnar vertical failure. The 

model crack propa-
gation pattern did 
not yield insightful 
analyses, thus Figure 
7 only presents the 
stress-strain curve 
that was assessed  
with the aid of an 
optical extensometer.

The comparison 
between numerical 
and experimental 
results show a good 
agreement for the 
Young’s modulus, 
but the macrostress at 
failure is 29.0% lower 
for the DEM simula-

tion. This finding could be related to the 
model assumptions, the shear effects not 
captured on the model, or the Rankine 
criterion used to define the breakage of 
the cohesive beams.

Manual calibration results
The user defined criterion is defined by 

two distinct conditions, one for the maxi-
mum principal tensile stress, σ

1
 > σ

μ,t
, and 

another for the maximum compressive 
stress, σ

3
 < –σ

μ,c
. The limit values were 

calibrated using the Brazilian test, which 
yield a good agreement, and the uniaxial 
compression one, which showed the larg-

est difference in the experimental results. 
The calibrated criterion is validated with 
the three-point bending test. All the other 
microparameters were set equal to the 
values of the automatic calibration for the 
Brazilian test.

Calibration process of failure criterion
In order to calibrate this user defined 

criterion, multiple simulations with val-
ues of σ

μ,t
 ∈ [7 MPa, 14 MPa] and 

σ
μ,c

 ∈ [40 MPa, 210MPa] were carried 
out. The calibrated values were σ

μ,t
 = 13.5 

MPa and σ
μ,c

 = –200 MPa. Using them 
for the user defined criterion resulted in 
a macro failure load which was within an 
error of 9.7% for the Brazilian test and 
6.3% for the uniaxial compression one.

Three-point bending validation
The three-point bending DEM simula-

tion using the calibrated values for the 
limits of the failure criteria can be found 
in Figure 8b. The values for the automatic 
calibration are also presented, highlighting 
that the new failure criterion still describes 
the mechanical behavior in a similar way 
to DEM simulation obtained from the 
automatic calibration, with the advantage 
of reproducing the uniaxial compression 
results. The difference between the experi-
mental value of failure load is 2.27%, 
which is lower than the result for the 
automatic calibration, 16.2%.

Figure 7. Stress-strain curve for the simulation using the 
automatic calibration (AC) and the experiments.
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Figure 8. Results for the automatic and manual calibration and the average of the experimental results for the (a) Brazilian, 
(b) three-point bending, and (c) compression tests.
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Conclusions
In the present work, a first “plug 

and play” approach using GranOO and 
its automatic calibration algorithm for 
the microparameters yielded promis-
ing results, when considering the crack 
patterns and the Young’s modulus. 
However, the failure load errors were 
between 15–30%.

To address such inconsistency, a user 
defined failure criterion was investigated, 
and a manual calibration using the 
Brazilian and uniaxial compression test 
resulted in a model capable of reproduc-
ing the mechanical behavior of the three-
point bending test both qualitatively 
(crack path) and quantitively (Young’s 
modulus and load at failure).

The simulations were carried out on 
a regular desktop with a third genera-
tion Intel i5 – 3570, which shows the 
feasibility of such models for more com-
plex geometries. It should be noted that 
more advanced experimental setups, 
such as using strain gages for the other 
tests besides uniaxial compression and 
digital image correlation, could be of 
great interest in order to have more reli-
able data for the comparison with the 
numerical results.

Using DEM highlighted important 
challenges that should be overcome to 
make it a reality. Namely, the crack prop-
agation behavior for the compression test, 
the displacement values, and an approach 
to have a good match between the micro 
and macro properties only based on 
quantities with physical meanings.

Above all, the present work showed 
the potential of this tool to aid in mate-
rials design by modelling real micro-
structures of refractories (considering 
pores, particle size distribution, mor-
phology of the grains, different phases, 
and more). This modeling can lead to 
the assessment of the local strength of 
the material, especially when consider-
ing complex geometries and phenom-
ena, such as the drying of monolithic 
refractories, thermal shock, creep, and 
even bioinspired microstructures.
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