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Failure of photovoltaic modules frequently occurs 

as a result of degradation of their encapsulation 

material by destructive UV radiation. Transparent 

TiO2 and ZnO thin films could protect against 

these harmful wavelengths.

To stabilize the global temperature and 
mitigate climate change, the emission of 

anthropogenic greenhouse gases will have to be greatly 
reduced. To make it possible, the energy sector will 
have to transfer from fossil energy to environmentally 
friendly and carbon neutral sources.1

Solar energy exists in abundance. In roughly 90 minutes, the solar energy 
that reaches the earth equals the consumption of all human societies glob-
ally during one year.2 Only a fraction of this energy is captured today, and 
photovoltaic (PV) modules account for a marginal part of the electricity 
production worldwide, around 1.8% at the end of 2016. In recent years, 
however, the sector has been growing exponentially at a rapid rate, which 
means that the ability to increase efficiency and lifespan of PV modules is 
interesting from an energy perspective.3

PV modules consist of a number of interconnected PV-cells, embed-
ded in an encapsulant and a protective cover glass on the top. One of the 
issues facing the PV modules available today is the degradation of their 
encapsulant, which most often consists of ethylene vinyl acetate (EVA). 
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It is damaged by UV radiation with 
wavelengths below 350 nm. The UV 
radiation makes the encapsulant 
degrade and acquire a yellow and even-
tually brown hue, which reduces the 
efficiency of the PV modules.4,5

Developing the cover glass has 
become increasingly important as 
the share of cost for the cover glass 
is high.6 The cover glass7,8 has several 
important functionalities, e.g., pro-
viding optimal light capture, rigidity, 
mechanical protection, and chemi-
cal protection. Optimal light capture 
depends on the optical properties of 
the cover glass, such as absorption 
and reflection. The latter comprises 
the largest part, about 8% for a typical 
flat glass, which can be minimized by 
employing antireflective coatings.9

The optical properties of flat glass10,11 
are affected by the presence of iron 
impurities in the glass melt as the iron 
in the glass increases the absorption of 
light in the glass in the UV-Vis region 
of the electromagnetic spectrum. Iron 
can be used as a colorant of glass, giving 
the glass a green tint.12 In some cases, 
this is a positive feature, e.g., when 
UV-protection is needed in beer and 
champagne bottles.13 In other cases, as 
with PV-modules where transparency is 
coveted,14 the iron in the glass is consid-
ered as a contaminant. In these cases, 

low-iron glass, where 
measures have been taken 
to reduce the iron in the 
glass, is frequently used.

In the case of cover 
glass for PV modules, 
the trend has been to use 
low-iron glass to increase transmitted 
light.8 A drawback to this type of glass 
is that a larger amount of high-energy 
UV radiation is transmitted, which is 
harmful to the encapsulation material 
EVA that is used in most PV modules 
today.15 When UV radiation below 
350 nm reaches the PV module, both 
the semiconductor material16 and the 
laminate5,17 are degraded. The degrada-
tion of the EVA laminate is the major 
reason for the annual degradation of 
0.6–2.5%.17,18 As a result of the UV 
radiation, EVA degrades and loses some 
of its high transmissivity as it gets a yel-
low/brown hue and eventually starts to 
delaminate, letting moisture into the PV 
modules, which leads to failure of the 
PV module.5

In the current study we have investi-
gated float glass coated with ZnO and 

TiO
2
 thin films by spray pyrolysis of 

organometallic compounds of zinc and 
titanium (Table 1 and 2).

Results
Glass coated with ZnO showed a 

trend to shift the UV-cutoff to longer 
wavelength as well as lowering the opti-
cal band gap of the coated glass sample. 
The major reason for this is likely to 
be caused by tetrahedrally coordinated 
Fe3+ having an absorption peak at about 
380 nm but also being sensitized by the 
presence of the ZnO coating. Such a 
trend is less clear for the samples coated 
with TiO

2
.

Both sample series showed a significant 
increase in total reflection for the normal 
incident light due to the higher refrac-
tive index of the thin film oxide coatings 
(Figure 1a). However, the increase in 
diffuse reflection was significantly lower, 

Figure 1. (a) Total reflectance and (b) diffuse reflectance of thin film-coated glass samples. 

  Table 2. Sample series (amount of solution sprayed in grams)
 Sample ID 1 2 3 4 5 6

 Zn solution (g) – 12 16 24 32 40

 Ti solution (g) 2 4 6 8 12 18

  Table 1. Composition of precursor solutions
 Isopropanol (ml) Zn (acac)2 (g) Ti-isopropoxide (ml) Wt% metalorganic  Mol% metalorganic 
    complex complex

  Zn solution 150 0.62 – 0.5 0.12

  Ti solution 100 – 2.5 3 0.64
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less than 4% (Figure 1b); this is an advan-
tage for application on the cover glass of 
PV-modules where most of the incoming 
light will be of diffuse character.

The coated glass showed a potential 
improvement in life expectancy of PV 
modules through a decrease of destruc-
tive UV-radiation transmission to the 
encapsulant up to a relative 36.0% and 
54.3% for TiO

2
 and ZnO coatings, 

respectively. Additionally, although the 
coated samples have shown a relative 
transmission reduction at the useful 
spectral region up to 21.8 and 12.3% for 
TiO

2
 and ZnO coatings, respectively, the 

transmissivity degradation of the encap-
sulant should be effectively prevented.

For ZnO it is evident that the Fe3+ 
content plays an important role for 
the UV-blocking activity, which would 
be a tradeoff between limiting the 
glass’s iron content while still having 
enough UV protection. Furthermore, 
ZnO-coated glass also showed potential 
regarding down conversion of UV light 
to visible wavelength with peaks at 377 
nm and 640 nm. Thus, ZnO is feasible 
to be investigated for application as 
coating to cover glasses of PV modules 
but must be optimized as there is a trad-
eoff between UV-blocking and transmit-
tance in the useful spectral region for 
PV modules (Table 3).

Implications for PV modules
We have shown that UV blocking can 

be achieved with the cost of reducing the 
transmittance. This opens the possibility 
for maintaining UV protection and gain-
ing useful energy for the PV by lowering 
the Fe

2
O

3
 content in the glass without 

compromising the service lifetime of 
the PV module. The energy balance for 
transmitted and useful light for PV mod-
ules will be possible to model and opti-
mize in future studies based on informa-
tion as, for instance, possible limits for 
Fe

2
O

3
 content, cost, and efficiency.

Furthermore, photon energy down-
conversion, i.e., photoluminescence, can 
be an advantage and a route to utilizing 
UV light while still not exposing the PV 
cells to UV light. As for disadvantages, 
we can list higher reflectivity and scat-
tering. If the surface coating is properly 
structured, it might not be a serious 
disadvantage or perhaps even an advan-
tage,19 as the diffused light contains in 
fact more photons than the direct light 
of normal incidence. This is especially 
valid for façade-applied PV modules 
where there is in fact very little solar 
radiation of normal incidence.

Another parameter not previously 
mentioned is the factor of heat. A pho-
ton’s energy that is not converted into 
electricity is transformed into heat that 
in fact lowers the efficiency of the PV 

module. Beyond the scope of the cur-
rent paper we would also like to draw 
the attention to making crystalline ZnO 
or TiO

2
 coatings having similar benefi-

cial properties but with the added value 
of photocatalysis20,21 and hydrophilic 
behavior with UV exposure,22,23 thereby 
giving PV-covered glasses reduced 
maintenance. Doped ZnO also offers 
another dimension as a transparent 
conductive coating offering possible IR 
reflection for wavelengths nonconvert-
ible to energy for PV modules.8
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