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By Richard Padbury

To keep pace with new demands in the materials sci-

ence industry, scientists and engineers will need to 

speed up materials discovery and commercialization. 

Data-driven methods can augment existing experimental 

methods to accelerate the process.

The materials science industry is 
expected to grow significantly over 

the coming years. This growth, in itself, is not 
surprising because materials are at the center 
of every major challenge, from providing solu-
tions to climate change and environmental 
issues to enabling developments in agriculture, 
healthcare, energy production, and transpor-
tation—even the way we live and interact as a 
society is, and will be, affected by materials.1

In the same way that scientists discovered thermodynamics, 
electricity, the laser, and transistor (discoveries that fueled the 
first three industrial revolutions), today’s scientists will need to 
speed up the development and discovery of innovative materials 
designed to deliver new functionalities to meet future demands.2 
For example, to build a clean energy future, we will need to both 
develop novel materials to create more efficient solar panels, 
wind turbines, and energy storage devices and develop materi-
als that can scrub the air of existing pollutants. We also need 
to replace materials that are subject to supply disruptions due 
to finite resources of rare-earth minerals and feedstock derived 
from fossil fuels. Furthermore, to support a sustainable future, 
the toxicity and recyclability of new materials must also be taken 
into consideration.

There is a risk the current pace of development will not keep 
up with these new demands. For the most pressing challenges fac-
ing society, we cannot afford to wait 20 years or more to develop 
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the necessary solutions (the average time 
it currently takes for novel materials to 
reach commercial maturity).3 The task is 
now upon us to develop the next mate-
rials breakthroughs to support a more 
secure and prosperous future.

The evolution of materials
Known materials available today 

were developed over many thousands 
of years as humans advanced from the 
early stages of alchemy through the evo-
lutionary periods of the stone, bronze, 
and iron ages. At each period, curiosity 
fueled the effort to develop new materi-
als with the aim of filling gaps in mate-
rial property spaces to advance new 
applications and processes.

The science involved in these discov-
eries include

• development of materials with new 
compositions, such as the development 
of binary and ternary ceramics;

• manipulation of microstructure and 
thermomechanical processing to control 
the distribution of strengthening phases 
and defects;

• discovery of nanomaterials, which 
expanded our historical view of materi-
als to previously unattainable property 
spaces; and

• creation of novel material architec-
tures, such as hybrids and composites, 
often inspired by nature, to achieve 
multifunctional properties.

The classifications of materials 
obtained from these developments—from 
metals and ceramics to polymers and com-
posites—form discrete clusters in property 
space due to their distinctive atomic struc-
tures and bond types that underpin their 
unique properties (Figure 1).4 If we take 
a moment to look around ourselves, it is 
clear these essential materials surround us 
in our everyday lives.

However, the common denominator 
under all developments is the significant 
time it has taken to discover, develop, 
and commercialize them. Just why does 

it take so long to develop novel materi-
als? As we will explore next, the answer 
is concealed in the complex, multiple 
length scale structure of materials.

The multiple length scale challenge
The materials science framework deals 

with the understanding of process-struc-
ture-property (PSP) linkages, from which 
multiple, intertwined relationships exist 
(Figure 2).5 Materials scientists and engi-
neers leverage their intuition and expert 
knowledge to investigate these multi-
faceted relationships and develop new 
material chemistries and properties.

A key challenge for materials sci-
entists and engineers is formulating 
an understanding of the hierarchical 
nature of materials because the under-
lying structures form over multiple 
time and length scales.6 At the atomic 
scale, interactions between pairs of ele-
ments inform the short-range order of 
multiple elements and molecules into 
lattice structures or repeat units. When 

these repeat units come together, they 
produce unique microstructures over 
increasing length scales that correspond 
to a material’s macroscopic properties 
and morphology, at scales we can sense 
and use their characteristics.

Going back to the atomic scale, there 
is a seemingly infinite number of ways 
to arrange and rearrange atoms and 
molecules into new lattice or repeat unit 
structures, resulting in a diverse universe 
of materials with unique mechanical, 
optical, dielectric, and conductive prop-
erties.7 Subsequently, countless materials 
remain undiscovered as it would require 
astronomical timescales and significant 
resources to test a composition and 
repeat before discovering a successful 
result.8 Furthermore, when scientists do 
isolate a promising composition, there 
are many steps along the road to com-
mercialization, each acting like a series 
of resistances in an electrical circuit, that 
must be overcome to progress a new 
technology forward—again, these steps 

Figure 1. Ashby plot of strength vs. density highlighting the many categories of materials 
that form the materials universe. 
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Capsule summary
GROWING DEMAND

The engineered materials industry is expected 

to grow significantly over the coming years. 

But there is a risk the current pace of materi-

als development will not keep up with these 

new demands.  

ACCELERATED DISCOVERY

Researchers use data-driven methods for mate-

rials discovery and testing to augment existing 

experimental methods to greatly accelerate the 

commercialization process.

INDUSTRY OPPORTUNITIES

Companies are now beginning to use the data-

science knowledge generated by mainstream 

academic and government research to tackle 

everyday challenges across their enterprises. 
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introduce time and cost to the develop-
ment pathway.

To overcome this challenge, scientists 
and engineers leverage tools that can 
improve the economics of designing 
experiments to develop new materials. 
For example, statistical methods can 
tune in to key variables that control 
a process or the evolution of material 

microstructure to achieve desirable 
properties. However, statistical methods, 
such as those developed by George Box, 
Donald Behnken, and Genichi Taguchi, 
are ideally constrained to a small subset 
of process-structure or structure-property 
linkages. Therefore, it is not possible to 
survey all relationships, across multiple 
length scales and PSP linkages, that 

may have varying degrees of influence 
on material performance.6 This limita-
tion can lead to an undershoot in target 
properties, if key variables or relation-
ships are unintentionally missed by 
experimental designs, or greatly limit the 
scope of an investigation. Therefore, in 
the same way there are many more new 
materials to discover, it is also likely hid-
den properties exist in known materials 
that have simply not been tested before. 
One example of a hidden property is 
the development of lithium iron phos-
phate for lithium-ion battery cathodes. 
The material was first synthesized in the 
1930s but was not identified as a suit-
able cathode material until 66 years later 
in 1996.8

Several factors beyond the technical 
challenges contribute to the long period 
between materials discovery and com-
mercialization. These factors range from 
misaligned market needs with the value 
proposition of a new material to the way 
we store, share, and report experimental 
data (often it is not easily accessible).3 
For example, identical experiments 
may be conducted in different parts of 
an organization, with scientists in the 
organization unable to check which 
experiments have been run. In tandem, 
the rigorous approval processes in highly 
regulated industries—implemented for 
good reason—increase the time and cost 
to validate new materials and processes 
for specific applications. Consequently, 
once a material is successfully com-
mercialized, it becomes deeply rooted 
within industry,9 such as the widespread 
use of silicon and aluminum oxide 
for semiconductor applications or the 
use of hydroxyapatite and Bioglass for 
medical devices. However, as legacy 
materials approach their limits and pres-
sure on finite resources increases, new 
techniques are urgently needed that 
can speed up development and further 
expand our horizons into untapped 
regions of materials property space.

A new paradigm
The materials science field is enter-

ing a paradigm shift; the currently 
accepted methods of discovering materi-
als are not irrelevant nor are they being 
replaced, but they are being augmented 
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Figure 2. Processing-structure-property relationships that govern applied materials 
science and engineering. Adapted from A. Agrawal et al.5 

What is data science?
Adapted from Rangaswamy et al.,11 Elsevier, 
2018

Data science envelops many overlapping sub-
fields, from the well-known disciplines of knowl-
edge discovery in databases (KDD), data mining, 
and statistics to the emerging fields of machine 
learning (ML) and artificial intelligence (AI).

The challenge with this picture is that it can 
be difficult to precisely explain the differences 
between these overlapping disciplines, which is 
key to understanding how to use each appro-
priately. After closer inspection, many subfields 
borrow the same methods, for instance, linear 
regression is as applicable in statistics as it is in 
ML. Therefore, explanations differentiating each 
discipline may be captured in cultural differenc-
es depending on individual schools of thought.

Without speculation, what has definitively 
occurred over the last few decades is an 
increase in computing power; an improvement 
in the ability to store and transfer data due to 
technological advances, such as the internet; 
and significantly increased data volumes, even 
in materials science. These improvements have 
prompted the use of more advanced methods 
of analyzing data, beyond simple linear models, 
and have led to cutting-edge forms of prediction 
and automation.

These advanced methods still require signifi-
cant input from their human counterparts and 
still need to be systematically programmed so 
they can be deployed. Notably, no method can 
currently create, innovate, reason, apply logic, 
ethics, and morals or provide curiosity in the 
same way that humans can to make informed 
decisions. Therefore, it is reasoned that true 
forms of AI are still far away from being realized.

Nonetheless, what is possible through a com-
mon goal of learning from data is the extrac-
tion of powerful insights to develop actionable 
solutions. So the data science toolbox should 
be considered an assistant that augments our 
human ability to solve problems. ■
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by techniques acquired from the cross-
fertilization of materials science with 
other scientific disciplines.5 This new 
way of thinking builds on the existing 
materials data and knowledge generated 
over many centuries and also includes 
methods of overcoming limited access to 
the data.

The emerging developments begin 
with the advent of the computer in 
the early 1950s, when more complex 
challenges could be solved by methods 
derived from quantum mechanics, such 
as density functional theory (DFT). 
As automation and computing power 
improved, increased calculation speeds 
led to the rise of high throughput 
(HT) simulation techniques.9,10 Today, 
methods such as HT-DFT are capable 
of calculating the thermodynamic and 
electronic properties of tens to hundreds 
of thousands of known or hypotheti-
cal material structures. These methods 
resulted in a data explosion, and as the 

volume and variety of data accelerated, 
analyses became too big and complex 
for direct involvement by researchers.9 
Subsequently, data-driven methods from 
the computer and data science fields 
(Sidebar: “What is data science?)11 were 
employed to help analyze the streams 
of data coming out of computational 
experiments. While state-of-the-art 
HT-DFT can greatly improve the effi-
ciency of developing new materials, cer-
tain restrictions exist, from limitations 
in computing resources to the size of the 
material system that can be calculated 
and the types of properties that can be 
accurately modeled.12 Furthermore, there 
are still many material structures left to 
explore, and it remains impractical, even 
for computational techniques, to explore 
them all.

Over the last 20 years, the use of 
data-driven methods expanded to help 
tackle the challenge of discovering and 
developing new materials, leading to the 

creation of a new field aptly known as 
Materials Informatics (MI).

MI underpins the acquisition and stor-
age of materials data, the development of 
surrogate models to make rapid property 
predictions or gain new physical insights 
from materials data, and experimental 
confirmations of new materials with the 
core objective of accelerating materials 
discovery and development.

The MI framework leverages a wider 
range of data-driven algorithms (Sidebar: 
“Introduction to algorithms”),13 using 
their ability to digest large volumes of 
complex data and resulting prediction 
accuracy, which enables researchers to 
explore many more PSP linkages and 
multiscale relationships than previously 
possible. Interestingly, these data-driven 
techniques are not new, as many have 
existed since the first computers were 
developed.10 Furthermore, certain 
approaches have been around for many 
centuries, such as Bayesian and Gaussian 

Introduction to algorithms
Adapted from James et al.,13 Springer, 2014

An algorithm is a step-by-step procedure that 
takes inputs and produces an output based on a 
set of instructions. The coefficients, or weight-
ing of each input, are estimated by “learning” 
from data generated by observations or an ex-
periment. Once the coefficients are estimated, 
the algorithm is known as a model and can be 
used to predict new outputs on data the model 
has not yet “seen.”

Model accuracy is assessed by measuring the 
quality of fit or cross-validating with data from 
the training dataset that is left out of the model 
training step. An optimal model will generalize 
well to new data, resulting in accurate predic-
tions. However, the model requires a trade-off 
between bias (how well the model matches the 
training data) and variance (how well the model 
predicts output of new data). A model that un-
derfits tends to have high bias–low variance as 
the model is less flexible to capturing trends in 
the training data. Conversely, overfitting leads 
to models that have low bias–high variance as 
the model is too flexible and fits the training 
data too closely by including noise or insignifi-
cant variables.

This trade-off leads to an important concept 
known as the curse of dimensionality. As the 
number of variables (or dimensions) increases, 

each having a range of possible values, the 
number of combinations of values exponentially 
increases. Therefore, an algorithm needs to 
be trained on samples with enough combina-
tions of values to learn sufficient relationships 
and patterns in the data to avoid overfitting. In 
materials science, this requirement means col-
lecting more samples, which can be costly and 
thus has important implications on when to use 
one technique over another.

There are many different types of algorithm, but 
many generally follow an inverse relationship 
between interpretability and flexibility, providing 
researchers with a wealth of techniques to 
analyze a wide variety of different datasets. 
Typically, if the goal is to understand the 

precise relationship between variables and a 
corresponding output, interpretable and rigid 
models, such as linear regression, are most 
suited to this type of problem. These models 
are particularly useful if the goal is to prove a 
hypothesis. If prediction accuracy is the goal 
or data has high-dimensionality, more flexible 
algorithms can be leveraged to include more 
variables and observations in the dataset or 
reduce dimensional complexity with minimal 
loss of information.

It is important to note that a single algorithm 
will not work for all possible datasets, which 
further signifies the importance of using a 
wider toolset when designing experiments and 
analyzing materials data. ■

http://www.ceramics.org


www.ceramics.org   |   American Ceramic Society Bulletin, Vol. 99, No. 628

Cover story—Data-driven approaches to materials and process challenges

processes based on the 100-year-old math-
ematical formulations of Thomas Bayes 
and Carl Friedrich Gauss, respectively.

Numerous industries have lever-
aged advanced analytics for decades 
to support decision-making, includ-
ing market, social media, financial, 
manufacturing, and distribution data.10 
Moreover, the closely related pharma-
ceutical industry pioneered the use of 
data-driven techniques for drug dis-
covery and development as early as the 
1970s, creating the parallel field of bio-
informatics. Until recently, the mate-
rials science industry trailed behind 
these businesses, but we are now begin-
ning to witness the disruptive potential 
of predictive modelling and discovery-
based data mining techniques, in 
combination with computational and 
physical experiments, to decrease the 
materials development timeframe.

Predictive modeling
With a critical volume of historical 

materials data, the underlying character-
istics that best describe material behavior 
can be “learned” by algorithms and used 
to train surrogate models that can make 
accurate forecasts on new data. Such 
learning methods establish a mapping 
between a suitable representation of a 
material, called the material’s finger-
print, and any of its properties from 
existing data (Figure 3).14

The fingerprint is composed of an 
optimal number of descriptors (or 
variables) that the model can use to 
learn what a material is and accurately 
predict its properties. In essence, the 
material fingerprint is the DNA code 

and descriptors are the individual 
“genes” that connect the empirical or 
fundamental characteristics of a mate-
rial (e.g., elemental composition) to 
its macroscopic properties.15 Once a 
suitable number of descriptors and 
quantities are obtained (to avoid over-
fitting and high variance, see Sidebar: 
“Introduction to algorithms”) for a 
range of materials from a database, they 
can be mapped to their corresponding 
output property data by finding the best 
fit to the observations resulting in a 
predictive model.

Once a model is validated, the model 
predictions are instantaneous, which 
makes it possible to forecast the proper-
ties of existing, new, or hypothetical 
material compositions, purely based on 
past data, prior to performing expensive 
computations or physical experiments. 
Predictive models are highly suited for 
interpolation, i.e., searching within an 
existing database. Extrapolation, i.e., 
leaping from one composition space 
to another or expanding the original 
database, is also possible but can lead 
to larger errors and uncertainties. 
However, methods that promote easy 
assessment of model uncertainties can 
be used to overcome this issue by sup-
porting the decision as to which set of 
experiments should be performed next.16 
Subsequently, once new data is collected 
and confirmed by computational or 
physical experiment, it can be fed back 
into the model to improve accuracy and 
iteratively narrow in on new candidates 
for a specific application. This explana-
tion of predictive modeling demon-

strates that MI is not intended to replace 
experiments (or the scientist) but rather 
help arrive at a desired result in a much 
shorter timeframe.

While predictive models are attractive 
for identifying and developing new mate-
rials, there are other useful tools avail-
able in the advanced analytics toolbox 
that can identify structure, patterns, and 
relationships in complex input data that 
do not necessarily require the associated 
outputs. These tools become highly ben-
eficial when a systematic search for each 
significant variable of a process or micro-
structure evolution mechanism is com-
putationally or experimentally expensive 
because they involve many variables.6

For example, dimensionality reduc-
tion techniques can transform vast arrays 
of input data into a reduced, easily 
visualized space—typically two or three 
dimensions—and identify relationships 
or patterns with minimal loss of infor-
mation.6 With this technique, what may 
have once required a large collection of 
graphs can now be summarized in a sin-
gle chart representing the entire process.

While dimensionality reduction and 
clustering techniques are not predictive 
tools, they can support predictive model-
ing with complex data in which the num-
ber of observational data is too low or the 
number of variables needs to be reduced 
to improve the efficiency of an analysis.

Practical applications of MI
One of the most compelling oppor-

tunities offered by MI is the potential 
to accelerate the discovery of new 
materials. As constituent elements of a 
material increase, the number of pos-
sible combinations begin to explode. 
For example, a ternary compound of 
the form A

x
B

y
C

z
 (where x, y, and z are 

stoichiometric quantities) corresponds 
to billions of possible inorganic materi-
als that increases as more constituents 
are included.7 However, not all of these 
materials will be stable and finding those 
that are stable would take an unfathom-
able amount of time.

To calculate material properties, 
computational methods require crystal 
structure information, which is not read-
ily available nor easy to calculate for all 
possible candidates across the vast com-
positional space.
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Figure 3. Predictive modeling framework that leverages existing materials data to train 
models to predict properties of new materials. Adapted from Ramprasad et al.14 
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To overcome this challenge, research-
ers trained a surrogate model on a small 
subset of existing DFT data from the 
Inorganic Crystal Structure Database 
(ICSD) to predict the formation energy 
of new materials solely based on their 
stoichiometric composition. The model 
was subsequently used to instantly scan 
1.6 million ternary compounds of which 
4,500 previously unknown materials 
were expected to be stable based on their 
predicted formation energies.12

While the output is astonishing, the 
approach is certainly not trivial and 
demonstrates the potential to leverage 
data-driven techniques to discover new 
materials that could have important 
implications on replacing critical materi-
als that are approaching their limitations 
or subject to supply disruptions.

Data-driven approaches also are used 
to explore the likelihood of achieving a 
set of target properties given a series of 
opposing constraints, such as materials 
that are difficult to secure due to pres-
sure from finite resources. For example, 
a study of more than 2,800 compounds 
identified as being either abundant or 
scarce was used to compare the charge/
discharge voltages and specific energies 
(key performance properties for batter-
ies) against their relative abundances. 
Approximately 500 materials with known 
voltages and specific energies were used 
to train a data-driven model (using mate-
rial chemical formula as model input) to 
predict the properties of the 2,800 can-
didates. Subsequently, Figure 4 visualizes 
the model predictions and indicates the 
density of candidates that may be found 
at a particular region of property space.

It is clear the highest density of 
candidates are clustered around a spe-
cific energy of 500 Wh/kg and average 
voltage of 2.5–3V. However, the study 
reveals scarce materials offer a greater 
likelihood of finding candidates with 
higher specific energy while abundant 
materials offer the widest range of possi-
ble voltages. The approach demonstrates 
how data-driven algorithms can be used 
to assess simultaneously the trade-off 
between performance and multiple con-
straints, such as resource considerations 
over a vast composition space at ground-
breaking speeds.17

Getting started—Important  
considerations

Data-driven methods for materials 
holds a great deal of promise, but it is 
important to note they can lead to the 
development of “fools-gold” as they are 
only as good as the data they consume.18 
For example, equivalent materials 
properties may be measured differently 
depending on the data source, and these 
contextual differences, among other hid-
den variables, can introduce errors into 
analyses, thus limiting their accuracy. 
Furthermore, materials data is diverse 
(e.g., numerical, text, image, graphical, 
spectra) and still sparsely populated rela-
tive to other industries.

These challenges have spearheaded 
a global effort at academic and govern-
ment levels to develop techniques and 
methodologies that continue to generate 
large quantities of high-fidelity materials 
property data and develop structurally 
diverse materials databases that can be 
interrogated by advanced algorithms.8 
This effort is achieved by means of both 
HT computational techniques as well 
as the emerging use of HT experimen-
tal techniques based on combinatorial 
materials synthesis and rapid screening 
via automated instrumentation.9 These 
techniques are similar to the combinato-
rial chemistry techniques used for drug 
discovery in the pharmaceutical industry.

Researchers are also developing ways 
of unifying global materials databases to 
explore patterns across separate databas-
es that cover different aspects of materi-
als science (i.e., databases of crystal struc-

tures and physical properties).5,10,19 Such 
a change of scale requires new data man-
agement methodologies to certify the 
validity of materials data and to ensure it 
can be found, accessed, and shared in a 
commonly accepted format.

At the enterprise level, most compa-
nies (big or small) have historical data 
from a wide variety of sources, including 
supplier and customer data. However, 
accessing sufficient datasets remains 
a challenge within each organization, 
independent of size, as data sources may 
not be easily accessed or may be stored 
in various formats, from tracking data 
in spread sheets and, in some cases, by 
hand in notebooks.

For many organizations, simply apply-
ing advanced analytics to data via open-
source or even commercial software will 
not work as model development must 
be based on the goals of the analysis, the 
solutions being sought, and the available 
data. So they require access to data work-
flows that can inspect, clean, and store 
data in a structured format; scalable 
and flexible analytics capabilities that 
include the correct hardware, software, 
security protocols, and other relevant 
data infrastructures; upfront invest-
ment in equipment, including materials 
characterization or high-performance 
computing capabilities; and skilled work-
ers, especially materials scientists, data 
scientists, and data engineers, which can 
be expensive.

Organizations that attempt to build 
these new capabilities from the ground 
up may face steep learning curves result-

Figure 4. Design space visualization plots for abundant and scarce cathode materials 
based on the summed probability density, which indicates how easy it is to find 
candidates in a particular property space region. 
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ing in failure or a much longer-term 
return on investment due to the inher-
ent challenges of acquiring, structuring, 
and analyzing data.

Opportunity for industry
Mainstream developments in MI have 

primarily been led by the academic and 
government communities. However, suf-
ficient progress was achieved over the 
last few years to attract the attention of 
industry. Companies are now beginning 
to practice the principles of MI and 
apply the new knowledge generated by 
mainstream academic and government 
research to everyday challenges across 
their enterprises.20 Subsequently, a num-
ber of emerging industry–university– 
government ecosystems are evolving 
around the world that are composed of 
major government research institutes, 
multinational companies, and early- to 
late-stage start-ups. Together, these 
organizations are pioneering the use of 
MI across the materials development 
lifecycle that not only involves discovery 
and design but also includes down-
stream process optimization and after 
deployment in the field, with a growing 
number of commercial successes.

While these developments are excit-
ing examples of transformation in the 
materials science industry, the most excit-
ing prospect is that materials scientists 
and engineers can now leverage a much 
wider range of data-driven tools within 
the familiar experimental framework to 
solve a variety of challenges, from materi-
als development to process optimization, 
that may have been unsolvable or too 
complex to address until now. While 
the analytics tools have been available 
for many decades, the right technologi-
cal advances (from increased computing 
power to accelerating data volumes) and 
materials industry needs have converged 
at the right point in time to take advan-
tage of these powerful methods today and 
support the developments of the future.

As technologies continue to improve, 
new methods will constantly evolve at 
an ever-increasing pace, which will posi-
tively impact materials challenges further 
down the line. An imperative is now 
upon us to stay on top of these emerging 

developments and to find our unique 
place amongst the growing materials 
informatics ecosystem.
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