TECHNICAL PROGRAM The leading forum addressing structure, properties, processing and performance across the materials community. Technical Meeting and Exhibition # VIS&T18 MATERIALS SCIENCE & TECHNOLOGY OCTOBER 14 - 18, 2018 | GREATER COLUMBUS CONVENTION CENTER | COLUMBUS, OHIO, USA # MATSCITECH.ORG STATEMENT OF THE STATEME | PROGRAM HIGHLIGHTS | | | | | | | | |--|-----|---------|--------------------|-----|--|--|--| | MS&T18 Plenary Session | TUE | AM | Union
Station B | 55 | | | | | MS&T18 Poster Session | TUE | AM & PM | Hall A | 128 | | | | | ACerS Basic Science Division Robert B. Sosman Lecture | WED | PM | A111/112 | 99 | | | | | ACerS Frontiers of Science and Society - Rustum Roy Lecture | TUE | PM | A111/112 | 56 | | | | | ACerS GOMD Alfred R. Cooper Award Session | TUE | PM | A115 | 63 | | | | | ACerS Richard M. Fulrath Award Symposium | MON | PM | A111/112 | 35 | | | | | ACerS/EPDC: Arthur L. Friedberg Ceramic Engineering Tutorial and Lecture | MON | AM | A111/112 | 15 | | | | | Alpha Sigma Mu Lecture | MON | PM | C170 | 42 | | | | | ASM Edward DeMille Campbell Memorial Lecture | TUE | PM | C170 | 61 | | | | StartTime PM Room A212 Page 64 Date TUE #### **ADDITIVE MANUFACTURING** **ASM-IMS Henry Clifton Sorby Lecture** #### **Additive Manufacturing of Composites and Complex Materials III** | Metals Additive Manufacturing | MON | AM | A222 | 15 | |---|-----|----|------|----| | Additive Manufacturing of Metallic Composites | MON | PM | A222 | 36 | | Ceramic Additive Manufacturing | TUE | PM | A222 | 56 | | Techniques and Applications | WED | AM | A222 | 75 | | Polymer Additive Manufacturing | WED | PM | A222 | 99 | #### Additive Manufacturing of Metals: Microstructure and Material Properties | AM Process Parameter - Effects | MON | AM | A215 | 16 | |---|-----|----|------|-----| | AM Stainless Steels - Microstructure and Properties | MON | PM | A215 | 36 | | Properties of AM Components | MON | PM | A214 | 37 | | Biomedical and Functional AM Materials | TUE | PM | A214 | 57 | | Characterization Methods for AM | TUE | PM | A215 | 57 | | AM Superalloys - Microstructure and Properties | WED | AM | A214 | 75 | | Microstructure Control in AM Components | WED | AM | A215 | 76 | | Microstructure and Properties of AM Ti-64 Alloy | WED | PM | A214 | 99 | | Modeling and Alloy Development for AM | WED | PM | A215 | 100 | | Jet Binder and Wire-based AM Processes | THU | AM | A214 | 118 | | Performance of AM Materials | THU | AM | A215 | 118 | | | Date | StartTime | Room | Page | |---|----------------|--------------|--------|------| | Additive Manufacturing of Metals: Post Processing | | | | | | Heat Treatment I | TUE | PM | A216 | 56 | | Heat Treatment II | WED | AM | A216 | 76 | | Surface Post Processing I/ Heat Treatment III | WED | PM | A216 | 100 | | Post Processing | THU | AM | A216 | 119 | | Additive Manufacturing: In-situ Process Monitoring and Contro | ol | | | | | Session I | MON | AM | A221 | 16 | | Session II | MON | PM | A221 | 37 | | Session III | TUE | PM | A221 | 58 | | Additive Manufacturing: Modeling and Simulation of AM Mate | rials, Process | es, and Mech | nanics | | | AM Modeling - Session I | MON | AM | A223 | 17 | | AM Modeling - Session II | MON | PM | A223 | 37 | | AM Modeling - Session III | TUE | PM | A223 | 58 | | AM Modeling - Session IV | WED | AM | A223 | 77 | | Additive Manufacturing: Powder Characterization and Recyclin | าg | | | | | Powder Characterization | MON | AM | A224 | 17 | | Role of Powder Characteristics on Additive Manufacturability | MON | PM | A224 | 38 | | Recyclability of Powders and Characterization | TUE | PM | A224 | 59 | | Multi-scale Simulation and Experimental Validation of Additive
Academia, Solution Providers and Industry on Its Intake, Mark | | - | | | | Multiscale Simulation in Additive Manufacturing and 3DSIM-
ANSYS AM Capabilities Demonstration | WED | AM | A221 | 92 | | Multiscale Simulation in Additive Manufacturing and AM Panel Discussion | WED | PM | A221 | 113 | | OMATERIALS | | | | | | Next Generation Biomaterials | | | | | | Biomaterials I | MON | AM | D182 | 30 | | Biomaterials II | MON | PM | D182 | 50 | | Biomaterials III | TUE | PM | D182 | 69 | | Biomaterials IV | WED | AM | D182 | 93 | | Biomaterials V | WED | PM | D182 | 114 | | Biomaterial VI | THU | AM | D182 | 125 | # MATSCITECH.ORG STATEMENT OF THE STATEME | Surface Properties of Biomaterials | T | I | | | |---|---------------|--------------|---------------|---------| | Biomedical Device Surface Properties and Biological Interactions | MON | AM | D281 | 33 | | Biomedical Devices for Tissue Engineering and Regenerative Medicine | MON | PM | D281 | 54 | | RAMIC AND GLASS MATERIALS | | | | | | CerS Robert B. Sosman Award Symposium: Lead-free Piezoo | eramics: Fro | m Local Stru | cture to Appl | ication | | Session I | WED | AM | A111/112 | 75 | | Session II | WED | PM | A111/112 | 99 | | eramic and Crystal Materials for Optics and Photonics | | | | | | Session I | MON | AM | A113 | 21 | | Session II | MON | PM | A113 | 42 | | Session III | TUE | PM | A113 | 61 | | eramics and Glasses Simulations and Informatics | | | | | | Machine Learning and Materials Design | WED | AM | A113 | 80 | | Multiscale Modeling of Materials | WED | PM | A113 | 104 | | Atomistic Simulations | THU | AM | A113 | 121 | | co-Friendly and Sustainable Ceramics | | | | | | Innovative Binders and Cement Blends | WED | AM | A114 | 84 | | Novel Waste-derived Cellular Materials | WED | PM | A114 | 106 | | Innovative Sustainable Building Materials | THU | AM | A114 | 123 | | Glass, Amorphous, and Optical Materials: Common Issues with | nin Science 8 | Technology | | | | Chemical and Transport Processes in Glasses | MON | AM | A115 | 23 | | Mechanical Properties of Glasses | MON | PM | A115 | 45 | | ACerS GOMD Alfred R. Cooper Award Session | TUE | PM | A115 | 63 | | Optical, Photonic, and Electronic Properties of Glasses/Glass Structure | WED | AM | A115 | 84 | | Glass Formation, Relaxation, and Crystallization | WED | PM | A115 | 107 | | nnovative Processing and Synthesis of Ceramics, Glasses and | d Composites | 3 | | | | Processing I | MON | AM | A120 | 24 | | Processing II | MON | PM | A120 | 46 | Page StartTime Room Date | | Date | StartTime | Room | Page | |--|---------------|---------------|----------|------| | International Symposium on Ceramic Matrix Composites | | | | | | Processing and Microstructure Evolution | MON | AM | A114 | 25 | | Testing and Damage Characterization | MON | PM | A114 | 47 | | Damage Evaluation and Modeling | TUE | PM | A114 | 64 | | Materials Science and Engineering of Earth Abundant Materials | 3 | | | | | Materials Science and Engineering of Earth Abundant Materials | MON | AM | A124 | 28 | | Modern Ceramic Manufacturing Methods and Applications | | | | | | Modern Ceramic Manufacturing Methods and Applications | TUE | PM | A120 | 68 | | New Advances and Innovations in Corrosion of Refractory Cera | mics | | | | | International Symposium on New Advances and Innovation in Corrosion of Refractory Ceramics I | WED | AM | A120 | 92 | | International Symposium on New Advances and Innovation in Corrosion of Refractory Ceramics II | WED | PM | A120 | 114 | | Phase Transformations in Ceramics: Science and Applications | | | | | | Phase Transformations in Ceramics: Science and Applications - Crystallography | WED | AM | A124 | 93 | | Phase Transformations in Ceramics: Science and Applications - Processing-Microstructure-Properties I | WED | PM | A124 | 115 | | Phase Transformations in Ceramics: Science and Applications - Processing-Microstructure-Properties II/Theory | THU | AM | A124 | 126 | | LECTRONIC AND MAGNETIC MATERIALS | | | | | | Advances in Dielectric Materials and Electronic Devices | | | | | | Dielectrics and Magnetoelectrics I | MON | AM | B132 | 19 | | Dielectrics and Magnetoelectrics II | MON | PM | B132 | 41 | | Advanced Dielectrics and Energy | TUE | PM | B132 | 60 | | Advanced Microelectronic Packaging, Emerging Interconnection | n Technolog | y, and Pb-fre | e Solder | | | Session I | MON | AM | B140/141 | 18 | | Session II | MON | PM | B140/141 | 40 | | Session III | TUE | PM | B230 | 59 | | Semiconductor Heterostructures: Theory, Growth, Characterization | tion, and Dev | vice Applicat | ions | | | Semiconductor Heterostructures I | WED | AM | B132 | 95 | | Semiconductor Heterostructures II | WED | PM | B132 | 116 | # MATSCITECH.ORG NATERIALS SCIENCE & TECHNOLOGY FAS-IMS Failure Analysis Applications of Microanalysis, Microscopy, Metallography & Fractography Manufacturing-Related Failures Welding/Joining Failures Medical Device Failures **Casting Failures** | | | | | 19- | |---|-----|----|------|-----| | ENERGY | | | | | | Advances in Solid Oxide Fuel Cell Technology | | | | | | SOFCs for Stationary Applications | TUE | PM | D281 | 60 | | SOFC Durability | WED | AM | D281 | 78 | | SOFCs for Military Applications | WED | PM | D281 | 102 | | SOFC Research and Development | THU | AM | D281 | 121 | | Covetic Nanomaterials for Energy Applications | | | | | | Covetic Materials I | WED | AM | D282 | 83 | | Covetic Materials II | WED | PM | D282 | 105 | | Materials for Nuclear Applications and Extreme Environments | | | | | | Metallic Alloys for Nuclear Systems | MON | AM | D183 | 27 | | Radiation Effects on Materials' Structure and Properties | MON | PM | D183 | 49 | | Theory and Modeling of Nuclear Materials | TUE | PM | D183 | 67 | | Processing and
Behavior of Novel Fuels I | WED | AM | D183 | 89 | | Processing and Behavior of Novel Fuels II | WED | PM | D183 | 111 | | Materials Issues in Nuclear Waste Management | | | | | | Nuclear Waste Form Processing and Synthesis I | MON | AM | D282 | 27 | | Nuclear Waste Form Processing and Synthesis II | MON | PM | D282 | 49 | | Corrosion Science in Nuclear Waste Management | TUE | PM | D282 | 67 | | FAILURE ANALYSIS | | | | | | Characterization & Methods in Failure Analysis | | | | | | Tools & Techniques I | MON | AM | A211 | 21 | | Tools & Techniques II | MON | PM | A211 | 42 | | Fatigue & Fracture I | TUE | PM | A211 | 62 | | Fatigue & Fracture II | WED | AM | A211 | 81 | | Corrosion | WED | PM | A211 | 104 | | | | | | | Date THU TUE WED WED AM PM AM PM A211 A210 A210 A210 122 66 88 110 StartTime Room Page | | Date | StartTime | Room | Page | |--|----------------|----------------|---------------|------| | Iser-Related Failures | | | | | | Non-Metallic Failures I | MON | AM | A210 | 34 | | Transportation | MON | PM | A210 | 55 | | NDAMENTALS AND CHARACTERIZATION | | | | | | Bulk Metallic Glass Matrix Composites—Challenges and Trium | phs | | | | | Alloy Design and Theoretical Modeling | WED | AM | B244/245 | 80 | | Mechanical Properties and Structure-property Relation | WED | PM | B244/245 | 103 | | eformation and Transitions at Grain Boundaries VI | | , | | | | Grain Boundary Energy and Structure I | TUE | PM | A123 | 63 | | Dislocation-Grain Boundary interactions | WED | AM | A123 | 83 | | Grain Boundary Energy and Structure II | WED | PM | A123 | 105 | | Gradients near Grain Boundaries | THU | AM | A123 | 122 | | ast/Ultrafast Characterization of Irreversible Transformations i | n Materials v | vith X-rays ar | nd Electrons | | | Synchrotron X-ray and XFEL Imaging | WED | PM | B246 | 107 | | Fast TEM Imaging - Phase Transformation and Beyond | THU | AM | B246 | 123 | | MS Symposium on Metallography and Microstructural Charact
dicrostructure to Mechanical Properties | erization of I | Wetals and th | e Correlation | of | | Metallographic Preparation Techniques of Materials | MON | AM | A212 | 23 | | Metallography and Microstructural Characterization of Materials and the Correlation of Microstructure to Mechanical Properties I | MON | PM | A212 | 45 | | Metallography and Microstructural Characterization of Materials and the Correlation of Microstructure to Mechanical Properties II | TUE | PM | A212 | 64 | | Optical and Electronic Characterization at Microstructures | WED | AM | A212 | 85 | | Metallography and Microstructural Characterization of Materials and the Correlation of Microstructure to Mechanical Properties III | WED | PM | A212 | 108 | | nterfaces, Grain Boundaries and Surfaces from Atomistic and | Macroscopio | Approaches | 3 | | | Polycrystal Interfaces | MON | AM | A122 | 24 | | Structure & Chemistry | MON | PM | A122 | 46 | | Surface Properties | TUE | PM | A122 | 64 | | Kinetics | WED | AM | A122 | 85 | | Thermodynamics | WED | PM | A122 | 108 | | Interfaces | THU | AM | A122 | 124 | # MATSCITECH.ORG STATEMENT OF THE STATEME | | Date | StartTime | Room | Page | |--|----------------|----------------|----------------|------------| | International Symposium on Defects, Transport and Related Ph | nenomena | | | | | Defect Formation and Properties | MON | AM | B242/243 | 25 | | Defect and Novel Devices | MON | PM | B242/243 | 47 | | Gas-Solid Interface Transport | TUE | PM | B242/243 | 65 | | Bulk and Grain Boundary Transport | WED | AM | B242/243 | 86 | | Materials Property Understanding through Characterization | | J | | | | Novel Characterization Techniques | MON | AM | B240/241 | 28 | | Metals I | MON | PM | B240/241 | 50 | | Novel Non-Metallic Materials | TUE | PM | B240/241 | 67 | | Metals II | WED | AM | B240/241 | 90 | | Multifunctional Ceramic- and Metal-matrix Composites: Proces | ssing, Microst | tructure, Prop | perties and Pe | erformance | | Novel Composite Materials | MON | AM | A123 | 28 | | Neutron and Synchrotron Techniques for Advanced Materials (| Characterizati | ion | | | | Advanced Neutron & Synchrotron Techniques | MON | AM | B246 | 29 | | PSDK XIII: Phase Stability and Diffusion Kinetics 2018 | | 1 | | | | Gibbs Award Session I | MON | AM | A213 | 31 | | Gibbs Award Session II/Modeling of Properties | MON | PM | A213 | 51 | | Thermodynamics: modeling and Experiments | TUE | PM | A213 | 70 | | Computational Tools and Diffusion | WED | AM | A213 | 94 | | Manufacturing and Phase Transformation | WED | PM | A213 | 115 | | Small-scale Properties of Materials and Length-scale Phenome | ena | , | | | | Size Effect | MON | AM | A121 | 33 | | In-situ Assessments | MON | PM | A121 | 53 | | Structure I | TUE | PM | A121 | 71 | | Stress/Strain Behavior | WED | AM | A121 | 96 | | Mechanical Testing | WED | PM | A121 | 116 | | Structure II | THU | AM | A121 | 126 | | Symposium on Large Fluctuations and Collective Phenomena | in Materials \ | /I | | | | Mean Field Theory and Other Theoretical Models | MON | PM | B235 | 54 | | Synergy in Multi-scale Modeling and Experiments to Resolve C | Complex Disc | rdered Solid | S | | | 0 : 1 1 1 1 1 1 1 0 | TUE | PM | B246 | 73 | | Session I: Multi-scale Modeling-driven Synergy | | | | | | Date | StartTime | Room | Page | |------|------------|---------|--------| | Daic | Otartrinic | 1100111 | l lage | | | | - | | | |---|-------------|-------|------------|-----| | IRON AND STEEL (FERROUS ALLOYS) | | | | | | Advances in Zinc-coated Sheet Steel Processing and Propertie | s | | | | | Advances in Zinc-coated Sheet Steel Processing and Properties I | MON | AM | A225 | 20 | | Advances in Zinc-coated Sheet Steel Processing and Properties II | MON | PM | A225 | 41 | | Advanced Steel Metallurgy: Products and Processing | | | | | | General Steel Session I | MON | AM | A226 | 19 | | Lightweight Steels | MON | PM | A226 | 40 | | Iron and Steelmaking, Processing, and Cleanliness | TUE | PM | A226 | 60 | | Stainless and High Alloy Steels and Cast Iron | WED | AM | A226 | 78 | | Dual Phase and Q&P Steels | WED | PM | A226 | 101 | | General Steel Session II | THU | AM | A226 | 120 | | General Steel Session III | THU | AM | A223 | 120 | | Microalloyed Steels | | | | | | Microalloyed Steels I | TUE | PM | A225 | 68 | | Microalloyed Steels II | WED | AM | A225 | 90 | | Microalloyed Steels III | WED | PM | A225 | 112 | | MATERIALS-ENVIRONMENT INTERACTIONS | | | | | | Advanced Coatings for Wear and Corrosion Protection | | | | | | Advanced Coatings for Wear and Corrosion Protection I | MON | AM | C160A/160B | 18 | | Advanced Coatings for Wear and Corrosion Protection II | MON | PM | C160A/160B | 38 | | Advanced Materials for Harsh Environments | | | | | | Advanced Materials and Sensors for Harsh Environments I | MON | AM | C161A/161B | 18 | | Advanced Materials and Sensors for Harsh Environments II | MON | PM | C161A/161B | 39 | | Advanced Materials for Oil and Gas Applications -Performance | and Degrada | ation | | | | Advanced Materials for Oil and Gas Applications - Performance and Degradation | WED | PM | B140/141 | 101 | | Catalyst Support Materials and Support Effect | | | | | | Catalyst Support Materials and Support Effect | MON | AM | C170 | 20 | | Corrosion of Additively Manufactured Metals | | | | | | Corrosion of Additively Manufactured Metals | WED | AM | A220 | 82 | | | | | | | # MATSCITECH.ORG NATERIALS SCIENCE & TECHNOLOGY | | Date | StartTime | Room | Page | |---|-----------------|-------------------|------------|------| | nvironmental Degradation and Embrittlement of Structural | Metals | | | | | Stress Corrosion Cracking I | MON | AM | C162A/162B | 23 | | Stress Corrosion Cracking II | MON | PM | C162A/162B | 44 | | Hydrogen Embrittlement I | TUE | PM | C162A/162B | 63 | | Hydrogen Embrittlement II | WED | PM | C161A/161B | 106 | | laterials Degradation in CO2 Environments | | | | | | Session I | WED | AM | C162A/162B | 89 | | Session II | WED | PM | C162A/162B | 111 | | election of Materials for Application in Corrosive Environm | ents | | | | | Materials Selection Symposium - Session I | MON | AM | A220 | 32 | | Materials Selection Symposium - Session II | MON | PM | A220 | 52 | | Materials Selection Symposium - Session III | TUE | PM | A220 | 71 | | hermal Protection Materials and Systems | | | | | | TPS Design and Materials Characterizations | WED | AM | C161A/161B | 98 | | ontrolled Synthesis, Processing, and Applications of Struc
Session I | | ional Nanom
PM | | 43 | | Session I | MON | PM | D180 | 43 | | Session II | TUE | PM | D180 | 62 | | Session III | WED | AM | D180 | 82 | | Session IV | WED | PM | D180 | 105 | | anotechnology for Energy, Environment, Electronics, Healt | hcare and Indus | stry Applicat | ions | | | Nanotechnology for Energy, Environment, Electronics,
Healthcare and Industry - Session I | TUE | PM | C161A/161B | 68 | | Nanotechnology for Energy, Environment, Electronics,
Healthcare and Industry - Session II | WED | AM | D181 | 92 | | Nanotechnology for Energy, Environment, Electronics,
Healthcare and Industry - Session III | WED | PM | D181 | 113 | | Nanotechnology for Energy, Environment, Electronics, Healthcare and Industry - Session IV | THU | AM | D181 | 125 | | esponsive Functional Nanomaterials | | | - | | | Multi-functional Nanosensors | MON | AM | D181 | 32 | | Responsive Smart Nanomaterials | MON | PM | D181 | 52 | | | | i | | | | Date | StartTime | Room | Page | |------|-----------|------|------| | OCESSING AND PRODUCT MANUFACTURING | | | | |
--|----------------|---------------|---------------|----------| | Oth International Symposium on Green and Sustainable Techi
rocessing | nologies for I | Materials Mar | nufacturing a | nd | | Session I | MON | AM | B233 | 15 | | Session II | MON | PM | B233 | 35 | | Session III | TUE | PM | B233 | 56 | | Session IV | WED | AM | B233 | 74 | | dvanced Manufacturing, Processing, Characterization, and M | odeling of Fu | inctional Mat | erials | • | | Advanced Manufacturing I | MON | PM | B230 | 39 | | Shape Memory Alloys | WED | AM | B230 | 77 | | Advanced Functional Materials | WED | PM | B230 | 101 | | Advanced Manufacturing II | THU | AM | B230 | 119 | | dvances in Surface Engineering | | | | | | Carburization/Nitridation/Boronization and Engineering of Surface Geometry/Structure/Roughness | WED | AM | B144/145 | 79 | | Tribology/Tribocorrosion, Surface Stresses, and Surface Microstructure | WED | PM | B144/145 | 102 | | Functional Coatings/Films/Surface Features | THU | AM | B144/145 | 121 | | oron, Boron Coatings, Boron Compounds and Boron Nanom pplications | aterials: Stru | cture, Proper | ties, Process | ing, and | | 2D Boron & Clusters | MON | AM | B244/245 | 20 | | Novel Synthesis & Boron Suboxide | MON | PM | B244/245 | 42 | | Physical Properties of Bulk Systems | TUE | PM | B244/245 | 61 | | omposition-Processing-Microstructure-Property Relationship | s of Titaniun | n Alloys | | | | Heat Treatment & Processing, Powder Metallurgy | MON | AM | C150 | 22 | | Deformation and Transformations | MON | PM | C150 | 43 | | Phase Transitions & Alloy Design | TUE | PM | C150 | 62 | | | | | | | # MATSCITECH.ORG NATURE SCIENCE & TECHNOLOGY | | Bato | <u> </u> | 1.00111 | 1 490 | |---|---------------|----------------|---------------|------------| | oining of Advanced and Specialty Materials (JASM XX) | | | | | | Plenary: 20 Years of JASM | MON | AM | C171 | 26 | | Brazing of Advanced Materials | MON | PM | C172 | 47 | | Friction Stir and Friction Welding I | MON | PM | C171 | 48 | | Friction Stir and Friction Welding II/Other Solid State Joining Processes | TUE | PM | C171 | 65 | | Welding Metallurgy I | TUE | PM | C172 | 66 | | Nano- and Micro-Joining | WED | AM | C171 | 86 | | Welding Processes | WED | AM | C172 | 87 | | Ultrasonic Joining | WED | PM | C171 | 109 | | Welding Metallurgy II | WED | PM | C172 | 109 | | Dissimilar Materials Joining | THU | AM | C171 | 124 | | ght Metal Technology—Applications for the Transportation In | dustry | | | | | Aluminium Alloys Casting I | MON | AM | B130 | 26 | | Titanium/Aluminum Alloys Development | MON | PM | B130 | 48 | | High Strength Aluminium Alloys | TUE | PM | B130 | 66 | | Modeling and Formability/Magnesium Alloys | WED | AM | B130 | 88 | | Aluminium Alloys Casting II | WED | PM | B130 | 110 | | ght Metals—Applications and Fitness-for-Service Characteri | zation | | | | | Light Metals – Applications and Fitness-for-Service
Characterization | MON | AM | B230 | 26 | | echanochemical Synthesis and Reactions in Materials Scien | ce III | | | | | Session I | WED | AM | B131 | 90 | | Session II | WED | PM | B131 | 111 | | ulti Scale Modeling of Microstructure Deformation in Materia | Processing | | | | | Multiscale Modeling of Microstructure Deformation in Material Processing - Part I | WED | AM | C170 | 91 | | Multiscale Modeling of Microstructure Deformation in Material Processing - Part II | WED | PM | C170 | 112 | | rocessing and Performance of Materials Using Microwaves, End Mechanical Work—Rustum Roy Symposium | lectric and M | lagnetic Field | ls, Ultrasoun | d, Lasers, | | Session I | MON | AM | A125 | 30 | | Session II | MON | PM | A125 | 51 | | Session III | TUE | PM | A125 | 69 | Page Room StartTime Date | | Date | StartTime | Room | Page | |--|----------------|---------------|--------------|------| | Rare Earth Metals and Critical Materials: Synthesis, Processi | ng, Production | , Recent Adv | ances | | | Rare Earth Metals - Mining and Extraction | MON | AM | B131 | 31 | | Rare Earth Magnets and Critical Materials | MON | PM | B131 | 52 | | Rare Earth Metals for Medical and Light Weight Structural Applications | TUE | PM | B131 | 70 | | Critical Materials Resources and Regulatory Issues | WED | AM | A224 | 94 | | Sintering and Related Powder Processing Science and Techn | ologies | | | | | Sintering and Microstructural Evolution | MON | AM | B142/143 | 33 | | Miscellaneous Sintering Topics | MON | PM | B142/143 | 53 | | Field Assisted Sintering I: Fundamentals | TUE | PM | B142/143 | 71 | | Field Assisted Sintering II: Applications | WED | AM | B142/143 | 95 | | Solid State Processing | | | | | | Friction Stir Processing and Other Torsion Processing Techniques | TUE | PM | B140/141 | 72 | | Solid State Processing | WED | AM | B140/141 | 96 | | Surface Protection and Spray Technology for Enhanced Mate
Application | rials Performa | nce: Science | ,Technology, | and | | Cold Spray Coatings | TUE | PM | B234 | 73 | | Environmental and Thermal Barrier Coatings | WED | AM | B234 | 97 | | Aerosol, Sputtering, and Functional Coatings | WED | PM | B234 | 117 | | Synthesis, Characterization, Modeling, Properties and Applica | ations of Func | tional Porous | Materials | | | Porous Materials I | MON | AM | B144/145 | 34 | | Porous Materials II | MON | PM | B144/145 | 55 | | Porous Materials III | TUE | PM | B144/145 | 73 | | Ultra High Performance Metallic Systems for Aerospace, Defe | ense, and Auto | motive Appli | cations | | | High Performance Additively Manufactured Alloys | TUE | PM | B235 | 74 | | High Entropy Alloys | WED | AM | B235 | 98 | | Ultrafine Grained / Nanostructured / Composites / Hybrids | WED | PM | B235 | 117 | | High Temperature and other High Performance Alloys | THU | AM | B235 | 127 | # MATSCITECH.ORG STATEMENT OF THE STATEME | | Date | StartTime | Room | Page | |---|---------------|---------------|--------------|---------| | PECIALTOPICS | | | | | | Art and Cultural Heritage: Reverse Engineering | | | | | | Art and Cultural Heritage: Reverse Engineering I | WED | AM | B232 | 79 | | Art and Cultural Heritage: Reverse Engineering II | WED | PM | B232 | 103 | | Careers in Industry | | | | | | Networking and Careers for Material Scientists | TUE | PM | B231 | 61 | | Curricular Innovations and Continuous Improvement of Acade
Way): The Elizabeth Judson Memorial Symposium | mic Program | s (and Satisf | ying ABET al | ong the | | ABET and Accreditation | MON | AM | B232 | 22 | | The Classroom Laboratory | MON | PM | B232 | 44 | | From Diversity to Inclusion | | | | | | Session I | WED | AM | B231 | 84 | | Session II | WED | PM | B231 | 107 | | Journal of the American Ceramic Society Awards Symposium | | | | | | JACerS Awards Symposium Session I | WED | AM | A125 | 87 | | JACerS Awards Symposium Session II | WED | PM | A125 | 110 | | Perspectives for Emerging Materials Professionals | | | | | | Session I | MON | AM | B231 | 30 | | Session II | MON | PM | B231 | 50 | | Special Session on Innovation by Entrepreneurs, Startups, and | I Small Busin | esses | | | | Special Session on Innovation by Entrepreneurs, Startups, and Small Businesses | TUE | PM | B232 | 72 | **Small Businesses** # 10th International Symposium on Green and Sustainable Technologies for Materials Manufacturing and Processing — Session I and Processing — Session I Program Organizers: Yiquan Wu, Alfred University; Hisayuki Suematsu, Nagaoka University of Technololgy; Surojit Gupta, University of North Dakota; Junichi Tatami, Yokohama National University; Enrico Bernardo, University of Padova; Zhengyi Fu, Wuhan University of Technology; Rajiv Asthana, University of Wisconsin-Stout; Allen Apblett, Oklahoma State University; Richard Sisson, Worcester Polytechnic Institute; Tatsuki Ohji, National Institute of Advanced Industrial Science and Technology; Mritunjay Singh, Ohio Aerospace Institute Monday AM Room: B233 October 15, 2018 Location: Greater Columbus Convention Center Session Chairs: Junichi Tatami, Yokohama National University; Hisayuki Suematsu, Nagaoka University of Technology #### 8:00 AM Invited **Challenges in High Temperature Electrochemical Systems**: *Manoj Mahapatra*¹; ¹University of Alabama at Birmingham #### 8:20 AM Invited A Suspension-enclosing Projection-stereolithography Process for Complex Ceramic Component Fabrication without Building Support Structures: *Xuan Song*¹; Li He¹; ¹University of Iowa #### 8.40 AM Invited **Hybrid Thermoplastic Composites of Natural Fiber and Recycled Carbon Fiber**: Joseph Fehrenbach¹; Niyati Shah¹; *Chad Ulven*¹; ¹North Dakota State University #### 9:00 AM Thermodynamic Model for Predicting the Embodied Energy of Titanium Alloys Produced by Powder Metallurgy: James Paramore¹; Brady Butler¹; Matthew Dunstan¹; Z. Zak Fang²; ¹United States Army Research Laboratory; ²University of Utah #### 9:20 AM Tannic Acid: A Sustainable Crosslinking Agent for High Glass Transition Epoxy Thermosets: Matthew Korey¹; John Howarter¹; ¹Purdue University #### 9:40 AM Invited Flash Sintering as an Energy and Cost Saving Sintering Technology: A Case Study of ZnO: *Jian Luo*¹; ¹University of California San Diego #### 10:00 AM Break #### 10:20 AM Invited Flexibly-embedding Microchannels in Ceramics Using an Integrated Additive Manufacturing and Laser Machining Method: Fei Peng¹; Yuzhe Hong¹; Hai Xiao¹; Jianhua Tong¹; Rajendra Bordia¹; ¹Clemson University #### 10:40 AM Invited GPSed Reaction Bonded Silicon Nitride with High Thermal Conductivity for Power Module Substrate Applications: *Jae-Woong Ko*¹; Ha-Neul Kim¹; Jin-Myung Kim¹; Young-Jo Park¹; Hai-Doo Kim¹; ¹Korea Institute of
Materials Science #### 11:00 AM **Materials Innovations to Support Next Generation Manufacturing**: *Glenn Daehn*¹; George Spanos²; ¹The Ohio State University; ²The Minerals, Metals & Materials Society #### 11:20 AM **Investigating the Potential of Bismuth as Replacement for "Toxic" Lead:** *Joseph Hamuyuni*¹; Fiseha Tesfaye²; Daniel Lindberg²; ¹Aalto University; ²Åbo Akademi University # ACerS/EPDC: Arthur L. Friedberg Ceramic Engineering Tutorial and Lecture Monday AM Room: A111/112 October 15, 2018 Location: Greater Columbus Convention Center Session Chair: Kristen Brosnan, GE Global Research #### 9:00 AM Invited **Digital Assembly of Colloidal Suspensions, Gels and Foams**: *Jennifer Lewis*¹; ¹Harvard University # Additive Manufacturing of Composites and Complex Materials III — Metals Additive Manufacturing Program Organizers: Dirk Lehmhus, Fraunhofer - Ifam; Jonathan Spowart, Air Force Research Laboratory; Nikhil Gupta, New York University; Eric Jaegle, Max-Planck-Institut Fuer Eisenforschung Monday AM Room: A222 October 15, 2018 Location: Greater Columbus Convention Center Session Chair: To Be Announced #### 8:00 AM Introductory Comments #### 8:10 AM Horizontal and Vertical Grading of Ti-Ta in Laser Powder Bed Fusion Additive Manufacturing: *Joe Walker*¹; Matt Larson²; John Middendorf²; Joy Gockel¹; ¹WSU; ²Universal Technology Corporation #### 8:30 AM Invited Hybrid Additive Manufacturing of Gamma Titanium Aluminide Space Hardware: André Seidel¹; *Elena Lopéz²*; Shuvra Saha²; Tim Maiwald²; Juliane Moritz²; Stefan Polenz²; Axel Marquardt¹; Joerg Kaspar²; Thomas Finaske²; Mirko Riede²; Frank Brueckner²; Christoph Leyens¹; ¹Technical Univ Dresden & Fraunhofer IWS; ²Fraunhofer IWS #### 8:50 AM Improving the Manufacturability of Tungsten Produced via LPBF Through in Situ alloying with Tantalum: Amanda Field¹; Luke Carter¹; Nicholas Adkins¹; Martin Strangwood¹; Moataz Attallah¹; Mike Gorley²; ¹University of Birmingham; ²UK Atomic Energy Authority #### 9:10 AM Invited Manufacturing of Functionally Graded Parts Using 3D Plasma Metal Deposition: Peter Mayr¹; Kevin Hoefer¹; ¹Chemnitz University of Technology #### 9:30 AM Tailoring the Coefficient of Thermal Expansion in Additively Manufactured Functional Materials through Compositional Grading: *Skyler Hilburn*¹; Tim Simpson¹; Todd Palmer¹; ¹Penn State University #### 9:50 AM The Microstructure and Mechanical Properties of Ti-12Mo and Ti-12Mo-6Zr-2Fe -Titanium Alloy Fabricated Using Selective Laser Melting (SLM) In-situ Alloying: Ranxi Duan¹; Sophie Cox¹; Fuzeng Ren²; Moataz Attallah¹; ¹University of Birmingham; ²South China University of Science and Technology (SUSTech) #### 10:10 AM Break #### 10:30 AN **Laser Powder Bed Fusion of WHA**: *Elias Jelis*¹; Michael Hespos¹; Matthew Clemente¹; ¹U.S. Army ARDEC-Picatinny Arsenal # MS&T18 #### MATERIALS SCIENCE & TECHNOLOGY #### 10:50 AM Additive Manufacturing of a Ti-6Al-4V and 304L Stainless Steel Functionally Graded Material: Investigating the Addition of an Intermediate V Section: Lourdes Bobbio¹; Brandon Bocklund¹; Richard Otis²; John Paul Borgonia²; R. Peter Dillon²; Andrew Shapiro²; Bryan McEnerney²; Zi-Kui Liu¹; Allison Beese¹; Pennsylvania State Univ; ²Jet Propulsion Laboratory #### 11:10 AM Reinforcement of Forming Blanks by Ultrasonic Additive Manufacturing: *Yongsen Rong*¹; Xiang Chen²; Bryant Gingerich¹; Leon Headings¹; Ryan Hahnlen²; Marcelo Dapino¹; ¹The Ohio State University; ²Honda R&D Americas #### 11:30 AM **DOE Remade Institute to Reduce Embodied Energy and Reduce Emissions**: Pradeep Rohatgi¹; *Alan Luo*²; Magdi Azer³; ¹University of Wisconsin-Milwaukee; ²The Ohio State University; ³University of Illinois at Urbana # Additive Manufacturing of Metals: Microstructure and Material Properties — AM Process Parameters Effects Program Organizers: Andrzej Wojcieszynski, ATI Specialty Materials; Ulf Ackelid, Freemelt AB; Ola Harrysson, North Carolina State University; Sudarsanam Babu, The University of Tennessee, Knoxville Monday AM Room: A215 October 15, 2018 Location: Greater Columbus Convention Center Session Chair: Andrzej Wojcieszynski, ATI Specialty Materials #### 8:00 AM Invited Impact of the Process Gas Atmosphere in Laser Additive Manufacturing: Desired and Undesired Effects: Eric Jaegle¹; Anoop Kini¹; Michael Haines²; Markus Wilms³; Christian Baron¹; Hauke Springer¹; Nobuo Nakada⁴; Dierk Raabe¹; Philipp Kürnsteiner⁵; ¹Max-Planck-Institut Fuer Eisenforschung; ²University of Tennessee - Knoxville; ³Fraunhofer Institut fuer Lasertechnik; ⁴Tokyo Institute of Technology; ⁵Max-Planck-Institut für Eisenforschung GmbH #### 8:40 AM Mapping of the Relationship between Melt Pool Geometry and Crystallographic Texture of Inconel 718 Deposited via Laser Powder Bed Fusion Process: *Sneha Prabha Narra*¹; Jack Beuth¹; ¹Carnegie Mellon University #### 9:00 AM Effect of Process Parameters on Surface and Microstructural Features of Direct Metal Laser Sintered Metals: Aditya Patibandla¹; Ashley Puente¹; Dustin Lindley²; ¹University of Cincinnati; ²University of Cincinnati Research Institute #### 9:20 AM In-situ Tuning of Mechanical Properties in SLM Processed Materials: Prashanth Konda Gokuldoss¹; ¹Norwegian University of Science and Technoloogy Gjøvik #### 9:40 AM Effect of Hardness of Recoater Blade on Density and Buildability of Cellular Lattice Structures in the Laser Powder Bed Process: Colt Montgomery¹; Michael Brand¹; Robin Pacheco¹; Daniel Coughlin¹; John Carpenter¹; ¹Los Alamos National Laboratory #### 10:00 AM Break #### 10:20 AM Melt-Pool Scale Analysis of Metal Layers Processed by Powder Bed Fusion (PBF) Technique: *Yoon Suk Choi*¹; Seul-Bi Lee¹; Jae-Woong Kim¹; Jae-Keun Hong²; Myeongse Kim³; Dae-Geun Nam⁴; ¹Pusan National Univ; ²Korea Institute of Materials Science; ³KAMI; ⁴Korea Institute of Industrial Technology #### 10:40 AM Scan Pattern and Energy Density Effects during Additive Manufacturing: *Robin Ward*¹; Rewnizad Mogrelia¹; Rachel Jennings¹; Moataz Attallah¹; ¹University of Birmingham #### 11:00 AM The Effect of Heating Rate, Time-temperature on the Grain Boundary Character Distribution and Densification of Water-atomized 316L Stainless Steel Metallic Components Produced via Binder Jet-powder 3-D Printing System: Yu Zhou¹; Gregorio Solis-Bravo¹; C. Isaac Garcia¹; ¹University Of Pittsburgh #### 11:20 AM The Effects of Scan Strategy on Crystallographic Texture, Microstructure and Mechanical Properties of Selectively Laser Melted AlSi10Mg Alloys: Le Zhou¹; Hao Pan¹; Holden Hyer¹; Sharon Park¹; Yuanli Bai¹; Yongho Sohn¹; ¹University of Central Florida #### 11:40 AM Understanding Hot Cracking in Laser and Electron Beam Powder Bed Fusion of Al7075: *Sneha Prabha Narra*¹; Daming Ding¹; Shrivani Pandiya¹; Jack Beuth¹; ¹Carnegie Mellon University ## Additive Manufacturing: In-situ Process Monitoring and Control — Session I Program Organizers: Ulf Ackelid, Freemelt AB; Andrzej Wojcieszynski, ATI Specialty Materials; Sudarsanam Babu, The University of Tennessee, Knoxville; Ola Harrysson, North Carolina State University Monday AM Room: A221 October 15, 2018 Location: Greater Columbus Convention Center Session Chair: Ulf Ackelid, Freemelt AB #### 8:00 AM Invited High-speed Imaging of the Powder-bed and Shield Gas during Laser PBF of Metals: P. Bidare¹; I. Bitharas¹; R.M. Ward²; M.M. Attallah²; A.J. Moore¹; ¹Heriot-Watt University; ²University of Birmingham #### 8:40 AM Advancing High-speed Optical Monitoring of Spatter Tracking during Laser Powder Bed Fusion of Nickel Alloys and Aluminum Alloys: Christopher Barrett¹; Carolyn Carradero-Santiago¹; Eric MacDonald¹; Brett Conner¹; ¹Youngstown State University #### 9:00 AM Characterizing Surface Defects in Additively Manufactured Components Using Smart-phone Imaging: Mustafa Rifat¹; Amol Kulkarni¹; Saurabh Basu¹; Penn State #### 9:20 AN On the Formation of Large Particles during Laser Powder Bed Fusion Additive Manufacturing: Abdalla Nassar¹; Edward Reutzel¹; Paul Guerrier²; Matthew Weldon¹; Michael Krane¹; ¹Applied Research Lab at Penn State; ²Moog Inc. #### 9:40 AN Using Machine Learning to identify In-situ Melt Pool Flaw Formation Signatures: Luke Scime¹; Jack Beuth¹; ¹Carnegie Mellon University #### 10:00 AM Break #### 10:20 AM Multi Sensor In-situ Monitoring and Physics Based Modeling of Alloy 718 Microstructure: *Joe Walker*¹; Andrew Drieling¹; John Middendorf²; Glen Perram³; Nathan Klingbeil¹; Joy Gockel¹; ¹WSU; ²UTC; ³Air Force Institute of Technology #### 10:40 AM Identification of Control Parameters for Porosity Detection in Selective Laser Melting: Franz-Josef Villmer¹; Eva Scheideler¹; Andrea Huxol¹; Filippo Simoni²; ¹OWL UAS; ²University of Trieste #### 11:00 AM In-situ Defect Detection Using Three Color Spectroscopy in Laser Powder Bed Additive Manufacturing: Andrew Drieling¹; Joe Walker¹; John Middendorf²; Glen Perram³; Nathan Klingbeil¹; Joy Gockel¹; ¹Wright State University; ²Universal Technology Corporation; ³Air Force Institute of Technology #### 11:20 AM Outfitting Commercial Laser Powder Bed Systems with Low-cost Optical, Thermal, and Surface Profiling Sensor Suites: A Data-driven Investigation: Greg Loughnane¹; John Middendorf¹; Ryan O'Hara²; Li Yang³; ¹Universal Technology Corporation; ²Air Force Institute of Technology; ³University of Louisville #### 11:40 AM Revealing Mechanisms of Residual Stress Development in Additive Manufacturing via Digital Image Correlation: Jamison Bartlett¹; Brendan Croom¹; Jeffrey Burdick²; Daniel Henkel²; Xiaodong Li¹; ¹University of Virginia; ²Commonwealth Center for Advanced Manufacturing # Additive Manufacturing: Modeling and Simulation of AM Materials, Processes, and Mechanics — AM Modeling - Session I Program Organizers: Jing Zhang, Indiana University-Purdue University Indianapolis; Li Ma, Johns Hopkins University Applied Physics Laboratory; Xinghua Yu, Oak Ridge National Laboratory; Yeongil Jung, Changwon National University Monday AM Room: A223 October 15, 2018 Location: Greater Columbus Convention
Center Session Chairs: Jing Zhang, Indiana University - Purdue University Indianapolis; Yeon-Gil Jung, Changwon National University #### 8:00 AM An Integrated Computational Materials Engineering (ICME) Approach for Inconel 718 Additive Manufacturing: *Qiaofu Zhang*¹; Abhinav Saboo¹; Jiadong Gong¹; Greg Olson¹; ¹QuesTek Innovations LLC #### 8:20 AM Correlations of Cracking with Scan Strategy and Build Geometry in Electron Beam Powder Bed Additive Manufacturing: Yousub Lee¹; Mike Kirka¹; Ryan Dehoff¹; ¹Oak Ridge National Lab #### 8:40 AM Modelling Residual Stresses in Powder Bed Fusion Processes: Validation & Application: *Mustafa Megahed*¹; Alonso Peralta²; ¹Esi Group; ²Honeywell Aerospace #### 9:00 AM Numerical Simulations of Crack Extensions in Additive Manufactured Fracture Specimens of Hydrogen-uncharged and Charged 304 Stainless Steels Using Cohesive Zone Model: Shin-Jang Sung¹; Shengjia Wu¹; Jwo Pan¹; Paul Korinko²; Michael Morgan²; Poh-Sang Lam²; Anthony McWilliams²; ¹University Of Michigan; ²Savannah River National Laboratory #### 9:20 AM Phase Field Modeling of Microstructure Evolution in Selective Laser Melting Process through a Multiscale Scheme: $Yao\ Fu^{1}$; 1 University of Cincinnati #### 9:40 AM Keynote Simulation-experiment Comparison for Strain Field around a Pore: Robert Suter¹; Anthony Rollett¹; Rachel Lim¹; Yufeng Shen¹; Vahid Tari¹; Ross Cunningham¹; Joel Bernier²; ¹Carnegie Mellon University; ²Lawrance Livermore National Laboratory #### 10:10 AM Break #### 10:30 AM Keynote The Influence of Surface Finish on the Topography of Laser Tracks: Richard Ricker¹; Jarred Heigel¹; Jason Fox¹; ¹National Institute of Standards & Tech #### 11:00 AV Thermal-material Simulation to Predict Microstructure Evolution in Additive Manufacturing: Daniel Lewis¹; Antoinette Maniatty¹; Scott Peters¹; James Dolan¹; ¹Rensselaer Polytechnic Institute #### 11:20 AM Simulations of Selective Laser Melting by Smoothed Particle Hydrodynamics Method: Deepak Shah¹; Alexey Volkov¹; ¹University of Alabama # Additive Manufacturing: Powder Characterization and Recycling — Powder Characterization Program Organizers: Sudarsanam Babu, The University of Tennessee, Knoxville; Andrzej Wojcieszynski, ATI Specialty Materials; Ulf Ackelid, Freemelt AB; Ola Harrysson, North Carolina State University Monday AM Room: A224 October 15, 2018 Location: Greater Columbus Convention Center Session Chair: Mathieu Brochu, McGill University #### 8:00 AM **Optimizing Thermal Parameters for Powder Pre-processing Treatments**: *Caitlin Walde*¹; Danielle Cote¹; Richard Sisson¹; Victor Champagne²; ¹Worcester Polytechnic Institute; ²US Army Research Laboratory #### 8:20 AN Measuring Inconel 625 Powder Thermal Conductivity in SLM by Laser Flash: Shanshan Zhang¹; Brandon Lane²; Justin Whiting²; Kevin Chou¹; ¹University of Louisville; ²National Institute of Standards and Technology #### 8:40 AM Characterization and Qualification of Bulk Feedstock Powders Using Machine Learning and Computer Vision: Anna Smith¹; Srujana Yarasi¹; Elizabeth Holm¹; ¹Carnegie Mellon University #### 9:00 AM Invited Understanding the Relationships between Chemistry and Flowability via GranuDrum[™] in Aluminium Alloys for Powder Bed Fusion Additive Manufacture: Jose Alberto Muñiz Lerma¹; Amy Nommeots-Nomm¹; Mathieu Brochu¹; ¹McGill Univeristy #### 9:40 AM Computer Vision and Machine Learning to Associate Powder Characteristics with Flow Properties for Additive Manufacturing: Srujana Yarasi¹; Anna Smith¹; Anthony Rollett¹; Elizabeth Holm¹; ¹Carnegie Mellon University #### 10:00 AM Break #### 10:20 AM Characterization Methods for Powder Bed Fusion Feedstocks: Zackary Snow¹; Ken Meinert¹; Sanjay Joshi²; Brett Conner³; Rich Martukanitz¹; ¹Applied Research Lab, The Pennsylvania State University; ²Department of Industrial and Manufacturing Engineering, The Pennsylvania State University; ³Youngstown State University # MATSCITECH.ORG NATERIALS SCIENCE & TECHNOLOGY #### 11:00 AM Study of the Usability of Hydride-Dehydride (HDH) Ti-6Al-4V Powders in Electron Beam Powder Bed Printing: Ziheng Wu¹; Rahi Patel¹; Joe Capone¹; Muktesh Paliwal¹; Jack Beuth¹; Anthony Rollett¹; Sneha Narra¹; ¹Carnegie Mellon University # Advanced Coatings for Wear and Corrosion Protection — Advanced Coatings for Wear and Corrosion Protection I Program Organizers: Evelina Vogli, LM Group Holdings Inc; Fei Tang, Dnv Gl; Timothy Hall, Faraday Technology, Inc.; Jing Xu, Faraday Technology Inc.; Santosh Vijapur, Faraday Technology, Inc. Monday AM Room: C160A/160B October 15, 2018 Location: Greater Columbus Convention Center Session Chairs: Evelina Vogli, LMGH; Fei Tang, DNV GL; Timothy Hall, Faradey Technology Inc. #### 8:00 AM Effects of Rapid Solidification and Numerical Modelling of Laser Cladded Ti-Al-Cu Coatings on Ti-6Al-4V Alloy: Olawale Fatoba¹; Rezvan Gharehbaghi¹; Stephen Akinlabi¹; Esther Akinlabi¹; ¹University of Johannesburg #### 8:20 AM Effect of Ni-Cr FLAME SPRAY Coating Parameters on Corrosion Properties: *Arisha Nasik*¹; Muhammad Ishtiaq¹; Muhammad Shamsi¹; Shahmin Shah¹; Aqil Inam¹; Iqra Siddique¹; Syed Naqvi¹; ¹University of the Punjab #### 8:40 AM Fatigue Life of a NiCr-Coated Powder Metallurgy Disk Superalloy after Varied Pre- and Post-coat Processing and Environmental Exposures at 760°C: *Tim Gabb*¹; James Nesbitt¹; Derek Hass²; Susan Draper¹; Bernadette Puleo¹; Jack Telesman¹; Robert Miller³; ¹NASA Glenn Research Ctr; ²Directed Vapor Technologies International, Inc.; ³Vantage Partners, LLC #### 9:00 AM Electrodeposited Inconel and Stellite like Coatings for Improved Corrosion Resistance in Biocombustors: Timothy Hall¹; Santosh Vijapur¹; Maria Inman¹; EJ Taylor¹; Michael Brady²; ¹Faraday Technology Inc; ²Oak Ridge National Lab #### 9:20 AM High Performance Amorphous Thermal Sprayed Coatings for Molten Salt Environment: Evelina Vogli¹; Stephen Raiman²; Bruce Pint²; Ricardo Salas¹; John Kang¹; ¹Lm Group Holdings Inc; ²ORNL #### 9:40 AM **Overlays for Protection against Impact Wear in Mining Applications**: Gary Fisher¹; Tonya Wolfe¹; *Johanna Meier*¹; ¹InnoTech Alberta #### 10:00 AM Break #### 10:20 AM **Automated Case-depth Analysis with a Decision Tree**: Andrew Storey¹; ¹LECO Corporation #### 10:40 AM Numerical Modelling and Influence of Silicon Addition on the Surface Analyses of Laser Deposited Al-Sn-Si Coatings on Ti-6Al-4V Alloy: Olawale Fatoba¹; Esther Akinlabi¹; Rezvan Gharehbaghi¹; Stephen Akinlabi¹; ¹University of Johannesburg # Advanced Materials for Harsh Environments — Advanced Materials for Harsh Environments I Program Organizers: Navin Manjooran, Siemens AG; Gary Pickrell, Virginia Tech Monday AM Room: C161A/161B October 15, 2018 Location: Greater Columbus Convention Center Session Chairs: Gary Pickrell, Virginia Tech; Navin Manjooran, Siemens AG #### 8:00 AM Invited Additive Manufacturing of Glass Freestanding Structures Using Fiber Feedstock: John Hostetler¹; Jason Johnson¹; Jonathan Goldstein²; Robert Landers¹; Douglas Bristow¹; Richard Brow¹; Edward Kinzel¹; ¹Missouri University of Science and Technology; ²Air Force Research Laboratory #### 8:40 AN Durability Assessment of Al_{0,1}CoCrFeNi High Entropy Alloy under Extreme Conditions: Harpreet Grewal¹; Rakesh Nair¹; Harpreet Arora¹; Sundeep Mukherjee²; ¹Shiv Nadar University; ²University of North Texas #### 9.00 AM Effect of Dopant and Heat Treatment on the Microstructure and Mechanical Properties of Nickel-aluminum Bronze: Amaechi Anene¹; Nkem Nwankwo¹; Victor Nwoke¹; ¹Nnamdi Azikiwe University, Awka #### 9:20 AM Effect of Steam and Temperature on Rapid Internal Oxidation-Sulfidation Initiated by CaSO4 Deposits: Patrick Brennan¹; Brian Gleeson¹; ¹University of Pittsburgh #### 9:40 AM **Electrochemical Impedance Characterization of YSZ for Temperature and O₂ Sensing**: *Travis Peters*¹; Sheikh Akbar¹; Jiaji Lin²; Dean Modroukas²; ¹Ohio State University; ²Innoveering #### 10:00 AM Break #### 10:20 AM Electrodeposited MCrAIY Coatings for Gas Turbine Engine Applications: *Ying Zhang*¹; Brian Bates¹; Jason Witman¹; Sebastien Dryepondt²; ¹Tennessee Tech University; ²Oak Ridge National Laboratory 10:40 AM Concluding Comments # Advanced Microelectronic Packaging, Emerging Interconnection Technology, and Pb-free Solder — Session I Program Organizers: Iver Anderson, Iowa State University / Ames Laboratory; Carol Handwerker, Purdue University; Albert T. Wu, National Central University Monday AM Room: B140/141 October 15, 2018 Location: Greater Columbus Convention Center Session Chairs: Albert T. Wu, National Central University; Thomas R. Bieler, Michigan State University #### 9:00 AM Invited Reliability of Joint Bonded by Micro-sized Ag Particles for Die-attach in Power Devices: Hiroshi Nishikawa¹; ¹Osaka University #### 9:20 AM Effect of Thermal History and Composition on the Microstructure and Reliability of Copper Pillar Solder Joints: Mohammed Genanu¹; Eric Cotts¹; Francis Mutuku¹; Babak Arfaei¹; Faramarz Hadian¹; ¹Binghamton University #### 9:40 AM Progress in Development of Pb-free High Temperature Composite Solder: *Iver Anderson*¹; Stephanie Choquette¹; ¹Iowa State Univ, Ames Laboratory #### 10:00 AM Break #### 10:20 AM Invited Transient Liquid Phase Bonding as a High Temperature Pb-Free Alloy Alternative: Fei Dong¹; Hamid Fallahdoost¹; Junghyun Cho¹; ¹State University of New York #### 10:40 AM **Transient Liquid Phase Reaction in Sn-Bi-Ag System**: *Yaohui Fan*¹; John Blendell¹; Carol Handwerker¹; ¹Purdue University #### 11:00 AM Undercooling in Sn Droplets as a Function of Impurity Content: Sitaram Panta¹; Eric Cotts¹; ¹Binghamton University #### 11:20 AM The Study of Corrosion Resistance for High Reliability Devices: *Albert T. Wu*¹; Tsan-Hsien Tseng¹; Freeze Wang²; Chih Yuan Hsiao²; ¹National Central University; ²Taiwan Uyemura Co Ltd # Advanced Steel Metallurgy: Products and Processing — General Steel Session I Program Organizers: Justin Raines, SSAB Americas; Charles Enloe, General Motors; Emmanuel De Moor, Colorado School of
Mines Monday AM Room: A226 October 15, 2018 Location: Greater Columbus Convention Center Session Chair: John Andrew Roubidoux, Evraz NA; Ron Radzilowski, AK Steel Corp. #### 8:00 AM Tempering and Austempering Response of a Double Soaked Medium Manganese Steel: Alexandra Glover¹; John Speer¹; Emmanuel De Moor¹; ¹Advanced Steel Processing and Products Research Center, Colorado School of Mines #### 8:20 AM Cold Stamping 1500 to 1800MPa Structural and Energy Absorbing Components to <2T Bend Radii from Coil-to-Coil Flash Processing: Gary Cola¹; 'SFP Works LLC & Sirius Protection LLC #### 8:40 AM Effect of the Heating Rate on Austenite Formation and Its Subsequent Transformation in a 22MnB5 Steel: *Juan Pedraza*¹; Rafael Landa-Mejia²; Gregorio Solis-Bravo²; Omar Garcia-Rincon¹; Isaac Garcia²; ¹Ternium Mexico SA de CV; ²University of Pittsburgh #### 9:00 AM **Low Alloy High Strength Martensitic Nitrogen Steel**: *John Chinella*¹; ¹US Army Research Laboratory #### 9:20 AM Microstructure Control and Correlation to Formability of Low Alloy Steel Via Flash Processing: Benjamin Shassere¹; Sudarsanam Babu²; Gary Cola³; Thomas Muth¹; Thomas Watkins¹; ¹Oak Ridge National Laboratory; ²University of Tennessee; ³SFP Works LLC #### 9:40 AM **Development of the Plate Steels with Grain Refined Surface Layers**: *Il-cheol Yi*¹; Jae-Young Cho¹; Sang-Ho Han¹; ¹POSCO Technical Research Lab. #### 10:00 AM Break #### 10:20 AM **Development of Nanostructured Bainitic Steel**: *Bismillah Saleem*¹; Muhammad Ishtiaq¹; Muhammad Shamsi¹; Muhammad Mughal¹; Aqil Inam¹; ¹University of the Puniah #### 10:40 AM **Microstructural Modifications in a Low-alloy High-performance Steel:** *V. Sinha*¹; E.J. Payton²; M. Gonzales²; R.A. Abrahams²; B.S. Song²; ¹Air Force Research Laboratory/UES, Inc.; ²Air Force Research Laboratory #### 11:00 AM Structure-property Correlations of Submicron Sized Nb-Ti Stabilized Low C Microalloyed and IF Steels Processed through Advance Rolling and SPD Techniques: Sumit Ghosh'; Suhrit Mula'; 'Indian Institute of Technology,Roorkee #### 11:20 AM Effect of Alloy Composition and Microstructure on Yield Ratio and Elongation of DP Steel: *Yeon-sang Ahn*¹; Sangho Han¹; John Speer²; ¹POSCO Technical Research Laboratories; ²Colorado School of Mines # Advances in Dielectric Materials and Electronic Devices — Dielectrics and Magnetoelectrics I Program Organizers: Amar Bhalla, University of Texas; Ruyan Guo, The University of Texas at San Antonio; Rick Ubic, Boise State University; Danilo Suvorov, Jožef Stefan Institute Monday AM Room: B132 October 15, 2018 Location: Greater Columbus Convention Center Session Chairs: Ruyan Guo, University of Texas at San Antonio; Matjaz Spreitzer, Jozef Stefan Institute #### 8:00 AM Invited Symmetry Breaking in Bulk Ceramics and Crystals: *Dragan Damjanovic*¹; Sina Hashemizadeh¹; Emad Oveisi²; S. De Zanet³; Takuya Hoshina⁴; Andreja Bencan⁵; Tadej Rojac⁵; Goran Drazic⁶; ¹EPFL SCI STI DD; ²EPFL CIME; ³Ecole Polytechnique Federale De Lausanne CIME; ⁴Tokyo Institute of Technology; ⁵Jozef Stefan Institute; ⁶National Institute of Chemistry #### 8:20 AM Invited Influence of LNO Bottom Electrode and Target Stoichiometry on the Properties of 0.67Pb(Mg_{1/3}Nb_{2/3})O3–0.33PbTiO3 Thin Films: *Matjaz Spreitzer*¹; Urška Gabor¹; Damjan Vengust¹; Aleksander Matavž¹; Danilo Suvorov¹; ¹Jožef Stefan Institute #### 8:40 AM Invited Semiconductor Ceramic Properties in the Light of the Fractal Nature Corrections Frontiers: Vojislav Mitic¹; Goran Lazovic²; Vesna Paunovic³; Zoran Vosika³; Sandra Veljkovic³; Branislav Vlahovic⁴; ¹University of Nis; Institute of Technical Sciences of SASA; ²University of Belgrade; ³University of Nis; ⁴North Carolina Central University #### 9:00 AM Invited **Effect of Atmosphere on Dielectric Properties of Calcium Copper Titanate Ceramics**: Disna Samarakoon¹; Nirmal Govindaraju¹; *Raj Singh*¹; ¹Oklahoma State University # MSeT18 #### MATERIALS SCIENCE & TECHNOLOGY #### 9:20 AM Invited Physical Properties of BFO-modified Multiferroic Ceramics: Effect of Rareearth Cations Size: Yosdan Martínez Camejo¹; Ruyan Guo²; Amar Bhalla²; *Jose de los Santos Guerra*¹; ¹Universidade Federal de Uberlandia; ²The University of Texas at San Antonio #### 9:40 AM **Experimental and Numerical Evaluation of Stacked Piezoelectrics for Mechanical Energy Harvesting:** *Bryan Gamboa*¹; Ruyan Guo¹; Amar Bhalla¹; ¹The University of Texas at San Antonio #### 10:00 AM Break #### 10:20 AM Invited Structural Phase Transitions in Bi_{Lx}Nd_xFe_{Ly}Co_yO₃ Compositions: *Luiz Fernando Cotica*¹; Anuar Mincache¹; Odair Oliveira¹; Gustavo Dias¹; Ivair Santos¹; Ruyan Guo²; Amar Bhalla²; ¹State University Of Maringa; ²University of Texas at San Antonio #### 10:40 AM **Development of Ferroic and Multiferroic NanoMaterials for Drop-on-Demand Microfabrication**: *Brandon Young*¹; Bryan Gamboa¹; Denise Alanis²; Luiz Fernando Fernando Cotica²; Amar Bhalla¹; Ruyan Guo¹; ¹University of Texas at San Antonio; ²State University of Maringá #### 11.00 AM Novel Two Phase Self-assembled Nanopillar Heterostructures with E-field Induced Magnetization Manipulation: Xiao Tang¹; Min Gao¹; Chung Ming Leung¹; Jiefang Li¹; Dwight Viehland¹; ¹Virginia Tech #### 11:20 AM Magnetoelectric Coupling Induced Multistate Magnetization: Zhiguang Wang¹; Yanxi Li²; Dwight Viehland²; ¹Xi²an Jiaotong University; ²Virginia Tech #### 11:40 AM Study of Magnetoelectric Properties in Bi_{1-x}Nd_xFe_{1-y}Co_yO₃ Compositions: Anuar Mincache¹; Odair Oliveira²; Luiz Cótica²; Ivair Santos²; Gustavo Sanguino²; Amar Bhalla³; Ruyan Guo³; ¹State University of Maringa; ²State University of Maringa; ³University of Texas at San Antonio # Advances in Zinc-coated Sheet Steel Processing and Properties — Advances in Zinc-coated Sheet Steel Processing and Properties I Program Organizers: Frank Goodwin, ILZRO; Joseph McDermid, McMaster University Monday AM Room: A225 October 15, 2018 Location: Greater Columbus Convention Center Session Chair: Joseph McDermid, McMaster University #### 8:00 AM Impact of Roughness Length Scale on Spectral Emissivity during Intercritical Annealing of Advanced High Strength Steels: *Kaihsiang Lin*¹; Simon Trivett¹; Kyle Daun¹; ¹UW #### 8:20 AM Influence of Processing Heat Cycles on the Mechanical Properties and Zinc Adhesion of Advanced High Strength Steels: *Marina Pushkareva*¹; Myriam Brochu¹; ¹Polytechnique Montreal #### 8:40 AM Effect of Liquid Metal Embrittlement Cracks on Resistance Spot Weld Fracture: Chris DiGiovanni¹; Andrew Macwan²; Elliot Biro¹; Norman Zhou¹; ¹University of Waterloo; ²ArcelorMittal Global Research #### 9:00 AM Interaction of Zinc Penetration and Propagation for Liquid Metal Embrittlement Cracks in Zinc-coated AHSS Resistance Spot Welds: Yeongdo Park¹; Siva Prasad Murugan¹; Chun Chang Keun²; ¹Dong-Eui University; ²Research Institute of Industrial Science & Technology #### 9.20 AM **Liquid Metal Embrittlement in Laser Beam Welding of Zn-coated Advanced High Strength Steels**: *Mohammad Hadi Razmpoosh*¹; Elliot Biro¹; Norman Zhou¹; ¹University of Waterloo #### 9:40 AN Weldability Evaluation of Zn and Al-Si Coated Hot Press Forming (HPF) Steels in Resistance Spot Welding: *Changwook Ji*¹; Joo Yong Cheon¹; Jae Hoon Kim¹; ¹Korea Institute of Industrial Technology #### Boron, Boron Coatings, Boron Compounds and Boron Nanomaterials: Structure, Properties, Processing, and Applications — 2D Boron & Clusters Program Organizers: Jens Kunstmann, Technische Universität Dresden; Roumiana Petrova, New Jersey Institute of Technology; Scott Beckman, Washington State University Monday AM Room: B244/245 October 15, 2018 Location: Greater Columbus Convention Center Session Chair: Jens Kunstmann, TU Dresden #### 8:00 AM Invited Recent Advances in Structure and Bonding of Boron Clusters: Minh Tho Nguyen¹; ¹KU Leuven #### 8:40 AM Invited **Dirac** Δ**-Cones in** χ₃ **Borophene**: *Iwao Matsuda*¹; ¹the University of Tokyo #### 9:20 AM Invited Hydrogen Boride Sheets Derived from MgB₂ by Cation Exchange: *Takahiro Kondo*¹; ¹University of Tsukuba #### 10:00 AM Break #### 10:20 AM Invited Structure and Properties of 2D Borocarbonitrides as Predicted by Firstprinciples Calculations: Nevill Gonzalez Szwacki¹, ¹Faculty of Physics, University of Warsaw # Catalyst Support Materials and Support Effect — Catalyst Support Materials and Support Effect Program Organizers: Ruigang Wang, The University Of Alabama; Zhenmeng Peng, University of Akron; Bin Liu, Kansas State University Monday AM Room: C170 October 15, 2018 Location: Greater Columbus Convention Center Session Chairs: Ruigang Wang, The University of Alabama; Zhenmeng Peng, The University of Akron #### 8:00 AM Intriguing Catalyst Supports via Additive Manufacturing: Joe Cesarano¹; John Stuecker¹; James Miller²; Robert Ferrizz²; ¹Robocasting Enterprises; ²Sandia National Labs #### 8:20 AM Catalytic Application of Palladium Based Hierarchical Hybrid Carbon Material: Wenhu Wang¹; Marlikarjuna Nadagouda¹; Sharmila Mukhopadhyay¹; ¹Wright State University #### 8:40 AM New Technique For Restoring Catalyst Activity In MIDREX DR Plants (SEALPRO-G): Gaber Hefny¹; ¹EZDK #### 9:00 AM Effect of Metal-support Interaction on Catalytic Activity and Redox Property of Supported Co-M (M=Ru, Pd, Ag, Pt and Au) Bimetallic Catalysts: *Zhongqi Liu*¹; Junhao Li¹; Ruigang Wang¹; ¹The University of Alabama #### 9:20 AM Ab Initio Modeling of Catalysis with Surface Overlayers: Maytal Caspary Toroker¹; ¹Technion - Israel Institute of Technology #### 0.40 AM Surface Property Optimization for Improved Efficiency of the Environmental Control and Life Support System: Timothy Hall¹; *Dan Wang*¹; Santosh Vijapur¹; EJ Taylor¹; Carlos Cabrera²; Armando Peña-Duarte²; Melissa Vega-Cartagena²; ¹Faraday Technology Inc; ²University of Puerto Rico, #### 10:00 AM Break #### 10:20 AM Invited Nitrogen-doped Ordered Mesoporous Carbon/Graphene Framework as Dual Electrocatalyst for Oxygen Reduction and Evolution Reactions: Zhenmeng Peng'; 'University of Akron
10:50 AM Support Structure and Reduction Treatment Effects on CO Oxidation of SiO2 Nanospheres and CeO2 Nanorods Supported Ruthenium Catalysts: *Junhao Li*¹; Zhongqi Liu¹; Ruigang Wang¹; ¹The University of Alabama #### 11:10 AM Catalyst Reduction of MIDREX Direct Reduction Plants without Using Natural Gas, New Technique: $Gaber\ Hefiny^1$; 1EZDK # Ceramic and Crystal Materials for Optics and Photonics — Session I Program Organizers: Yiquan Wu, Alfred University; Jas Sanghera, Naval Research Laboratory; Michael Squillante, RMD, Inc; Akio Ikesue, World-Lab. Co., Ltd; Mark Dubinskiy, Amy Research Laboratory Monday AM Room: A113 October 15, 2018 Location: Greater Columbus Convention Center Session Chairs: Woohong (Rick) Kim, Naval Research Laboratory; Yiquan Wu, Alfred University #### 8:00 AM Invited **Transparent Polycrystalline Ceramics Fabricated under High Pressure and Temperature**: *Norimasa Nishiyama*¹; Fuminiro Wakai¹; ¹Tokyo Institute of Technology #### 8:40 AM Invited Powder Engineering for Highly Transparent Rare-earth SesquioxideCeramics: Ji-Guang Li¹; ¹National Institute for Materials Science #### 9:20 AM Invited Solid-state Sintering of Zinc Sulfide Based Infrared Optical Ceramics: $Yiyu Li^1$; Yiquan Wu 1 ; 1 Alfred University #### 9:40 AM Invited Advanced Optical Materials for IR Applications: Woohong (Rick) Kim¹; Guillermo Villalobos¹; Shyam Bayya¹; Brandon Shaw¹; Colin Baker¹; Michael Hunt¹; Lynda Busse¹; Darryl Boyd¹; Bryan Sadowski²; Ishwar Aggarwal²; Jasbinder Sanghera¹; ¹Naval Research Laboratory; ²KeyW Corp. #### 10:00 AM Break #### 10:20 AM Invited **Promising Magneto-optical Ceramics for High Power Faraday Isolators**: *Jiang Li*¹; Jiawei Dai¹; ¹Shanghai Institute of Ceramics, Chinese Academy of Sciences #### 10:40 AM Invited Recent Progress on the MIR Laser Applications of Tm-doped and Er-doped Fluorite-type Crystals: Liangbi Su¹; Fengkai Ma¹; Xinsheng Guo¹; Dapeng Jiang¹; Jie Liu²; Tao Li³; Jun Xu⁴; ¹Shanghai Institute of Ceramics, Chinese Academy of Sciences; ²Shandong Normal University; ³Shangdong University; ⁴Tongji University #### 11:20 AM Invited Refractive Index Patterning of Infrared Glass Ceramics through Laser-induced Vitrification: Myungkoo Kang¹; Laura Sisken¹; Justin Cook¹; Cesar Blanco¹; Martin Richardson¹; Ilya Mingareev²; Kathleen Richardson¹; ¹University of Central Florida; ²University of Central Florida; Florida Institute of Technology # Characterization & Methods in Failure Analysis — Tools & Techniques I Program Organizers: Andrew Havics, PH2 LLC; Burak Akyuz, ATS, Inc.; Pierre Dupont, UMONS Faculté polytechnique de MONS (FPMs) Monday AM Room: A211 October 15, 2018 Location: Greater Columbus Convention Center Session Chairs: Erhan Ulvan, Acuren Group Inc.; Mark Russell, Engineering Design & Testing Corporation; Tim Jur, Engineering Design & Testing Corporation; Ellen Wright, Engineering Systems Inc. #### 8:00 AM Investigating and Trending Precursor Failures to Prevent Major Incidents: *Nicholas Cherolis*¹; Daniel Benac¹; ¹Baker Engineering and Risk Consultants, Inc. #### 8:20 AM Investigative Use of Reverse Engineering Techniques: Application to Metallurgical Laboratory Analysis of an Aircraft Accident: Dale Alexander¹; Robert Franzese¹; Matthew Kenner¹; Alison Maratea¹; Gary Novak¹; Michael Stevenson¹; Jacob Wagner¹; ¹ESi #### 8:40 AM Failure Analysis of Hydraulic Components: Yindong Ge¹; ¹Parker Hannifin Corporation #### 9:00 AM Avoiding Mischaracterization of Metallographic and Fractographic Features of Copper Alloys Used in Potable Water Systems: *Eric Weishaupt*¹; ¹ESi #### 9:20 AN Analysis of Gear Machining Profile Mismatch to avoid Premature Failure: $Ahmed\ Elkholy^1;\ ^1$ Kuwait University #### 9:40 AM Invited Use of Eddy Current Conductivity and Hardness Testing to Evaluate Heat Damage in Aluminum Alloys: *Erik Mueller*¹; Luis Carney²; Kara Mixson²; ¹NTSB; ²NAVAIR Materials Engineering, ISSC-Jacksonville # MSaT18 #### MATERIALS SCIENCE & TECHNOLOGY #### 10:00 AM Break #### 10:20 AM Quasi-dynamic Approach of X-ray Computed Tomography for Characterization of Progressive Damage in Composite Materials and Structures: Ryan Deacon¹; Mark Gurvich¹; Neal Magdefrau¹; Matthew Mordasky¹; Greg Ojard¹; Kerisha Williams¹; ¹United Technologies Research Center #### 10:40 AM Invited **Detection of Cracks in Materials Using Heterodyne Lock-in Hermography and Signal Processing Techniques**: Marat Khafizov¹; Kevin Agarwal¹; ¹The Ohio State University #### 11:00 AM Invited EBSD as a Technique for Visualizing and Better Analyzing Failure/Fatigue Properties: Michael Hjelmstad¹; ¹Oxford Instruments #### 11.20 AM Invited Endoscopy as a Tool for Failures Prevention in Machineries: Pierre Dupont¹; Pierre Dupont¹; ¹Schaeffler Belgium Sprl/Bvba #### 11.40 AM **Integrated 3D Data Analysis for Metallurgical Failure Analysis**: Matthew Kenner¹; *Michael Stevenson*¹; Robert Bailey¹; Gary Rogers¹; Pierce Umberger¹; Dale Alexander¹; ¹ESi #### Composition-Processing-Microstructure-Property Relationships of Titanium Alloys — Heat Treatment & Processing, Powder Metallurgy Program Organizers: Benjamin Morrow, Los Alamos National Laboratory; Carl Boehlert, Michigan State University; Kayla Calvert, TIMET - HTL; Yufeng Zheng, The Ohio State University Monday AM Room: C150 October 15, 2018 Location: Greater Columbus Convention Center Session Chairs: Yunzhi Wang, Ohio State Univ; Vikas Sinha, Air Force Research Laboratory #### 8:00 AM Invited **Abnormal Grain Growth in Beta-annealed Ti-6Al-4V**: *V. Sinha*¹; A.L. Pilchak²; E.J. Payton²; S.L. Semiatin²; ¹Air Force Research Laboratory/UES, Inc.; ²Air Force Research Laboratory #### 8:30 AM Invited **Modeling Abnormal Grain Growth in Beta-annealed Ti-6Al-4V**: *Adam Pilchak*¹; Lee Morris²; Shesh Srivatsa³; Ryan O'Hara²; V. Sinha⁴; Eric Payton; Lee Semiatin⁵; ¹Air Force Research Laboratory; ²Air Force Institute of Technology (AFIT); ³Srivatsa Consulting, LLC; ⁴Air Force Research Laboratory, Materials and Manufacturing Directorate, AFRL/RXCM and UES, Inc.; ⁵Air Force Research Laboratory, Materials and Manufacturing Directorate, AFRL/RXCM #### 9:00 AM Accelerated Sintering of Powder Metallurgy (PM) Ti-6Al-4V Alloy at the Beta Transus and Its High Fatigue Performance: Pankaj Kumar¹; K.S. Ravi Chandran¹; ¹University of Utah #### 9:20 AM **Heat Treatment of Alpha+BetaTitanium Alloys**: *Alireza Fadavi Boostani*¹; Shiraz Mujahid²; Andrew L. Oppedal¹; Wilburn R. Whittington²; Cory Krivanec¹; Haitham El Kadiri²; ¹Center for Advanced Vehicular Systems; ²Mississippi State University #### 9:40 AM Invited Computational Design of Heterogeneous Microstructures for Alpha+Beta Ti-Alloys: Tianlong Zhang¹; Dong Wang¹; Yufeng Zheng²; Rongpei Shi²; Hamish Fraser²; Yunzhi Wang²; ¹Xi²an Jiaotong University; ²The Ohio State University #### 10:10 AM Break #### 10:30 AM A Critical Analysis of Thermo-mechanical Simulation and Testing of Powder-metallurgy Titanium Alloys: Austin Mann¹; Ali Yousefiani¹; James Dobbs¹; Karen Thacker¹; ¹Boeing Research & Technology #### 10:50 AM Effect of Rapid Heat Treatment on the Microstructure of Alpha+ Beta Titanium Alloys: *Shiraz Mujahid*¹; Alireza Boostani¹; Andrew Oppedal¹; Wilburn Whittington¹; Cory Krivanec¹; Haitham ElKadiri¹; ¹Mississippi State University #### 11:10 AM Structure and Mechanical Properties of Layered Materials on Base of Ti-6Al-4V Alloy Fabricated Using Powder Metallurgy Approach: Pavlo Markovsky¹; Orest Ivasishin¹; Dmytro Savvakin¹; Vadym Bondarchuk¹; Oleksandr Stasiuk¹; Sergey Prikhodko²; ¹Institute for Metal Physics; ²University of California Los Angeles # Curricular Innovations and Continuous Improvement of Academic Programs (and Satisfying ABET along the Way): The Elizabeth Judson Memorial Symposium — ABET and Accreditation Program Organizers: Gregg Janowski, University of Alabama at Birmingham; Devarajan Venugopalan, University of Wisconsin-Milwaukee; Thomas Bieler, Michigan State University; Jeffrey Fergus, Auburn University; Janet Callahan, Boise State University; Ronald Gibala, University of Michigan; Tonya Stone, Mississippi State University Monday AM Room: B232 October 15, 2018 Location: Greater Columbus Convention Center Session Chairs: Dev Venugopalan, University of Wisconsin-Milwaukee; Gregg Janowski, University of Alabama at Birmingham #### 8:00 AM Introductory Comments #### 8:10 AM Invited Curricular Innovations and Continuous Improvement of Academic Programs (and Satisfying ABET along the Way): The Elizabeth Judson Memorial Symposium: *Joseph Sussman*¹; Michael Milligan¹; ¹ABET #### 8:50 AM Changes in ABET Engineering Criteria 3 and 5: Jeffrey Fergus¹; ¹Auburn University #### 9:30 AM Invited Practical Advice on Preparing for an EAC/ABET Accreditation Visit: *Gregg Janowski*¹; ¹University of Alabama at Birmingham #### 10:10 AM Break **10:30 AM Panel:** Panel Discussion includes Joseph Sussman, Jeffrey Fergus, Gregg Janowski, and Devarajan Venugopalan # Environmental Degradation and Embrittlement of Structural Metals — Stress Corrosion Cracking I Program Organizers: Jun Song, McGill University; Ankit Srivastava, Texas A&M University; Homero Castaneda, Texas A&M University; Salim Brahimi, McGill University / IBECA Technologies; Frank Cheng, University of Calgary; Ronald Miller, Carleton University; Xin Pang, Canmetmaterials, Natural Resources Canada; Stephen Yue, McGill University Monday AM Room: C162A/162B October 15, 2018 Location: Greater Columbus Convention Center Session Chairs: Xin Pang, Natural Resources Canada; Ankit Srivastava, Texas A&M University #### 8:00 AM Break #### 8:30 AM Keynote Characterizing the Local Electrochemical Effects on Environmental Assisted Cracking: Homero Castaneda¹; Ankit Srivastava¹; ¹Texas A&M University #### 9:10 AM Synergistic Effects of Corrosion and Slow Strain Rate Loading on the Mechanical Behavior of an Aluminum Alloy: Xinzhu Zheng¹; Homero Castaneda¹; Ankit Srivastava¹; ¹Texas A&M University #### 9:30 AM Comparison of the Effect of Sensitization on Corrosion
Fatigue of AA5456-H116 for In-service Versus Laboratory Accelerated Sensitization: Allison Akman¹; Jenifer (Warner) Locke¹; ¹Ohio State University #### 9:50 AM Invited Corrosion Fatigue of AZ31B Magnesium Alloy with Hard Ceramic Surface Coating: Xin Pang¹; Yuna Xue²; Bailing Jiang³; Hamid Jahed⁴; ¹CanmetMATERIALS, Natural Resources Canada; ²Xi'an University of Technology; University of Waterloo; ³Xi'an University of Technology; ⁴University of Waterloo #### 10:10 AM Break #### 10:30 AM **Desensitization of Al-Mg Alloys with Boron Addition**: *Ramasis Goswami*¹; Syed Qadri¹; ¹Naval Research Laboratory #### 10:50 AM Development of Predictive Capabilities for Stress Corrosion Cracking of Corrosion Resistant Alloys via Empirical and First Principles Methods: *Brandon Free*¹; James Saal²; Pin Lu²; Christopher Taylor¹; John Scully³; Jenifer (Warner) Locke⁴; ¹Fontana Corrosion Center, The Ohio State University; ²QuesTek Innovations LLC; ³Department of Materials Science and Engineering, University of Virginia; ⁴The Ohio State University # Glass, Amorphous, and Optical Materials: Common Issues within Science & Technology — Chemical and Transport Processes in Glasses Program Organizers: John Kieffer, University of Michigan; Liping Huang, Rensselaer Polytechnic Institute Monday AM Room: A115 October 15, 2018 Location: Greater Columbus Convention Center Session Chair: To Be Announced #### 8:10 AM Invited Amorphous Transitions: The Role of Metasomatic Changes on Glass Corrosion Performance: *Joseph Ryan*¹, ¹Pacific Northwest National Laboratory #### 8:40 AM Invited A Structural Approach to Understand the Corrosion of Aluminoborate Glasses: *Ashutosh Goel*¹; Saurabh Kapoor¹; Randall Youngman²; Nicholas Smith²; ¹Rutgers, The State University of New Jersey; ²Corning Incorporated #### 9:10 AM Predicting the Dissolution Kinetics of Silicate Glasses Using Machine Learning: N. M. Anoop Krishnan¹; *Mathieu Bauchy*²; ¹IIT Delhi; ²University of California, Los Angeles #### 9:30 AM Invited Understanding Silicate Glass-water Interactions and Reactions from Atomistic Based Computer Simulations: *Jincheng Du*¹; ¹University of North Texas #### 10:00 AM Break #### 10:20 AM Invited New Solid State Na+ Ion Conducting Glassy Solid Electrolytes: Steve W. $Martin^1$; 1 Iowa State University #### 10:50 AN Ionic Mobility and Mechanical Stiffness in Mixed-Network Former Glasses: Experiments vs. Molecular Simulations: Vazrik Keshishian¹; Rafat Mohammadi¹; John Kieffer¹; ¹University of Michigan # IMS Symposium on Metallography and Microstructural Characterization of Materials and the Correlation of Microstructure to Mechanical Properties — Metallographic Preparation Techniques of Materials Program Organizers: Daniel Dennies, DMS, Inc.; James Martinez, NASA Johnson Space Center; Michael Keeble, Buehler, A Division of ITW; Jaret Frafjord, IMR Test Labs - Portland Monday AM Room: A212 October 15, 2018 Location: Greater Columbus Convention Center Session Chairs: Daniel Dennies, DMS, Inc.; George Vander Voort, Vander Voort Consulting LLC; Tony Havics, pH2, LLC; Burak Akyuz, ATS, Inc. #### 8:00 AM **Mechanism of Etching of Al-4.5Mg-1.0Mn Alloy**: *Aline D. Gabbardo*¹; Xi Wang¹; Angeire Huggins¹; Gerald Frankel¹; ¹Ohio State University #### 8:20 AM Invited Polymerography: Chemical Etching of Polymers: Andrew Havics¹; ¹PH2 LLC # MSeT18 #### MATERIALS SCIENCE & TECHNOLOGY #### 8:40 AM Chemical Etching of Porcelain: Max Modugno¹; Hyojin Lee¹; William Carty¹; ¹New York State College of Ceramics at Alfred University #### 9:00 AM Etching of Polycrystalline Alumina: Sarah Whipkey¹; Hyojin Lee¹; William Carty¹; ¹Alfred University #### 9:20 AM Invited Metallographic Preparation of Coatings: Jessica Enos¹; ¹Allied High Tech Products #### 9:40 AM Invited Metallographic Preparation of Soft and Ductile Materials Using Mechanical Polishing Techniques: *Michael Keeble*¹; ¹Buehler #### 10:00 AM Break #### 10:20 AM Invited Microchemical Testing as a Tool for the Materials Engineer: $Andrew\ Havics^1;$ PH2 LLC #### 10:40 AM Invited Examination of the Steel Used to Construct the USS Arizona: George Vander Voort¹; ¹Vander Voort Consulting L.L.C. #### 11:00 AM Invited Three Strikes Your Out: Shutting Down the Argument on Poor Fastener Quality: Michael Connelly¹; ¹Casey Products Inc #### 11:20 AM Advanced Microstructural Classification: How Machine Learning Can Support Us in Metallographic Practice: Dominik Britz¹; Jessica Gola¹; Frank Muecklich¹; ¹Saarland University #### 11:40 AM Difficulties Using Standard Chart Methods for Rating Non-metallic Inclusions: George Vander Voort¹, ¹Vander Voort Consulting L.L.C. # Innovative Processing and Synthesis of Ceramics, Glasses and Composites — Processing I Program Organizers: Narottam Bansal, National Aeronautics and Space Administration; Jitendra Singh, Retired, U.S. Army Research Laboratory Monday AM Room: A120 October 15, 2018 Location: Greater Columbus Convention Center Session Chair: Amjad Almansour, NASA Glenn Research Center #### 8:00 AM Beta-silicon Carbide Powders from Continuous Electro-thermal Processing: Jeff Vervlied¹; ¹Superior Graphite #### 8:20 AM Fabricating Mesoporous Silicon Carbide Ceramics via Block-Copolymer Soft Templates: Lisa Rueschhoff¹; Luke Baldwin²; Robert Wheeler²; John Berrigan³; Matthew Dalton³; Hilmar Koerner³; Michael Cinibulk³; Matthew Dickerson³; ¹National Research Council Research Associate; ²UES, Inc.; ³Air Force Research Laboratory #### 8:40 AM High-entropy Metal Carbides and Borides Synthesized under Atmospheric Pressure as a New Class of Ultrahigh Temperature Ceramics: Junheng Xing¹; Paniz Foroughi¹; Andriy Durygin¹; Zhe Cheng¹; ¹Florida International University #### 9:00 AM Additive Manufacturing of SiC Using the Binder Jetting Method: Chuyuan Zheng¹; Jung Kun Lee¹; *Ian Nettleship*¹; ¹University of Pittsburgh #### 9.20 AN Optimizing the Rheology of Ceramic Suspensions for Direct-write Additive Manufacturing of Advanced Armor Ceramics: Carli Moorehead¹; Ryan Dunn¹; Nicholas Ku¹; Lionel Vargas-Gonzalez¹; ¹US Army Research Lab #### 9.40 AN **Rapid Field-assisted Sintering of UHTC Solid Solution Nanopowders**: Paniz Foroughi¹; Andriy Durygin¹; *Zhe Cheng*¹; ¹Florida International University #### 10:00 AM Break #### 10:20 AM Study on the Technology about Preparation of Al2O3-based Cermet by Oxidation-Sintering Process: Yihan Liu¹; 'Northeastern University #### 10.40 AV Synthesis and Characterization of W-TiC Nanocomposite Powders Produced via Selective Metallothermic Reactions: Ryan Dempsey¹; David Lipke²; ¹Missouri S&T; ²Missouri University of Science and Technology #### 11:00 AM Synthesis of a Two-component Carbosilane System for the Modular Production of Polymer-derived Ceramics: *Luke Baldwin*¹; Lisa Rueschhoff²; Hilmar Koerner³; Matthew Dalton³; Matthew Dickerson⁴; ¹UES Inc; ²NRC; ³Air Force Research Labs; ⁴Air Force Research Laboratory #### 11:20 AM Low-temperature Treatment of Commercial Pre-ceramic Polymers and Its Effect on the Processing of Non-oxide Ceramic Fibers and Ceramic Matrix Composites: *Zlatomir Apostolov*¹; Heather Chaput²; Elizabeth Heckman³; Michael Cinibulk¹; ¹Air Force Research Laboratory; ²UTC Corp.; ³Wright State University #### 11:40 AM Laser Shock Processing of Structural Ceramics: *Bai Cui*¹; Fei Wang¹; Xueliang Yan¹; Chenfei Zhang¹; Leimin Deng¹; Yongfeng Lu¹; Michael Nastasi¹; ¹University of Nebraska–Lincoln # Interfaces, Grain Boundaries and Surfaces from Atomistic and Macroscopic Approaches — Polycrystal Interfaces Program Organizers: John Blendell, Purdue University; Ming Tang, Rice University; Shen Dillon, University of Illinois; Wayne Kaplan, Technion - Israel Institute of Technology; Dominique Chatain, CNRS, Aix-Marseille University Monday AM Room: A122 October 15, 2018 Location: Greater Columbus Convention Center Session Chair: John Blendell, Purdue University #### 8:00 AM Invited In-situ Characterization of the Thermal Degradation of LiNi0.8Co0.15Al0.05O2 Cathode Materials for Lithium Ion Batteries: Eric Stach¹; Sooyeon Hwang²; Khim Karki³; Stanley Whittingham⁴; Guangwen Zhou⁴; ¹University of Pennsylvania; ²Brookhaven National Laboratory; ³Hummingbird Scientific; ⁴Binghamton University #### 8:40 AM Characterization of Platinum/Gamma-alumina Interfaces Combining Transmission Electron Microscopy and Density Functional Theory: Arielle Clauser¹; Kofi Oware Sarfo¹; Colin Ophus²; Raquel Giulian³; Líney Árnadóttir¹; Melissa Santala¹; ¹Oregon State University; ²Lawrence Berkeley National Laboratory; ³Universidade Federal do Rio Grande do Sul #### 9:00 AM Modeling Grain Boundaries with a Concurrent Multiscale Method: Shengfeng Yang¹; ¹Indiana University Purdue University Indianapolis Extreme Thermal Stability in Ternary Nanocrystalline Cu-Zr-Hf and Cu-Zr-Al Alloys with Amorphous Complexions: Charlette Grigorian¹; Timothy Rupert¹; ¹University of California, Irvine Grain Boundary Structure Characterization with the Smooth Overlap of Atomic Positions Descriptor: Jonathan Priedeman¹; Conrad Rosenbrock¹; Oliver Johnson¹; Eric Homer¹; ¹Brigham Young University #### 10:00 AM Break #### 10:20 AM Invited Computational Study of Chemistry on Surfaces and Interfacial Structures: Peilin Liao1; 1Purdue University #### 10:50 AM Invited Impact of Electric Fields on Grain Boundary Core Structures in SrTiO, Bicrystals: Lauren Hughes¹; Klaus Van Benthem¹; ¹University of California, Davis A Phase-field Investigation of the Stabilization of Intermetallic Precipitates through Heterophase Interface Segregation: Sourabh Kadambi¹; Srikanth Patala¹; ¹North Carolina State University Grain Boundary Manipulation in Directionally Solidified Bicrystals: Logan Ware¹; Daniel Suzuki¹; Andrew Catalanotto²; Zachary Cordero¹; ¹Rice University; ²University of Texas at Tyler #### **International Symposium on Ceramic Matrix** Composites — Processing and Microstructure **Evolution** Program Organizers: Jitendra Singh, Retired, U.S. Army Research Laboratory; Narottam Bansal, National Aeronautics and Space
Administration; Jacques Lamon, CNRS; Sung Choi, Naval Air Systems Command Monday AM Room: A114 Location: Greater Columbus Convention October 15, 2018 Center Session Chair: Raj Singh, Oklahoma State University #### 8:00 AM Invited Current Trends and Future Prospects for Ceramic Matrix Composites: Raj Singh1; 1Oklahoma State University Development of Low Temperature, Dense Composite Material Using a Hybrid **Deposition Technique**: Sumit Bhattacharya¹; Abdellatif Yacout²; National Laboratory; 2Argonne National laboratory #### 9:00 AM Invited Pre-ceramic Polymers for Enhanced Processing and Improved Properties of Ceramic Matrix Composites: Zlatomir Apostolov¹; Matthew Dickerson¹; Thomas Key²; Luke Baldwin²; Lisa Rueschhoff¹; Michael Cinibulk¹; ¹Air Force Research Laboratory; ²UES Inc. #### 9:40 AM Scalable Measurements of Tow Architecture Variability in Braided Ceramic Composite Tubes: Frederick Heim¹; Brendan Croom¹; Clifton Bumgardner¹; Xiaodong Li1; 1University of Virginia #### 10:00 AM Break #### 10:20 AM Advanced Environmental Barrier Coatings for SiC CMCs: Larry Fehrenbacher¹; ¹Technology Assessment & Transfer Inc. #### 10:40 AM Microstructural Evolution of Silicate-based Environmental Barrier Coatings in Combustion Environments: Mackenzie Ridley¹; Elizabeth Opila¹; Robert Golden²; ¹University of Virginia; ²Rolls-Royce #### 11:00 AM Study on Structure and Thermal Stability of Ferrite Cermets: Yihan Liu¹; ¹Northeastern University #### International Symposium on Defects, Transport and Related Phenomena — Defect Formation and **Properties** Program Organizers: Tatsuya Kawada, Tohoku University; Manfred Martin, RWTH Aachen University; Sangtae Kim, University of California, Davis; William Chueh, Stanford University Monday AM Room: B242/243 October 15, 2018 Location: Greater Columbus Convention Session Chairs: Tatsuya Kawada, Tohoku University; Dane Morgan, University of Wisconsin-Madison #### 8:00 AM Invited Oxygen Point Defect Formation and Migration in Ruddlesden-Popper Phases: Dane Morgan¹; Shenzhen Xu²; Ryan Jacobs¹; Wei Xie³; Dongkyu Lee⁴; Ho-Nyung Lee⁵; ¹University of Wisconsin; ²Princeton University; ³University of CA, Berkeley; ⁴University of South Carolina; ⁵Oak Ridge National Laboratory #### 8:40 AM Invited Polaron Size and Shape Effects on Oxygen Vacancy Interactions in Lanthanum Strontium Ferrite: Yue Qi1; Tridip Das1; Jason Nicholas1; 1Michigan State University #### 9:20 AM Structurally Driven Magnetic Disorder in Entropy Stabilized Oxides: Peter Meisenheimer¹; John Heron¹; ¹University of Michigan #### 9:40 AM Thermodynamic Analysis of Oxygen Vacancy Formation in Perovskite Type Oxides for Solar Thermochemical Cycles: Ryo Hishinuma¹; Keiji Yashiro¹; Tatsuya Kawada¹; ¹Tohoku University #### 10:00 AM Break Phase Equilibria and Defect Chemistry of Cu2ZnSnS4: Pinwen Guan¹; ShunLi Shang¹; Greta Lindwall¹; Timothy Anderson¹; Zi-Kui Liu¹; ¹Pennsylvania State University # MS&T18 #### MATERIALS SCIENCE & TECHNOLOGY 10:40 AM Invited Melting Mechanisms of Alkali Metasilicate Crystals: The Role of Point Defects: Alastair Cormack¹; ¹Alfred University #### 11:20 AM Invited Solid-state NMR Study on Hydration Mechanism in Perovskite-type Protonic Conductors: *Itaru Oikawa*¹; Hitoshi Takamura¹; ¹Tohoku University # Joining of Advanced and Specialty Materials (JASM XX) — Plenary: 20 Years of JASM Program Organizers: Mathieu Brochu, Mcgill University; Anming Hu, University of Tennessee Knoxville; Boian Alexandrov, Ohio State University; Darren Barborak, WeldQC, Inc; Akio Hirose, Osaka University; Peng He, Harbin Institute of Technology; Zhiyong Gu, University of Massachusetts Lowell Monday AM Room: C171 October 15, 2018 Location: Greater Columbus Convention Center Session Chair: Boian Alexandrov, Ohio State University #### 8:00 AM Invited The Holy Grail of Welding: The Perfect Weldability Test: John Lippold¹; ¹Ohio State University #### 8:30 AM Invited Use of Modeling Tools for Controlling Weld Microstructure and Properties: *John DuPont*¹; ¹Lehigh University #### 9:00 AM Invited Welding and Joining at Microscale and Nanoscale: A Perspective: Norman Zhou¹; ¹University of Waterloo #### 9:30 AM Invited The Intercritical Heat-affected Zone of Steel Welds: Leijun Li¹; ¹University of Alberta #### 10:00 AM Break #### 10:20 AM Invited Materials Quality Assurance of Welded and 3D-Printed Structures: Stephen Liu^1 ; ¹Colorado School of Mines #### 10:50 AM Invited Process Based Qualification Components Made by Welding and Additive Manufacturing: Sudarsanam Babu¹; ¹The University of Tennessee, Knoxville #### 11:20 AM Invited $\textbf{Laser Additive Manufacturing of Grade 91 F/M Steel: } \textit{Thomas Lienert}^i; \ ^{I}Los \ Alamos \ National \ Laboratory$ #### Light Metal Technology – Applications for the Transportation Industry — Aluminium Alloys Casting I Program Organizers: Julie Levesque, Quebec Metallurgy Center; Mihaiela Isac, McGill Metals Processing Centre; Xiaoming Wang, Purdue University; Roderick Guthrie, McGill University; Sa Ge, Hatch Ltd.; Kaan Inal, University of Waterloo; Frederic Laroche, Rio Tinto Monday AM Room: B130 October 15, 2018 Location: Greater Columbus Convention Center Session Chairs: Mihaiela Isac, McGill University; Roderick Guthrie, McGill University #### 10:20 AM **3D Sand Printed Tooling Surface Features and Their Effect on the Fatigue Behavior of Aluminum Castings**: Caitlyn Rodomsky¹; Kip Woods²; Jason Walker¹; Gerard Thiel²; *Brett Conner*¹; ¹Youngstown State University; ²University of Northern Iowa #### 10:40 AM Modeling Precipitation of Strengthening Phases and Mechanical Properties of Cast Aluminum Alloys: *Emre Cinkilic*¹; Xinyan Yan²; Alan Luo¹; ¹Ohio State University; ²Alcoa Technical Center, LLC #### 11:00 AN A Study of the Effect of Rotary Electromagnetic Stirring on the Solidification Microstructure of Aluminum Alloys: Mohammad Mahdi Aboutalebi¹; Mihaiela Isac¹; Roderick Guthrie¹; ¹McGill Metals Processing Centre (MMPC) #### 11:20 AM Numerical Simulation and Pilot Scale Horizontal Single Belt Casting Experiments Used for the Production of Thin Strips of AA6111: *Mianguang Xu*¹; Mihaiela Isac¹; Roderick Guthrie¹; ¹McGill Metals Processing Center, McGill University #### 11:40 AM Computational Study and Microstructural Analysis of AA2024 Strips Processed via the Horizontal Single Belt Casting Technique: *Justin Lee*¹; Roderick Guthrie¹; Mihaiela Isac¹; ¹MMPC, McGill University # Light Metals – Applications and Fitness-for-Service Characterization — Light Metals – Applications and Fitness-for-Service Characterization Program Organizers: Dimitry Sediako, University Of British Columbia; David Weiss, ECK Industries Inc; Kevin Anderson, Brunswick Corporation; Lukas Bichler, University of British Columbia Monday AM Room: B230 October 15, 2018 Location: Greater Columbus Convention Center Session Chair: Dimitry Sediako, University of British Columbia #### 8:00 AM Keynote **Assessing the Corrosion Resistance of Aluminum Alloys for Real-world Marine Environment Exposure**: *Kevin Anderson*¹; Christopher Misorski¹; ¹Brunswick-Mercury Marine #### 8:30 AM **Ductile Tearing Fracture Mechanics for Sub-millimeter Al Sheets**: Wade Lanning¹; Syed Javaid¹; Camilla Johnson¹; *Christopher Muhlstein*¹; ¹Georgia Institute of Tech #### 8:50 AM Effect of Confined Rolling on Microstructure and Mechanical Properties of Magnesium Alloys: *Pavitra Krishnan*¹; Laszlo Kecskes²; Tomoko Sano²; Qiuming Wei³; ¹University of North Carolina Charlotte; ²WMRD, US ARL, APG; ³UNCC #### 9:10 AM The Effects of Pre-heating on Nugget Growth and Weldability for Resistance Spot Welding of A6014 Alloy: *Joo Yong Cheon*¹; Changwook Ji¹; Jae Hun Kim¹; Oksu Kim¹; Byungchul Cha¹; ¹Korea Institute of Industrial Technology #### 9:30 AM **Properties of Various Phases in Al Powertrain Alloys: A Review**: *Ermia Aghaie*¹; Dimitry Sediako¹; ¹University of British Columbia-Okanagan #### 9:50 AM Residual Strain Characterization of an Advanced Aluminum Marine Alloy Using In-situ Neutron Diffraction: Joshua Stroh¹; Dimitry Sediako¹; ¹UBC Okanagan #### 10:10 AM Break #### 10:30 AM Keynote **Microstructure: Phases and Morphologies**: Domonkos Tolnai¹; Serge Gavras¹; R. H. Buzolin²; *Norbert Hort*¹; ¹Magnesium Innovation Centre, Helmholtz Zentrum Geesthacht; ²Institute of Materials Science, Joining and Forming, Graz University of Technology #### 11:00 AM Investigating the Tribological Behaviour of Magnesium-Based Nanocomposites: *Srivatsan Tirumalai*¹; Subramanian. Jayalakshmi²; Singh Arvind²; Manoj Gupta²; ¹Bangalore, India; ²Kumaraguru College of Technology #### 11:20 AM Corrosion Performance of Warm-formed Automotive Heat Exchanger Components: *Michael Benoit*¹; Sooky Winkler²; Mary Wells³; Carolyn Hansson¹; ¹University of Waterloo; ²Dana Canada Corporation; ³University of Guelph #### 11:40 AM The Effect of an Al-Ti Grain Refiner on Hot Tearing of AZ91D Mg Alloy: *Tyler Davis*¹; Lukas Bichler¹; ¹University of British Columbia # Materials for Nuclear Applications and Extreme Environments — Metallic Alloys for Nuclear Systems Program Organizers: Cory Trivelpiece, Savannah River National Laboratory; Dev Chidambaram, University of Nevada, Reno; Raul Rebak, GE Global Research; Yutai Katoh, Oak Ridge National Laboratory; Jake Amoroso, Savannah River National Laboratory; Kevin Fox, Savannah River National Laboratory Monday AM Room: D183 October 15, 2018 Location: Greater Columbus Convention Center Session Chair: Michael Tonks, University of Florida #### 8:00 AM Invited Embrittlement of RPV Surveillance Welds Irradiated up to High Fluence over a Wide Range of Flux: G. Robert Odette¹; Randy Nanstad²; Nathan Almirall¹; Peter Wells¹; Takuya Yamamoto¹; ¹University of California Santa Barbara; ²Oak Ridge National Laboratory #### 8:40 AM Oxidation Behavior of Zr-alloy Cladding Candidates for the TREAT Reactor LEU Fuel Core: *Jordan Vandegrift*¹; Patrick Price¹; Darryl Butt¹; Clemente Parga²; Ben Coryell²; Brian Jaques¹; ¹Boise State University; ²Idaho
National Laboratory #### 9:00 AM Advanced Manufacturing of Ferritic Martensitic Steels for Fuel Cladding: Ducts and Wrappers: Niyanth Sridharan¹; Kevin Field¹; ¹Oak Ridge National Laboratory #### 9:20 AM Effects of Surface Treatments and Finishes on the High Temperature Oxidation Behavior of Alloy 800: Richard Chiang¹; Sebastien Teysseyre²; Vivekanand Kain³; Seetha Mannava¹; Vijay Vasudevan¹; ¹University of Cincinnati; ²Idaho National Laboratory; ³Bhabha Atomic Research Centre #### 9:40 AM Microstructural Evaluations of Ion and Neutron Radiation Damage in MAX Phase Alloys: Can Ion Beams Emulate Neutron Damage?: Matheus Tunes¹; Stephen Donnelly¹; *Philip Edmondson*²; ¹University of Huddersfield; ²Oak Ridge National Laboratory #### 10:00 AM The Effects of Ultrasonic Nanocrystal Surface Modification on Residual Stress, Microstructure and Mechanical Properties of Alloy 600 and Alloy 690: Harsha Venkat Sai Naralasetty¹; Auezhan Amanov²; Young Shik Pyoun²; Nicholas Mohr³; Jonathan Tatman³; Ben Sutton³; Greg Frederick³; Seetha Mannava¹; Vijay Vasudevan¹; ¹University of Cincinnati; ²Sun Moon University; ³Electric Power Research Institute # Materials Issues in Nuclear Waste Management — Nuclear Waste Form Processing and Synthesis I Program Organizers: Cory Trivelpiece, Savannah River National Laboratory; Jason Lonergan, Washington State University; Jake Amoroso, Savannah River National Laboratory; Yutai Katoh, Oak Ridge National Laboratory; Kevin Fox, Savannah River National Laboratory; Josef Matyas, Pacific Northwest National Laboratory Monday AM Room: D282 October 15, 2018 Location: Greater Columbus Convention Center Session Chair: Kevin Fox, Savannah River National Laboratory #### 8:00 AM Invited Application of Metallo-organic Chemistry and Nanotechnology to Issues Faced by the Nuclear Industry: Allen Apblett¹; ¹Oklahoma State University #### 8:40 AM Nepheline Crystal Growth Behavior in High Level Nuclear Waste Glasses: Devon McClane¹; Jake Amoroso¹; Kevin Fox¹; Albert Kruger²; ¹Savannah River National Lab; ²US Department of Energy Office of River Protection #### 9:00 AM Invited Crystallization of Rare-earth Containing Phases in Molybdenum-containing Alumino-boro-silicate Glasses: John McCloy¹; Deepak Patil²; Muad Saleh²; Mostafa Ahmadzadeh²; Brian Riley³; Jarrod Crum³; Ashutosh Goel⁴; Hrishikesh Kamat⁴; Kristian Barnsley⁵; John Hanna⁵; Prashant Rajbhandari⁶; Russell Hand⁶; Neil Hyatt⁶; ¹Washington State University; ²Washington State University; ³Pacific Northwest National Laboratory; ⁴Rutgers University; ⁵Warwick University; ⁶University of Sheffield #### 9:40 AM Nuclear and Environmental Technology Division – Outstanding Student Research Award (NETD-OSR Award): Bismuth Aluminoborosilicate Glass Binders for Sintered and Vitirified High-level Waste Salt Immobilization: Levi Gardner¹; Manish Wasnik¹; Michael Simpson¹; Krista Carlson¹; ¹University of Utah # MSaT18 #### MATERIALS SCIENCE & TECHNOLOGY #### 10:00 AM Break #### 10:20 AM Invited Waste Forms: Can We Design Durable Materials and Predict Performance over Geologic Time Scales?: Eric Pierce¹; Jeremy Eskelsen¹; Michelle Chiu¹; ¹Oak Ridge National Laboratory #### 11:00 AM Contributions to Enhanced Waste Glasses for the Hanford Waste Treatment and Immobilization Plant: Kevin Fox¹; Devon McClane¹; Jake Amoroso¹; Mark Fowley¹; Albert Kruger²; ¹Savannah River National Lab; ²US Department of Energy Office of River Protection #### 11:20 AM Review of Sorbent Materials for Ocean Mining of Uranium: Allen Apblett¹; Cory Perkins¹; ¹Oklahoma State University # Materials Property Understanding through Characterization — Novel Characterization Techniques Program Organizers: Indrajit Dutta, Corning Incorporated; Nicholas Smith, Corning Incorporated Monday AM Room: B240/241 October 15, 2018 Location: Greater Columbus Convention Center Session Chairs: Indrajit Dutta, Corning Incorporated; Nicholas Smith, Corning Incorporated; Bryan Wheaton, Corning Incorporated #### 8:00 AM Invited **3D Porosity Analysis of Collagen-hydroxyapatite Coatings for Hard Tissue Replacement**: *Tomas Silva Santisteban*¹; Le Yu²; Mei Wei²; ¹Thermo Fisher Scientific; ²University of Connecticut #### 8:40 AM Invited Connecting Structure and Properties of Amorphous Ceramics Using 4-dimensional Scanning Transmission Electron Microscopy: Menglin Zhu¹; Soohyun Im¹; Ridwan Sakidja²; Nathan Oyler³; Michelle Paquette³; Paul Rulis³; Jinwoo Hwang¹; ¹Ohio State University; ²Missouri State University; ³University of Missouri Kansas City #### 9:20 AM Quantifying Spread in Crystallographic Textures Due to Stochasticity in Deformation Processes: *Mustafa Rifat*¹; Saurabh Basu²; ¹Penn State University; ²Penn State #### 9:40 AM Invited Determining Sensitivities of Various Forming Limit Analyses Techniques to Changes in Experimental Parameters: Dilip Banerjee¹; Mark Iadicola¹; ¹National Institute of Standards and Technology #### 10:20 AM Break #### 10:40 AM **Predictive Hardness Modeling of Materials**: *Hongveun Kim*¹; Shunli Shang¹; Laszlo Kecskes²; Zi-Kui Liu¹; ¹Penn State University; ²Matsys # Materials Science and Engineering of Earth Abundant Materials — Materials Science and Engineering of Earth Abundant Materials Program Organizers: Jessica Rimsza, Sandia National Laboratories; Krishna Muralidharan, University Of Arizona Monday AM Room: A124 October 15, 2018 Location: Greater Columbus Convention Center Session Chairs: Jessica Rimsza, Sandia National Laboratories; Krishna Muralidharan, University of Arizona #### 8:00 AM Invited Bio-inspired Catalysts from Earth Abundant Materials for the Conversion of CO2 to Fuel and Chemicals: Nora De Leeuw¹; ¹Cardiff University #### 8:40 AM NMR Characterization of MgO Engineered Barrier Materials: Jessica Rimsza¹; Eric Sorte²; Todd Alam²; ¹Geochemistry Department, Sandia National Labs; ²Organic Materials Science, Sandia National Laboratories #### 9:00 AM Invited An Atomic-scale Analysis and Thermodynamic Assessment of the First Ceramics Formed in the Solar System: *Thomas Zega*¹; Venkat Manga¹; Krishna Muralidharan¹; Fred Ciesla²; Keitaro Watanaba³; Hiromi Inada³; ¹University of Arizona; ²University of Chicago; ³Hitachi High Technologies #### 9:40 AM V-segregation at (111) Twins in MgAl2O4-spinel: A First-principles Study: Venkateswara Manga¹; Thomas Zega¹; Prajkta Mane¹; Tarunika Ramprasad¹; Keith Runge¹; Krishna Muralidharan¹; ¹University of Arizona #### 10:00 AM Break #### 10:20 AM Microstructural Behaviour of Ti6Al4V during Room Temperature Deformation: Gajanan Kulkarni¹; ¹Bharat Forge LTD #### 10:40 AM Selection of Aluminum Alloy for Casting Defectless Thermoforming Molds Using Green Sand Foundry Technology: An Experimental Approach: Abdullah Al Shafe¹; Sabila Kader Pinky²; Cynthia K. Waters¹; ¹North Carolina A&T State University; ²Missouri State University #### Multifunctional Ceramic- and Metal-matrix Composites: Processing, Microstructure, Properties and Performance — Novel Composite Materials Program Organizers: Martin Pech-Canul, Cinvestav IPN Saltillo; Golam Newaz, Wayne State University; Xiaoming Wang, Purdue University Monday AM Room: A123 October 15, 2018 Location: Greater Columbus Convention Center Session Chair: Martin Pech-Canul, Cinvestav IPN Saltillo #### 8:00 AM Invited A Novel Micro/Nano Multi-scaled Cermet with Simultaneously High Hardness/ Toughness: Guan-Jun Yang¹; ¹Xi'an Jiaotong University #### 8:30 AM On the Design of Novel MAX Reinforced Ni-matrix Composites: Maharshi Dey¹; Matt Fuka¹; Surojit Gupta¹; ¹University of North Dakota #### 8:50 AM Multiscale Study of Mechanical Properties of Composite Metal Nano-foams: Andres Jimenez¹; Hang Ke¹; Cetin Cetinkaya¹; David Bahr²; *Ioannis Mastorakos*¹; ¹Clarkson University; ²Purdue University #### 9:10 AM Invited Rolling Behaviour of Aluminum Alloy 2014-10wt% SiCp Metal Matrix Composites: *Ajay Kumar P.*¹; Gajendra Dixit²; Aruna Patel³; Satyabrata Das⁴; ¹University of Wisconsin-Milwaukee, Materials Department; ²Maulana Azad National Institute of Technology, Bhopal; ³Advanced Materials and Processes Research Institute (CSIR, New Delhi), Bhopal; ⁴Indian Institute of Technology, Kanpur #### 9:30 AM Processing and Properties of Engineered Metal Matrix Composites Produced Via Co-Extrusion: Paul Brune¹; Jeremy Watts¹; Greg Hilmas¹; ¹Missouri University of Science and Technology #### 9:50 AM Characterisation and Mechanical Properties of Stainless Steel Matrix Composites Reinforced with (Nbx,Ti1-x)C Particles: Wen Hao Kan¹; Vijay Bhatia¹; Zijian Yu¹; Yong Jang¹; Kevin Dolman²; Xinhu Tang²; Timothy Lucey²; Li Chang¹; Gwénaëlle Proust¹; Julie Cairney¹; ¹University Of Sydney; ²Weir Minerals Australia Ltd #### 10:10 AM Break #### 10:30 AM **Hybrid Aluminum Matrix Composites (HAMCs) Using Powder Metallurgy Method**: *AHM Rahman*¹; Issam Abu-Mahfouz¹; Imran Zakir¹; ¹Penn State Harrisburg #### 10:50 AM Stochastic Modeling of the Effects of Structural Randomness on the Mechanical Behavior of Discontinuous Fiber-reinforced Composites: Revealing the Role of Network Coordination State: *Mujan Seij*¹; Mary Martin¹; Dorothy Richardson²; Matthew Turner¹; Thomas Balk¹; Matthew Beck¹; ¹University of Kentucky; ²Northeastern University #### 11:10 AM Invited Fabrication of High-property Graphene Reinforced Aluminum Alloy Composite by Powder Metallurgy Combined with Friction Stir Processing: Zongyi Ma¹; Zhanwei Zhang¹; Zhenyu Liu¹; Bolu Xiao¹; ¹Institute Of Metal Research Chinese Academy of Sciences #### 11:30 AM $\label{lem:comparative Assessment of Delamination control techniques in Conventional drilling of CFRP: \textit{Kamlesh Phapale}^1; \ ^1Bharat Forge \ Ltd$ # Neutron and Synchrotron Techniques for Advanced Materials Characterization — Advanced Neutron & Synchrotron Techniques Program Organizers: Helen Playford, ISIS Facility; Lewis Owen, University of Cambridge Monday AM Room: B246 October 15, 2018 Location: Greater Columbus Convention Center Session Chairs: Helen Playford, ISIS Facility; Lewis Owen, University of Cambridge ####
8:00 AM Comparing Laboratory X-ray and Neutron Methods of Diffraction-based Stress Measurements: Adam Creuziger¹; Thomas Gnaeupel-Herold²; Chris Calhoun²; ¹National Institute of Standards & Technology; ²National Institute of Standards & Tech #### 8:20 AM Identification of Orientation Relationships in Metallic Polycrystals with Neutron Diffraction: Joe Kelleher¹; ¹Engin-X, ISIS, STFC #### 8:40 AM Examining Deformation Mechanisms in Al-Cu Alloys with In-situ Neutron Diffraction: *Brian Milligan*¹; Dong Ma²; Amit Shyam²; Amy Clarke³; Lawrence Allard²; Francisco Coury³; ¹Oak Ridge National Laboratory; ²Oak Ridge National Lab; ³Colorado School of Mines #### 9:00 AM In-situ Characterisation of theThermomechanical Deformation Behaviour of Ni-based Superalloys: *Katerina Christofidou*¹; Nick Jones¹; Mark Hardy²; Howard Stone¹; ¹University of Cambridge; ²Rolls-Royce plc. #### 9:20 AM An In-situ Small-angle Synchrotron X-ray Scattering Study of Microstructural Evolution in a Ni-based Alloy: Govindarajan Muralidharan¹; Dean Pierce¹; Joseph Serio¹; Ross Andrews²; Matthew Frith²; Jan Ilavsky²; Saul Lapidus²; ¹Oak Ridge National Laboratory; ²Argonne National Laboratory #### 9:40 AN Intra-granular Strain Sensitivity in Near-field High Energy Diffraction Microscopy: Yu-Feng Shen¹; He Liu¹; Robert Suter¹; ¹Carnegie Mellon University #### 10:00 AM Break #### 10:20 AM Recent Upgrades to the Residual Stress Diffractometer HB2B at the High Flux Isotope Reactor: *Jeffrey Bunn*¹; Chris Fancher¹; Andrew Payzant¹; Barton Bailey¹; Paris Cornwell¹; ¹Oak Ridge National Laboratory #### 10:40 AM Near-surface Elemental Analysis of Solids by Neutron Depth Profiling: Jamie Weaver¹; Gregory Downing¹; ¹National Institute of Standards and Technology #### 11:00 AM *In-situ* Quasi-elastic Neutron Scattering Study on the Water Dynamics during Formation of Sustainable Cements: *Kai Gong*¹; Yongqiang Cheng²; Luke Daemen²; Claire E. White¹; ¹Princeton University; ²Oak Ridge National Laboratory #### 11:20 AM Pair Distribution Function Computed Tomography Analysis of the Local Atomic Structure of Carbonated Alkali-activated Slag Paste: Eric McCaslin¹; Claire White¹; ¹Princeton University # MSeT18 #### MATERIALS SCIENCE & TECHNOLOGY #### 11:40 AM X-ray and Neutron Pair Distribution Function Studies of Ferroelectric Nanocrystals: *Tedi-Marie Usher-Ditzian*¹; Daniel Olds¹; Jue Liu¹; Katharine Page¹; ¹Oak Ridge National Laboratory #### Next Generation Biomaterials — Biomaterials I *Program Organizers:* Roger Narayan, University of North Carolina; Vipul Davé, Johnson & Johnson; Mohan Edirisinghe, University College of London; Sanjiv Lalwani, Lynntech, Inc. Monday AM Room: D182 October 15, 2018 Location: Greater Columbus Convention Center Session Chairs: Steven Jung, Mo-Sci Corporation; Donglu Shi, University of Cincinnati #### 8:00 AM Invited #### Additive Manufacturing of Low Modulus B-Titanium Alloys for Implants: Srinivas Aditya Mantri¹; Eugene Ivanov²; *Rajarshi Banerjee*¹; ¹University of North Texas; ²Tosoh SMD Inc #### 8:20 AM Invited Advanced Tissue Engineering Scaffolds for Postoperative Cancer Patients: *Min Wang*¹; ¹The University of Hong Kong #### 8:40 AM Invited **Bouncy Bioglass for Osteochondral Regeneration**: *Julian Jones*¹; ¹Imperial College London #### 9:00 AM Cancer Cell Targeting, Imaging and Combined Chemo-photothermal Therapy by Core-shell Structured Theranostics: Qingwen Guan¹; Li-wu Zheng¹; *Min Wang*¹; ¹The University of Hong Kong #### 9:20 AM Invited Effects of Protein Corona Decoration on Oxide Nanoparticles for Medical Diagnosis and Treatment: Jian Zhao¹; Shengming Wu¹; Yilong Wang²; *Donglu Shi*³; ¹Qingdao University of Science & Technology; ²Tongji University School of Medicine; ³Tongji University School of Medicine & University of Cincinnati #### 9:40 AM The Complexity of Chemistry, Physiology, Anatomy and Bone Structure for Bioceramic Implants: *Thomas McGee*¹; ¹Osteoceramics, LLC #### 10:00 AM Break #### 10:20 AM Invited Structure/Property Relationships in Biomaterials at the Nanoscale: Federico Rosei¹; ¹INRS Centre for Energy, Matls & Telecommunications #### 10:40 AM Invited Synthetic Bone Grafting Materials Used in Orthopedics: Steven $Jung^1$; 1 Mo-Sci Corporation #### 11:00 AM Invited Calcium Phosphate based 3D Printed Scaffolds and Coatings for Treatment of Bone Disorders: Susmita Bose¹; Amit Bandyopadhyay¹; ¹Washington State University #### 11:20 AM Invited Engineered Nanomaterials with New "Touch and Kill" Mechanism to Fight Bacteria and Bacteria Ressistance: *Tolou Shokuhfar*¹; ¹University of Illinois at Chicago #### 11:40 AM Invited Bioinspired Design of Next Generation Structural and Thermal Materials: Nima Rahbar¹; ¹Worcester Polytechnic Institute ## Perspectives for Emerging Materials Professionals — Session I Program Organizers: Andrew Frerichs, The NanoSteel Company; Dharma Maddala, Arconic Technology Center Monday AM Room: B231 October 15, 2018 Location: Greater Columbus Convention Center Session Chairs: Andrew Frerichs, The NanoSteel Company; Christopher Marvel, Lehigh University #### 8:00 AM Invited **Researching for a Mission**: Shawn Coleman¹; ¹U.S. Army Research Laboratory #### 8:20 AM Invited The Professor Is In: My Transition from Graduate Student to Assistant Professor: Ashwin Shahani¹; ¹University Of Michigan #### 8:40 AM Invited The Winding Path to an Exciting Career in a DOD Laboratory. *Billy Hornbuckle*¹; ¹U.S. Army Research Laboratory #### 9.00 AM Invited A Perspective: Working at a National Laboratory: Elizabeth Hoffman¹; ¹Savannah River National Laboratory #### 9:20 AM Invited From College to Career: Preparing Yourself for Life in Industry: William Podrazky¹; ¹Hitachi High Technologies America, Inc. #### 9:40 AM Invited Making a Career Out of the Unknown: Brett Leister¹; ¹Exponent, Inc. 10:00 AM Break #### 10:20 AM Invited Studying Technology to Predict the Future of the Materials Science and Engineering Discipline: Career Planning: David Furrer¹; ¹Pratt & Whitney 10:40 AM Panel Discussion # Processing and Performance of Materials Using Microwaves, Electric and Magnetic Fields, Ultrasound, Lasers, and Mechanical Work – Rustum Roy Symposium — Session I Program Organizers: Morsi Mahmoud, King Fahd University of Petroleum and Minerals - KFUPM; Dinesh Agrawal, Pennsylvania State University; Guido Link, Karlsruhe Institute of Technology; Motoyasu Sato, Chubu University; Rishi Raj, University of Colorado; Victoria Blair, Army Research Laboratory Monday AM Room: A125 October 15, 2018 Location: Greater Columbus Convention Center Session Chairs: Morsi Mahmoud, King Fahd University of Petroleum & Minerals - KFUPM; B. Reeja Jayan, Carnegie Mellon University #### 8:00 AM Invited Microstructure and Microtexture of Induction Sintered Copper-based Powder Metal Parts: Daudi Waryoba¹; ¹Pennsylvania State University #### 8:40 AM Invited Innovative Gas Hydrate Decomposition Method by Electromagnetic Wave Irradiation of UHF to S Band: Shin Nakatani¹; Motoyasu Sato¹; Masao Yukumoto¹; Motohiko Tanaka¹; ¹Chubu University #### 9:20 AM One-dimension Magnetoelectric Gyrator: Power Conversion: Xin Zhuang¹; Chung-ming Leung²; Jiefang Li²; Dwight Viehland²; ¹Virginia Polytechnic Institute; ²Virginia Tech #### 9:40 AM Viscous Flow Mediated Spark Plasma Sintering of Iron Based Amorphous Alloy: *Tanaji Paul*¹; Sandip Harimkar¹; ¹Oklahoma State University #### 10:00 AM Break #### 10:20 AM Morphology Effect of Oxide Particles for Microwave Applications: *Christina Wildfire*¹; Terence Musho²; Edward Sabolsky²; Dushyant Shekhawat³; Robert Tempke²; ¹National Energy Technology Laboratory; ²West Virginia University; ³NETL #### 10:40 AM Laser Soldering Process for Manufacturing Camera Module: Heeshin Kang¹; Jiwhan Noh¹; ¹Korea Institute of Machinery & Materials # PSDK XIII: Phase Stability and Diffusion Kinetics — Gibbs Award Session I Program Organizers: Zi-Kui Liu, Pennsylvania State University; Michael Gao, National Energy Technology Laboratory; Hans Seifert, Karlsruhe Institute of Technology; Wei Xiong, University of Pittsburgh; Raymundo Arroyave, Texas A & M University Monday AM Room: A213 October 15, 2018 Location: Greater Columbus Convention Center Session Chairs: Carelyn Campbell, National Institute of Standards & Tech; Ji-Cheng Zhao, Ohio State University #### 8:00 AM Kevnote **High Temperature Corrosion Kinetics and the P-Pt-Rh Phase Diagram**: Anna Nakano¹; Jinichiro Nakano¹; James Bennett²; *John Morral*³; ¹U.S. Department of Energy National Energy Technology Laboratory; AECOM; ²U.S. Department of Energy National Energy Technology Laboratory; ³The Ohio State University #### 8:40 AM Invited **Thermodynamic Calculation of Aqueous Phase Diagrams**: *Arthur Pelton*¹; Gunnar Eriksson²; Klaus Hack²; Christopher Bale¹; ¹Ecole Polytechnique; ²GTT-Technologies #### 9:00 AM Invited Ocean of Data for Materials: High Throughput Modeling of Multi-component Systems: Zi-Kui Liu¹; ¹Pennsylvania State University #### 9:20 AM Invited Accessible Diffusion Data: Challenges and Opportunities: Carelyn Campbell¹; Greta Lindwall²; ¹National Institute of Standards & Tech; ²Royal Institute of Technology (KTH) #### 9:40 AM Invited **CALTPP:** A General Program to Calculate Thermophysical Properties: *Yong Du*¹; Zhoushun Zheng¹; Cong Zhang²; Yuling Liu¹; Changfa Du¹; Shuhong Liu¹; Central South University; ²University of Science and Technology Beijing #### 10:00 AM Break #### 10:20 AM Invited **Efficient Exploration of the High Entropy Space**: Raymundo Arroyave¹; ¹Texas A & M University #### 10:40 AM Invited Experimental Determination of Phase Diagrams and Diffusion Coefficients: The Ins and Outs: *Ji-Cheng Zhao*¹; ¹Ohio State University #### 11:00 AM Invited Interdiffusion and Phase-equilibria Studies in Multi-principal Element Alloys: Kaustubh Kulkarni¹; A. Bhargav Krishna²; ¹Indian Institute of Technology Kanpur; ²Iit Kanpur # Rare Earth Metals and Critical Materials: Synthesis, Processing, Production, Recent Advances — Rare Earth Metals -
Mining and Extraction Program Organizers: Yellapu Murty, MC Technologies LLC; Jack Lifton, Jack Lifton, LLC; Eric Klier, U. S. Army Research Laboratory; Michael McKittrick, U.S. Department of Energy; Ian London, Avalon Rare Metals Inc. Monday AM Room: B131 October 15, 2018 Location: Greater Columbus Convention Center Session Chairs: Yellapu Murty, MC Technologies; Jack Lifton, Jack Lifton LLC #### 8:00 AM Invited Rare Earth Elements from Coal and Coal-based Resources: Mary Anne Alvin¹; ¹National Energy Technology Laboratory #### 8:40 AM Invited Rare Earth Mining Outside of China: The Current Landscape of Operating Mines and Known Deposits: Roderick Eggert¹; 'Colorado School Of Mines #### 9:20 AM Invited Beneficiation of Rare Earths: Corby Anderson¹; ¹Colorado School of Mines 10:00 AM Break #### 10:20 AM Invited Reduction of Rare Earth Elements through Electrochemical, Metallothermic, and Arc Furnace Methods: A Review: *Patrick Taylor*¹; Matt Earlam²; Fangyu Liu¹; ¹Colorado School of Mines; ²Infiniium #### 11:00 AM Rare Earth Salts: A Breakthrough Separation Technology for Rare Earths: Alastair Neill¹; ¹Rare Earth Salts #### 11:30 AM Invited The Use of Centrifuge Technology for Treatment of Crud and Fine Particles in Mineral Processing: Marc Janson¹; *Derek Ettie*¹; ¹GEA Mechanical Equipment US, Inc. # MATSCITECH.ORG NATERIALS SCIENCE & TECHNOLOGY #### Responsive Functional Nanomaterials — Multifunctional Nanosensors Program Organizers: Wenzhuo Wu, Purdue University; Weiyang Li, Dartmouth College; Sarina Sarina, Queensland University of Technology; Wenxian Li, University of Wollongong; Jiahua Zhu, University of Akron Monday AM Room: D181 October 15, 2018 Location: Greater Columbus Convention Center Session Chair: Weiyang Li, Dartmouth College #### 8:00 AM Surface Interactions on Nanostructured Metal Oxides for Gas Sensing Applications: Janine Walker¹; Sheikh Akbar¹; Patricia Morris¹; ¹The Ohio State University - College of Engineering Department of Materials Science and Engineering #### 8:20 AM Investigation of Mechanical Behavior of Ionic Diblock Copolymer, via Molecular Dynamics Simulation: Mengze Ma¹; Yao Fu¹; ¹University of Cincinnati #### 8:40 AM Invited #### Preparation of NiO Nanostucture by Hydrothermal for H2S Gas Sensor: $Gotan Jain^1$; 1KTHM College #### 9:10 AM Nanocrystalline Electro-chemo-mechanical Actuator Operating at Room Temperature: Eran Mishuk¹; Evgeniy Makagon¹; Sidney Cohen¹; Ellen Wachtel¹; *Igor Lubomirsky*¹; ¹Weizmann Institute of Science #### 9:30 AM **Direct fabrication of Graphene-based Strain Gauge on 3D-printed ULTEM:** *Roberto Aga*¹; Eric Kreit¹; Carrie Bartsch²; Emily Heckman²; ¹KBRWYLE/Air Force Research Lab; ²AFRL #### 9:50 AM Break #### 10:10 AM Invited Fundamental Understanding and Rational Design of Multifunctional Hydrogels: *Jie Zheng*¹; Yanxian Zhang¹; Baiping Ren¹; ¹University of Akron #### 10:50 AM Emerging Piezoelectricity in Two-dimensional Chiral-Chain Van der Waals Tellurene for Energy Harvesting and Sensing: Shengjie Gao¹; Yixiu Wang²; Wenzhuo Wu²; ¹Purdue University; ²School of Industrial Engineering, Purdue University #### Selection of Materials for Application in Corrosive Environments — Materials Selection Symposium - Session I Program Organizers: Ajit Mishra, Haynes International; Matthew Asmussen, Pacific Northwestern National Laboratory; Sudhakar Mahajanam, Pinnacle Advanced Reliability Technologies; Wilfred Binns, Nuclear Waste Management Organization; John Zhang, Gamry Instruments; Guang-Ling Song, Xiamen University; Eric Schindelholz, Sandia National Laboratories; Raul Rebak, GE Global Research Monday AM Room: A220 October 15, 2018 Location: Greater Columbus Convention Center Session Chairs: Ajit Mishra, Haynes International; Eric Schindelholz, Sandia National Laboratories #### 8:00 AM Keynote Localized Corrosion of Stainless Steel in Effluent Treatment Facility of a Nuclear Waste Processing Operation: Narasi Sridhar¹; Sandeep Chawla¹; Kenneth Evans¹; Brandon Rollins¹; John Beavers¹; ¹DNVGL #### 8:40 AM Corrosion Risk Factors in Kr-85 Storage Canisters and Implications for Long Term Storage: *Matthew Asmussen*¹; Charles Demarest²; James Neeway¹; Sean Agnew²; Carolyn Pearce¹; John Scully²; ¹Pacific Northwest National Laboratory; ²University of Virginia #### 9:00 AM Corrosion Studies of the Canadian Used Nuclear Fuel Container: Wilfred Binns¹; Peter Keech¹; Nick Senior²; NWMO; CanmetMATERIALS #### 9:20 AM Application of Electrochemical Quartz Crystal Microbalance in Corrosion: *Xueyuan Zhang*¹; ¹Gamry Instruments #### 9:40 AM Bond-Energy Models of Alloy Oxides for Corrosion Resistant Alloys: Szu-Chia Chien¹; Wolfgang Windl¹; ¹The Ohio State University #### 10:00 AM Break #### 10:20 AM Corrosion Behavior of Spark Plasma Sintered Magnesium in Salt Water: *Somi Doja*¹; Antonia Ciocoiu²; Lukas Bichler²; ¹University of British Columbia; ²Univ of British Columbia #### 10:40 AM Corrosion Resistance of an Electric Field Modified Polymer Film: Zhenliang Feng¹; Guang-Ling Song¹; Dajiang Zheng¹; ¹Center for Marine Materials Corrosion and Protection, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Materials, Xiamen University #### 11:00 AM Erosion-corrosion of 90° Carbon Steel Elbow in Potash Brine-sand Slurries: Raheem Elemuren¹; Richard Evitts¹; Ikechukwuka Oguocha¹; Akindele Odeshi¹; ¹University of Saskatchewan #### 11:20 AM The Role of Alloy Microstructure on the Cavitation Corrosion Behavior of Iron-based, Nicke-based and Cobalt-based Alloys in Seawater: Hameed Al-Hashem¹; ¹PRC-KISR #### 11:40 AM High-temperature Oxidation of Dissimilar Welds at 982°C: Joseph Meyer¹; ¹Haynes International # Sintering and Related Powder Processing Science and Technologies — Sintering and Microstructural Evolution Program Organizers: Ricardo Castro, University of California, Davis; Zachary Cordero, Rice University; Eugene Olevsky, San Diego State University; Wolfgang Rheinheimer, Purdue University Monday AM Room: B142/143 October 15, 2018 Location: Greater Columbus Convention Center Session Chair: Zachary Cordero, Rice University #### 8:00 AM Invited Sintering and Grain Boundary Segregation Behavior of Silica and Rare-earth Doped Boron Suboxide Armor Ceramics: Christopher Marvel¹; Kristopher Behler²; Jerry LaSalvia³; Martin Harmer¹; ¹Lehigh University; ²U.S. Army Research Laboratory; SURVICE Engineering; ³U.S. Army Research Laboratory #### 8:40 AM Invited **Solute Segregation and Enhanced Grain Boundary Mobility in Alumina**: Ruth Moshe¹; *Wayne Kaplan*¹; ¹Technion - Israel Institute of Technology #### 9.20 AM Microstructural Evolution of Al-Cu-Mg Sintered Alloys during Semi-solid Extrusion Process: *M Davidson*¹; Asit Kumar Khanra¹; Katti Bharath¹; ¹National Institute of Tech #### 9:40 AM Investigating Anomalous Grain Growth in Calcia and Silica Doped Specialty Alumina: Christopher Marvel¹; Kevin Anderson²; Animesh Kundu¹; Martin Harmer¹; Tobias Frueh³; Charles Compson³; ¹GrainBound LLC; Lehigh University; ²Lehigh University; ³Almatis Inc #### 10:00 AM Break #### 10:20 AM Investigation of Li and Ta Addition on Physical and Electrical Properties of KNN Ceramics: *Mehmet Ozmen*¹; Baris Yavas¹; Ipek Akin¹; Onuralp Yucel¹; Filiz Sahin¹; Gultekin Goller¹; ¹Istanbul Technical University Metallurgical and Materials Engineering #### 10:40 AM Microstructure Development of Alumina during Liquid Phase Sintering in the ${\bf CaO-Al_2O_3-SiO_2}$ System: Sarah Whipkey¹; Hyojin Lee¹; William Carty¹; ¹Alfred University # Small-scale Properties of Materials and Length-scale Phenomena — Size Effect Program Organizers: Meysam Haghshenas, University of North Dakota; Charles Lu, University of Kentucky; Finn Giuliani, Imperial College London Monday AM Room: A121 October 15, 2018 Location: Greater Columbus Convention Center Session Chairs: Meysam Haghshenas, University of North Dakota; Hesam Askari, University of Rochester #### 8:00 AM Invited **Gradient Theory in Small Scales**: *Elias Aifantis*¹; ¹Aristotle University of Thessaloniki #### 8:20 AM Invited **Absence of Size Effect in a TWIP Steel**: Xiaoxue Chen¹; Vincent Hammond²; Laszlo Kecskes²; *Qiuming Wei*³; ¹UNC-Charlotte; ²US ARL; ³University of North Carolina Charlotte #### 8:40 AM Invited Size Effects in High-entropy Alloys and Quasicrystals: Yu Zou¹; ¹University of Toronto #### 9:00 AM Invited Size Effects in Mechanical Properties of Graphene Oxide Nanosheets: Chandra Veer Singh¹; ¹University of Toronto #### 9:20 AM Invited Size Effects in Microparticle Impact-bonding: Mostafa Hassani-Gangaraj¹; David Veysset¹; Keith Nelson¹; Christopher Schuh¹; ¹Massachusetts Institute of Technology #### 9:40 AM Invited Size Effects in Static and High Cycle Fatigue Micro-cantilever Tests: *Jicheng Gong*¹; Angus Wilkinson¹; ¹Materials Department, Oxford University #### 10:00 AM Break #### 10:20 AM Invited Indentation Size and Microstructure Effects on Cyclic Deformation in Rareearth Phosphate Ceramics: Corinne Packard¹; ¹Colorado School of Mines #### 10:40 AM Invited Nanoindentation of High Purity Vapor Deposited Lithium Films: A Mechanistic Rationalization of Diffusion-mediated Flow: Erik Herbert¹; Stephen Hackney¹; Nancy Dudney²; Violet Thole¹; Sudharshan Phani³; ¹Michigan Technological University; ²Oak Ridge National Laboratory; ³International Advanced Research Centre for Powder Metallurgy and New Materials #### 11:00 AM Invited Size Effects in FCC Metals: Influence of Temperature and Stacking Fault Energy: Yuan Xiao¹; Jeffrey Wheeler¹; ¹Eth Zurich #### 11:20 AM Invited Intermittent Plasticity in Microcrystals: Scale-free and Universal?: Robert Maass¹; ¹University of Illinois at Urbana Champaign # Surface Properties of Biomaterials — Biomedical Device Surface Properties and Biological Interactions Program Organizers: Venu Varanasi, University of Texas at Arlington; Ryan Bock, Amedica Corporation; Jason Langhorn, DePuy Synthes Joint Reconstruction; Susmita Bose, Washington State University; Amit Bandyopadhyay, Washington State
University Monday AM Room: D281 October 15, 2018 Location: Greater Columbus Convention Center Session Chair: Venu Varanasi, University of Texas at Arlington; Ryan Bock, Amedica Corporation; Neelam Ahuja, University of Texas at Arlington #### 8:00 AM Invited Use of Diamond Thin Films in Medical Device Applications: Roger Narayan¹; ¹University of North Carolina #### 8:40 AM Calcium Phosphate Coated Ti for Musculoskeletal Applications: Effect of Aloe Vera Gel Extract Acemannan on Biological Properties: Dishary Banerjee¹; Susmita Bose¹; ¹Washington State University # MS&T18 #### MATERIALS SCIENCE & TECHNOLOGY #### 9:00 AM Characterization of Osteoconductive Si-Y-O-N Phase Present at Annealed Silicon Nitride Surface: *Ryan Bock*¹; David Cullen²; Donovan Leonard²; Karren More²; B. Sonny Bal³; Bryan McEntire¹; ¹Amedica Corporation; ²Oak Ridge National Laboratory; ³University of Missouri #### 9:20 AM Invited Quantification of Nanoscale Adhesion Force of Staphylococcus Aureus on the Surface of Biomaterials Using Atomic Force Microscopy: Fahad Alam¹; *Kantesh Balani*²; ¹Indian Institute of Technology Kanpur; ²Indian Institute of Technology Kanpur #### 10:00 AM Break #### 10:20 AM Effect of Patterned Bioactive Amorphous Silicon Oxynitride and Phosphorus Doped Silicon Oxynitride Coatings on the C2C12 Muscle Cells: Kamal Awad¹; Jian Huang¹; Leticia Brotto¹; Pranesh Aswath¹; Marco Brotto¹; Venu Varanasi¹; ¹University of Texas at Arlington #### 10:40 AM Invited Evaluation for Immunity of Biomaterials Based on Raman Spectroscopy: *Hideyuki Kanematsu*¹; Yuta Sakagami¹; Dana Barry²; Michiko Yoshitake³; Akiko Ogawa¹; Nobumitsu Hirai¹; Takeshi Kougo¹; Daisuke Kuroda¹; Yoshimitsu Mizunoe⁴; ¹National Institute of Technology, Suzuka College; ²Clarkson University; ³National Institute for Materials Science; ⁴The Jikei University School of Medicine #### 11:20 AM Prospect of Hydroxyapatite Powder Produced from Waste Poultry Egg-shells for Biomedical Applications: *Alafara Baba*¹; Adeola Womiloju¹; Abdullah Ibrahim¹; Fatimah Abubakar¹; Anoka Njah¹; Folahan Adekola¹; Abdulganiyu Alabi²; ¹University of Ilorin; ²Kwara State University, Malete #### 11:00 AM Novel Chemopreventive Agents: Effects of Saffron and Bicarbonate Release from Hydroxyapatite Coated Ti on Osteoblast - Osteosarcoma Cell Proliferation and Viability: Caitlin Koski¹; Susmita Bose¹; ¹Washington State University #### 11:40 AM Nanostructured Magnesium Implants with Enhanced Biofunctionalization: TS Sampath Kumar 1 ; 1 Indian Institute of Technology Madras # Synthesis, Characterization, Modeling, Properties and Applications of Functional Porous Materials — Porous Materials I Program Organizers: Lan Li, Boise State University; Winnie Wong-Ng, National Institute of Standards and Technology; Kevin Huang, University of South Carolina Monday AM Room: B144/145 October 15, 2018 Location: Greater Columbus Convention Center Session Chair: Lan Li, Boise State University #### 8:00 AM Introductory Comments #### 8:05 AM Invited A Simple Mixed Matrix Membrane Fabrication Method with In-situ MOF Growth for Gas Separation: David Hopkinson¹; Anne Marti¹; Surendar Venna¹; Jeffrey Culp¹; Elliot Roth¹; ¹Doe/Netl #### 8:25 AM Invited Synchrotron Structural Studies of Ni(CN)4-based Flexible Metal-organic Framework (MOF) Crystals: Winnie Wong-Ng¹; Jeffrey Culp²; Yu-Sheng Chen³; Jeffrey Deschamps⁴; Lan Li⁵; ¹National Institute of Standards and Technology; ²NETL; ³The University of Chicago; ⁴Naval Research Laboratory; ⁵Boise State University #### 8:45 AM Invited **Bio-template Synthesis of Zeolitic Imidazolate Framework-8 (ZIF-8)**: *Qi Wang*¹; Hong-Cai Zhou¹; Hongmin Qin¹; ¹Texas A&M University #### 9.05 AM Invited In situ Powder Diffraction Measurements of Metal Organic Frameworks at 17-BM: Modern Techniques and Methods of Structural Analysis: Andrey Yakovenko¹; ¹Argonne National Laboratory #### 9:25 AM Invited Metal-organic Cages as Sorbent Materials: A DFT Study: Eric Cockayne¹; ¹National Institute of Standards and Technology #### 9:45 AM Invited Neutron Scattering Studies of Small Molecules Adsorbed in Metal-organic Frameworks: Craig Brown¹; ¹NIST #### 10:05 AM Break #### 10:25 AM Invited Applications of Physisorbents as Sensor Coatings for Near Ambient Leak Detection of CO2 and CH4: *Jeffrey Culp*¹; Ki-Joong Kim¹; Jagannath Devkota¹; Paul Ohodnicki¹; ¹National Energy Technology Laboratory #### 10:45 AM Invited Characterization of Gas-solid Interactions with In Situ X-ray Powder Diffraction: $Tomce\ Runcevski^1;$ Southern Methodist University #### 11:05 AM Invited Neutron Diffraction: A Unique Technique to Study Gas Adsorption in Functional Porous Crystalline Materials: Hui Wu¹; ¹National Institute of Standards and Technology #### 11:25 AM Foam Glass Insulator Properties Understanding through Microscopy Characterization: Alisa Stratulat¹; ¹Carl Zeiss Microscopy Limited #### 11:45 AM Invited Porous Covalently-bonded Porphyrinic Materials: Predictions, Properties, and Applications: Lawrence Cook¹; Greg Brewer¹; Winnie Wong-Ng²; Lan Li³; ¹Catholic University of America; ²National Institute of Standards and Technology; ³Boise State University #### User-related Failures — Non-Metallic Failures I Program Organizers: Andrew Havics, PH2 LLC; Burak Akyuz, ATS, Inc.; Pierre Dupont, UMONS Faculté polytechnique de MONS (FPMs) Monday AM Room: A210 October 15, 2018 Location: Greater Columbus Convention Center Session Chairs: Ronald Parrington, ESI; Dave Moore, Unified Engineering Inc.; Dennis McGarry, Sea Limited #### 8:00 AM Invited General Considerations in Failure Analysis of Rubber and Elastomers: *Jason Poulton*¹; ¹Akron Rubber Development Laboratory #### 8:40 AM Failure Analysis of Coatings to Support Product Improvement: Jessica Crimone¹; Brittany Sinagra¹; ¹PPG #### 9.00 AM Mechanical Properties and Fractography of Polyetheretherketone (PEEK) Composites as a Function of Filler Content: Farzana Ansari¹; MariAnne Sullivan¹; Ryan Siskey¹; ¹Exponent #### 9:20 AM Fractographic Analysis of Amorphous Polymers – A Comparison of Tensile, Impact and ESC Fracture Surfaces of PC, ABS and PMMA: Farzana Ansari¹; ¹Exponent #### 9:40 AM **Analysis of a Ruptured Reinforced Thermoplastic Pipe**: *Emily Gates*¹; Barbara Padgett¹; ¹DNV GL #### 10:00 AM Break #### 10:20 AM Compression Fittings on PVC: An Industry-wide Mistake?: David Riegner¹; Greg Chojecki¹; Tom Easley¹; ¹S-E-A #### 10:40 AM Invited Failure Analysis of Plumbing Components: Flexible Toilet Water Connectors: Dinu Matei¹; Eduardo Mari¹; ¹Origin and Cause #### 11:00 AM Invited **Collaboration with a Forensic Architect:**: *Andrew Havics*¹; Daniel Neeb²; ¹PH2 LLC; ²Halliwell Engineering Associates #### 11:20 AM Non-destructive Method of Detecting Cracks in Fiberglass-reinforced Bucket Truck Booms: Charles Dickinson¹; Bryson Brewer¹; ¹Exponent #### 11:40 AM Invited Utilizing a Combination of TGA and GC-MS to Estimate Health-based Risks from Off-gassed Volatile Compounds: Joseph Lemberg¹; Eric Guyer¹; Scott Seidel¹; Michael Garry¹; Joyce Tsuji¹; Steven Valenty²; ¹Exponent, Inc.; ²Analyze, Inc. # 10th International Symposium on Green and Sustainable Technologies for Materials Manufacturing and Processing — Session II Program Organizers: Yiquan Wu, Alfred University; Hisayuki Suematsu, Nagaoka University of Technololgy; Surojit Gupta, University of North Dakota; Junichi Tatami, Yokohama National University; Enrico Bernardo, University of Padova; Zhengyi Fu, Wuhan University of Technology; Rajiv Asthana, University of Wisconsin-Stout; Allen Apblett, Oklahoma State University; Richard Sisson, Worcester Polytechnic Institute; Tatsuki Ohji, National Institute of Advanced Industrial Science and Technology; Mritunjay Singh, Ohio Aerospace Institute Monday PM Room: B233 October 15, 2018 Location: Greater Columbus Convention Center Session Chairs: Ralf Riedel, T U Darmstadt; Vojislav Mitic, University of Nis #### 2:00 PM Invited Microstructure and Mechanical Properies of B4C-TiB2-SiC Composites Fabricated via Hot Pressing Assisted by Ball Milling: Wang Weimin¹; Fu Zhengyi¹; Wang Hao¹; ¹Wuhan University of Technology #### 2:20 PM Invited Selective Laser Sintering of Ceramic Components, Challenges and Issues: *Tatsuki Ohji*¹; ¹National Institute of Advanced Industrial Science and Technology (AIST) #### 2:40 PM Invited Spallation Resistance Enhancement of Thermal Barrier Coatings by Hybrid Microwave Sintering: Brian T. M.Ong¹; T. I.Wong¹; Shijie Wang¹; L. T. Koh²; W. K. Na²; ¹Institute of Materials Research and Engineering (IMRE), A*STAR (Agency for Science); ²ST Aerospace Engines Pte Ltd #### 3:00 PN Recent Advances in Green Concrete: Allen Apblett¹; ¹Oklahoma State University #### 3:20 PM Break #### 3:40 PM Luminescence Properties of Dy3+ Doped Ga2O3 Materials Synthesized by Using Wet Chemical Process: Guangran Zhang¹; Yiquan Wu¹; ¹Alfred University #### 4:00 PM On the Design of Novel Lignin Based Green Materials: *Kathryn Hall*¹; Maharshi Dey¹; Yun Ji¹; Surojit Gupta¹; ¹University of North Dakota #### 4:20 PN Novel Alkali-activation Based Process for the Manufacturing of Soda-lime Glass Foamed Granules: Enrico Bernardo¹; Acacio Rincon Romero¹; ¹University of Padova #### 4:40 PM Energy Audit and Efficiency in an Aluminium Gravity Die Casting Foundry Towards Sustainability: *Hamid Mehrabil*; 'Islamic Azad University #### 5:00 PV Highly Efficient Solvolysis of Epoxy Resin Using Polyethylene Glycol/NaOH Systems: Yang Peng¹; Li Xiaoyang¹; ¹Institute of Electronic Engineering, China Academe of Engineering Physics #### **ACerS Richard M. Fulrath Award Session** Monday PM Room: A111/112 October 15, 2018 Location: Greater Columbus Convention Center Session Chair: Jonathan Salem, NASA #### 2:00 PM Invited Atomic-scale Understanding of Ceramic Interfaces by Advanced Electron Microscopy: Naoya Shibata¹; ¹University of Tokyo #### 2:40 PM Invited Development of Ceramics and Glass Materials for Solid Oxide Fuel Cell and Oxygen Permeable Membrane: $Yosuke\ Takahashi^1;\ ^1Noritaki\
Co.,\ Ltd.$ #### 3:00 PM Invited **Blending Cultures to Achieve Innovation**: *Mark Waugh*¹; ¹Murata Electronics North America, Inc. #### 3:20 PM Break #### 3:40 PM Invited Potassium Sodium Niobate-based Multilayer Piezoelectric Ceramics Co-fired with Nickel Inner Electrodes: Shinichiro Kawanda¹; ¹Murata Manufacturing Co., Ltd # MS&T18 #### MATERIALS SCIENCE & TECHNOLOGY #### 4:00 PM Invited Undividing the Discipline: Social Interfaces in Ceramics Science and Engineering: John McCloy¹; ¹Washington State University # Additive Manufacturing of Composites and Complex Materials III — Additive Manufacturing of Metallic Composites Program Organizers: Dirk Lehmhus, Fraunhofer - Ifam; Jonathan Spowart, Air Force Research Laboratory; Nikhil Gupta, New York University; Eric Jaegle, Max-Planck-Institut Fuer Eisenforschung Monday PM Room: A222 October 15, 2018 Location: Greater Columbus Convention Center Session Chair: To Be Announced #### 2:00 PM Invited Shock Engineering the Additive Manufactured Graphene-metal Nanocomposite with High Density Nanotwins and Dislocations for Ultra-stable Mechanical Properties: Dong Lin¹; ¹Kansas State University #### 2:30 PM **Additive Manufacturing of Metal Matrix Composites via MELD**: Joey Griffiths¹; Chase Cox²; Nanci Hardwick²; *Hang Yu*¹; ¹Virginia Tech; ²Aeroprobe Corporation #### 2:50 PM Additive Manufacturing (AM) of Novel Aluminum Metal Matrix Composites: Adam Polizzī¹; Jeremy Iten¹; ¹Elementum 3D #### 3:10 PM Development of Nano-Silicon Carbide Strengthened Aluminum Materials via MELDTM Processing: *Wayne Daye*¹; Thomas Pelletiers II¹; Kévin Demoulin²; Nanci Hardwick³; ¹Kymera International; ²Nanomakers Corporation; ³Aeroprobe Corporation #### 3:30 PM Break #### 3:50 PM Microstructure and High-temperature Deformation Behavior of TiB2-reinforced 316L Stainless Steel Nanocomposite Developed by Selective Laser Melting: Kee-Ahn Lee¹; Bandar AlMangour²; Young-Kyun kim¹; Dariusz Grzesiak³; ¹Inha Univ; ²Harvard University; ³West Pomeranian University of Technology #### 4:10 PM Additive Manufacturing of Copper-alumina Composite Materials: Sumit Bhattacharya¹; Kun Mo¹; Yinbin Miao¹; Abdellatif Yacout¹; ¹Argonne National Laboratory #### 4:30 PM Evaluation of Zirconium Oxide Nanoparticle Inks for Production of 316L Matrix Composites via the Binder Jetting Process: *Dirk Lehmhus*¹; Sebastian Hein¹; Axel von Hehl²; Martin Ehlers³; Daniel Falkowski³; Onur Ortac³; ¹Fraunhofer IFAM; ²Leibniz Institut für Werkstofforientierte Technologien (IWT); ³University of Bremen #### 4:50 PM Additive Manufacturing of Cemented Tungsten Carbide with a Cobalt-free Alloy Binder by Selective Laser Melting for High-hardness Applications: $Nicholas\ Ku^1$; John Pittari¹; Steven Kilczewski¹; Andelle Kudzal¹; ¹US Army Research Laboratory # Additive Manufacturing of Metals: Microstructure and Material Properties — AM Stainless Steels - Microstructure and Properties Program Organizers: Andrzej Wojcieszynski, ATI Specialty Materials; Ulf Ackelid, Freemelt AB; Ola Harrysson, North Carolina State University; Sudarsanam Babu, The University of Tennessee, Knoxville Monday PM Room: A215 October 15, 2018 Location: Greater Columbus Convention Center Session Chair: Ulf Ackelid, Freemelt Company #### 2:00 PM Invited Stress-state Dependent Plasticity Model for Additively Manufactured Stainless Steel: Linking of Microstructural Phase Transformation to Macroscopic Behavior: Zhuqing Wangl'; Allison Beese¹; Pennsylvania State University #### 2:40 PM **Deformation Mechanisms of L-PBF 316L Stainless Steels**: *Thomas Voisin*¹; Joseph McKeown¹; Jianchao Ye¹; Nicholas Calta¹; Zan li¹; Tien Roehling¹; Melissa Santala²; Phillip Depond¹; Manyalibo Matthews¹; Alex Hamza¹; Yinmin Wang¹; ¹Lawrence Livermore National Laboratory; ²Oregon State University #### 3:00 PM Three-dimensional Registration of Part Design, Melt Pool History and Resultant Structure in Additively Manufactured 316L Stainless Steel: *Thomas Ivanoff*¹; Jonathan Madison¹; Joshua Koepke¹; Erich Schwaller¹; Bradley Jared¹; John Mitchell¹; Laura Swiler¹; ¹Sandia National Laboratories #### 3:20 PM Break #### 3:40 PM The Effects of Alloy Composition on Microstructure of Duplex Stainless Steel Produced by Additive Manufacturing: Andrew Iams¹; Todd Palmer¹; ¹Pennsylvania State University #### 4:00 PM Three Dimensional Grain Morphologies and Local Growth Textures of AM 316L: David Rowenhorst¹; Richard Fonda¹; ¹The US Naval Research Laboratory #### 4:20 PM Understanding the Size and Location Dependence of Microstructure and Mechanical Properties of Stainless Steel 316L Rods Produced by Laser Powder Bed Fusion Process: Xianglong Wang¹; Jose Alberto Muñiz-Lerma¹; Mohammad Attarian Shandiz¹; Oscar Sánchez-Mata¹; Mathieu Brochu¹; ¹McGill University #### 4:40 PM The Relationship Between Post-build Microstructure and the Corrosion Resistance of Additively-manufactured 17-4 Stainless Steel: Mark Stoudt¹; Eric Lass¹; Maureen Williams¹; Richard Ricker¹; Carelyn Campbell¹; Lyle Levine¹; ¹National Institute of Standards and Technology #### 5:00 PM Twinning-induced Plasticity (TWIP) in Austenitic Stainless Steel 316L Produced by Means of Additive Manufacturing: Clodualdo Aranas¹; Mohsen Mohammadi¹; Amir Hadadzadeh¹; ¹University of New Brunswick # Additive Manufacturing of Metals: Microstructure and Material Properties — Properties of AM Components Program Organizers: Andrzej Wojcieszynski, ATI Specialty Materials; Ulf Ackelid, Freemelt AB; Ola Harrysson, North Carolina State University; Sudarsanam Babu, The University of Tennessee, Knoxville Monday PM Room: A214 October 15, 2018 Location: Greater Columbus Convention Center Session Chair: Sudarsanam Babu, University of Tennessee #### 2:00 PM Localized Dynamic Mechanical Behaviour Assessment Using Single and Cyclic nano-impact Indentations for Laser Powder Bed Fusion (L-PBF) Part Sections: *Abhi Ghosh*¹; Mathieu Brochu¹; ¹McGill University #### 2:20 PM Mechanical Performance of Ti-6Al-4V Octet Truss Lattice Structures Produced Via Powder Bed Fusion (PBF): Michael Brand¹; Colt Montgomery¹; Robin Pacheco¹; John Carpenter¹; ¹Los Alamos National Laboratory #### 2:40 PM **Processing Refractory Metals and Intermetallics by Powder Bed Based Additive Manufacturing**: *Vera Juechter*¹; ¹Heraeus Additive Manufacturing GmbH #### 3:00 PM Effect of Flaws on the Fatigue Behavior of Additively Manufactured Ti-6Al-4V: *Griffin Jones*¹; Jayme Keist¹; ¹Pennsylvania State University #### 3:20 PM Break #### 3:40 PM **4340 Steel Laser Powder Bed Fusion (L-PBF) Round Robin Study**: *Michael Hespos*¹; Elias Jelis¹; Matthew Clemente¹; ¹U.S. Army ARDEC-Picatinny Arsenal #### 4:00 PM Correlation of Grain Morphology and Elongation to Failure in Additively Manufactured Ti-6Al-4V: Alexander Wilson-Heid¹; Zhuqing Wang¹; Allison Beese¹; ¹Pennsylvania State University # Additive Manufacturing: In-situ Process Monitoring and Control — Session II Program Organizers: Ulf Ackelid, Freemelt AB; Andrzej Wojcieszynski, ATI Specialty Materials; Sudarsanam Babu, The University of Tennessee, Knoxville; Ola Harrysson, North Carolina State University Monday PM Room: A221 October 15, 2018 Location: Greater Columbus Convention Center Session Chair: Ola Harrysson, North Carolina State University #### 2:00 PM Invited AM Process Monitoring and Control at Layer and Melt Pool Scales: Luke Scime¹; Brian Fisher¹; Jack Beuth¹; ¹Carnegie Mellon University #### 2:40 PM High-speed X-ray Imaging for Correlating Acoustic Signals with Quality Monitoring: A Machine Learning Approach: Kilian Wasmer¹; ¹Empa #### 3:00 PM In-situ Process Monitoring and Closed-loop Control System for Metal Powder Bed Fusion: Prabir Chaudhury¹; ¹Divergent3D #### 3:20 PM Break #### 3:40 PM Direct Process Feedback in Extrusion-based Additive Manufacturing Using an ILC-based Approach.: *Ashley Armstrong*¹; Amy Wagoner Johnson¹; Andrew Alleyne¹; ¹University of Illinois #### 4:00 PM Using Laser Ultrasonics to Measure Responses of Nickel, Titanium, and Stainless Steel Alloys Processed by Laser-based Directed Energy Deposition: *Marissa Brennan*¹; Todd Palmer¹; Max Wiedmann²; Marvin Klein²; ¹Penn State University; ²Intelligent Optical Systems #### 4:20 PM Real Time Monitoring of Additive Manufacturing Processes Using High-speed Synchrotron X-ray Imaging: Niranjan Parab¹; Cang Zhao¹; Kamel Fezzaa¹; Tao Sun¹; ¹Argonne National Laboratory #### 4:40 PM In-situ Defect Detection in Three-dimensional Metal Printing, Using the Structure being Built to Sense Itself: Wenyi Yang¹; Sanjaya Somaratna¹; Deborah Chung¹; ¹State University of New York Buffalo #### 5:00 PM In-situ High-energy X-ray Diffraction on Wire Arc Deposition of 308 Stainless Steel and Titanium: Adrian Losko¹; Don Brown¹; Maria Strantza¹; Reeju Pokharel¹; John Carpenter¹; Jason Cooley¹; Bjorn Clausen¹; Erik Watkins¹; Nicholas Calta²; Ibo Matthews²; Jun-Sang Park³; Peter Kenesei³; ¹Los Alamos National Laboratory; ²Lawrence Livermore National Laboratory; ³Argonne National Laboratory # Additive Manufacturing: Modeling and Simulation of AM Materials, Processes, and Mechanics — AM Modeling - Session II Program Organizers: Jing Zhang, Indiana University-Purdue University Indianapolis; Li Ma, Johns Hopkins University Applied Physics Laboratory; Xinghua Yu, Oak Ridge National Laboratory; Yeongil Jung, Changwon National University Monday PM Room: A223 October 15, 2018 Location: Greater Columbus Convention Center Session Chairs: Jing Zhang, Indiana University - Purdue University Indianapolis; Li Ma, National Institute of Standards and Technology #### 2:00 PM Prediction of Resultant Hardness and Residual Stress in Laser-based Additive Manufacturing via Integrated Computational Modeling: Neil Bailey¹; Christopher Katinas¹; Yung Shin¹; Purdue University #### 2:20 PM Microstructure Prediction of Laser Powder Bed Fused Metal Using Combined CFD and CA Method: *Yi Zhang*¹; Jing Zhang¹; ¹Indiana University-Purdue University Indianapolis #### 2:40 PM Study and Modelling of Resin Propagation in
Porous Catalyzing Medium: Adam Krajewski¹; Matthew Willard¹; ¹Case Western Reserve University # MS&T18 #### MATERIALS SCIENCE & TECHNOLOGY #### 3:00 PM **3D Printing of Zircon for Ceramic Molds**: *Piyush Pai Raikar*¹; Jing Zhang¹; Hye-Young Park²; Yeon-Gil Jung²; ¹Indiana University Purdue University Indianapolis; ²Changwon National University, Republic of Korea #### 3:20 PM Break #### 3:40 PM Creep Modelling of 3D Printed Nickel Based Super alloy: Vighnesh Shetty¹; Jing Zhang¹; ¹Indiana University Purdue University, Indianapolis #### 4:00 PM **Design of 3D Printer Component for 17-4PH Based Slurry Extrusion Printing:** *Harshal Dhamade*¹; Jing Zhang¹; ¹Indiana University - Purdue University Indianapolis # Additive Manufacturing: Powder Characterization and Recycling — Role of Powder Characteristics on Additive Manufacturability Program Organizers: Sudarsanam Babu, The University of Tennessee, Knoxville; Andrzej Wojcieszynski, ATI Specialty Materials; Ulf Ackelid, Freemelt AB; Ola Harrysson, North Carolina State University Monday PM Room: A224 October 15, 2018 Location: Greater Columbus Convention Center Session Chair: Peeyush Nandwana, ORNL #### 2:00 PM Effects of Powder Characteristics and Process Parameters on the Microstructural and Mechanical Properties of LENS Ti-6Al-4V: Courtney Morgan¹; William Young¹; Aref Yadollahi¹; Haley Doude¹; Linkan Bian¹; ¹Mississippi State University #### 2:20 PM Investigation of the Properties of Electron Beam Melted Parts Using Coarse Ti6Al4V Powder Feedstock: Hengfeng Gu¹; Timothy Horn¹; Harvey West¹; Ola Harrysson¹; ¹NC State University #### 2:40 PM From Powder to Part: Powder Evolution Effects on Processing-microstructureproperties Rrelationship in AM: *Bij-Na Kim*¹; Pedro Rivera²; ¹LPW / Lancaster University; ²Lancaster University #### 3:20 PM Break #### 3:40 PM Selective Laser Melting of AlloSiMg Alloys from Gas Atomized Powders with Variable Size Distribution: Sharon Park¹; Holden Hyer¹; Le Zhou¹; Bjorn Tolentino¹; Edward Dein¹; Brandon McWilliams²; Kyu Cho²; Yongho Sohn¹; ¹University of Central Florida; ²U.S. Army Research Loboratory #### 4:00 PM The Role of Powder Properties on Additive Manufacturability of AlSi10Mg: Nathan Kistler¹; ¹LPW Technology #### 4:20 PM Use of 316L Stainless Steel Powder with Bimodal Size Distribution in Selective Laser Melting: Hannah Coe¹; Somayeh Pasebani¹; ¹Oregon State University #### 4:40 PM **Powder Characterization and LPBF Parameter Development for AF9628**: *Erin Hager*¹; ¹AFIT/ENY # Advanced Coatings for Wear and Corrosion Protection — Advanced Coatings for Wear and Corrosion Protection II Program Organizers: Evelina Vogli, LM Group Holdings Inc; Fei Tang, Dnv GI; Timothy Hall, Faraday Technology, Inc.; Jing Xu, Faraday Technology Inc.; Santosh Vijapur, Faraday Technology, Inc. Monday PM Room: C160A/160B October 15, 2018 Location: Greater Columbus Convention Center Session Chairs: Evelina Vogli, LiquidMetal Group Holdings Inc.; Jing Xu, Faradey Technology Inc.; Santosh Vijapur, Faradey Technology Inc. #### 2:00 PM Characterizations of CrN-based Hard Coating Materials with Addition of GaN: *Yusei Mizuno*¹; Tadachika Nakayama¹; Hisayuki Suematsu¹; Tsuneo Suzuki¹; Extreme Energy-Density Research Institute, Nagaoka University of Technology #### 2:20 PM Ultrathin Graphene Coating on Monel 400 Alloy for Durable Corrosion Resistance: Sanjid Patwary¹; RK Singh Raman¹; Parama Chakraborty Banerjee¹; ¹Monash University #### 2:40 PM Plasma Electrolytic Oxidation Coatings on Light Alloys (Al, Mg, Ti): Properties and Applications: Vahid Dehnavi¹; Mojtaba Vakil-azghandi²; Arash Fattah-alhosseini²; James Noël¹; David Shoesmith¹; ¹Western University; ²Bu-Ali Sina University #### 3:00 PM Formation Mechanisms of Wear-protective Tribofilms by ZDDP, Ionic Liquid, and their Combination: Wei Guo¹; Yan Zhou²; Xiahan Sang³; Donovan N. Leonard²; Jun Qu²; Jonathan D. Poplawsky³; ¹Material Science Research and Development, Timken World Headquarters; ²Materials Science and Technology Division, Oak Ridge National Laboratory; ³Center for Nanophase Materials Sciences, Oak Ridge National Laboratory #### 3:20 PM Break #### 3:40 PM Coating Wear Performance of REACH Compliant Trivalent Chromium Hard Chrome: Timothy Hall¹; *Rajeswaran Radhakrishnan*¹; Stephen Snyder¹; Jing Xu¹; Maria Inman¹; EJ Taylor¹; George Bokisa²; Mark Feathers³; ¹Faraday Technology Inc.; ²COVENTYA Inc.; ³U.S. Army Aviation and Missile Command #### 4:00 PM **Direct Electrodeposition on 6061 Aluminum**: Timothy Hall¹; *Jing Xu*¹; Stephen Snyder¹; Maria Inman¹; EJ Taylor¹; ¹Faraday Technology Inc #### 4:20 PM Inhibition of Engineering Materials in Sulphuric Acid Solution Using Waste Product: *Omotayo Sanni*¹; API Popoola¹; OS Fayomi¹; ¹Tshwane University of Technology, Pretoria, South Africa #### 4:40 PM Variables that Effect Reproducibility in Cyclic Corrosion Testing and their Relation to Coating's Physical Properties: Nicole Rakers¹; Kathryn Hoffman¹; Arif Mubarok¹; ¹PPG # Advanced Manufacturing, Processing, Characterization, and Modeling of Functional Materials — Advanced Manufacturing I Program Organizers: Mohammad Elahinia, University of Toledo; Markus Chmielus, University of Pittsburgh; Reginald Hamilton, The Pennsylvania State University; Hamdy Ibrahim, University of Tennessee at Chattanooga; Haluk Karaca, University of Kentucky; Mohammad Mahtabi, University of Tennessee at Chattanooga; Reza Mehrabi, University of Toledo; Reza Mirzaeifar, Virginia Tech Monday PM Room: B230 October 15, 2018 Location: Greater Columbus Convention Center Session Chairs: Haluk Karaca, University of Kentucky; Mohammad Mahtabi, University of Tennessee at Chattanooga; Vibhor Chaswal, University of Cincinnati; Sayed Ehsan Saghaian, University of Kentucky #### 2:00 PM Invited Wire Size Effect on Kirkendall Pore Evolution in Ti-coated Nickel Wires: Arun Bhattacharjee¹; Ajith Achuthankutty¹; Aaron Yost²; Dinc Erdeniz²; David Dunand²; Ashley Paz y Puente¹; ¹University of Cincinnati; ²Northwestern University #### 2:40 PM **Metal-polymer and Polymer-polymer Shape Memory Hybrids**: *Vibhor Chaswal*¹; Ruchinda Gooneratne²; Mangu Sriharsha²; ¹University of Cincinnati; ²University of Cincinnati #### 3:00 PM Piezoelectric and Pyroelectric Behavior of Three-dimensionally Printed Polymer without Filler or Poling, with Relevance to Monitoring and Actuation: Yashvardhan Mandhana¹; Patatri Chakraborty¹; Chi Zhou¹; Deborah Chung¹; ¹State Univ of New York Buffalo #### 3:20 PM Break #### 3:40 PM Comparative Analysis of Internal Features of EBM with a Flash Tomography and Computed Topography Technique: Oluwaseun Adewumi¹; ¹North Carolina A&T #### 4:00 PM Magnetocaloric Effect in Heusler Alloys Derived from Cellular Automata Simulations: Javier Blázquez¹; Alejandro Manchón-Gordón¹; Clara Conde¹; Victorino Franco¹; Alejandro Conde¹; ¹University of Sevilla #### 4:20 PM Influence of Cu Addition and Laser Processing Parameters on the Geometrical Characteristics of Icosahedral Al-Cu-Fe Coatings on Ti-6Al-4V Alloy: Esther Akinlabi¹; Olawale Fatoba¹; Stephen Akinlabi¹; Mamookho Makhatha¹; ¹University of Johannesburg # Advanced Materials for Harsh Environments — Advanced Materials for Harsh Environments II Program Organizers: Navin Manjooran, Siemens AG; Gary Pickrell, Virginia Tech Monday PM Room: C161A/161B October 15, 2018 Location: Greater Columbus Convention Center Session Chairs: Gary Pickrell, Virginia Tech; Navin Manjooran, Siemens AG #### 2:00 PM Invited Metallic Alloys Development for Additive Manufacturing Using Gas Atomization and Powder Bed Fusion: Le Zhou¹; Yongho Sohn¹; ¹University of Central Florida #### 2:40 PM Laboratory-scale Replication of Complex High Temperature Corrosion Behavior Found in Service: Matthew Kovalchuk¹: ¹University of Pittsburgh #### 3:00 PN New Insights into Type II Hot Corrosion of a Current Generation Nickel-based Turbine Blade and Disk Superalloy: *Emily Kistler*¹; Brian Gleeson¹; ¹University of Pittsburgh #### 3:20 PM Thermo-mechanical Performance and Microstructural Correlation in ZrB₂-based Ultra-high Temperature Ceramic Composites: Ambreen Nisar¹; Kantesh Balani¹; ¹Indian Institute of Technology Kanpur #### 3:40 PM Break #### 4:00 PM Thick Film Electroceramic Composites for Harsh-environment Sensor Applications: Kavin Sivaneri Varadharajan¹; Katarzyna Sabolsky¹; Edward Sabolsky¹; Harish Palakurthi¹; Daryl Reynolds¹; Konstantinos Sierros¹; ¹West Virginia University #### 4:20 PM **Transition Metal Silicide-based Ceramic Composites for High Temperature and Harsh Environment Sensing**: *Gunes Alp Yakaboylu*¹; Rajalekshmi Chockalingam¹; Katarzyna Sabolsky¹; Tugrul Yumak²; Edward Sabolsky¹; ¹West Virginia University; ²Sinop University #### 4:40 PM Wireless Embedded Multifunctional Sensor System for In-situ Health Monitoring of Refractory Liners in Fossil Energy Systems: Rajalekshmi Pillai¹; Sreekumar Chockalingam¹; Samuel Baker¹; ¹SRS Holdings LLC #### 5:00 PM Concluding Comments # Advanced Microelectronic Packaging, Emerging Interconnection Technology, and Pb-free Solder — Session II Program Organizers: Iver Anderson, Iowa State University / Ames Laboratory; Carol Handwerker, Purdue University; Albert T. Wu, National Central University Monday PM Room: B140/141 October 15, 2018 Location: Greater Columbus Convention Center Session Chairs: Iver Anderson, Iowa State Univ; Eric Cotts, Binghamton University #### 2:00 PM Invited Thermomechanical Reliability of Lead-free High Temperature Solder Alloys: Faramarz Hadian¹; Francis Mutuku¹; Harry Schoeller²; *Eric Cotts*³; ¹Binghamton Univ; ²Universal Instruments; ³Binghamton University #### 2:20 PM Inhibiting the Large Primary Ag3Sn in Cu/Sn-Ag/ENIG Solder Joints with Additional Pd Deposit: Rui-Wen Song¹; Jenq-Gong Duh¹; ¹National Tsing Hua University #### 2:40 PM Growth Behavior of Recrystallization Grain in Lead-free Solder Joint after Deformation: Fu Guo¹; Xuewei Zhao¹; Yishu Wang¹; Jing Han¹; ¹Beijing University of Technology #### 3:00 PM Improving Shear
Strength of Sn-3.0Ag-0.5Cu Solder Joints via Adding Minor Ni into Solder Alloy: *Tzu-Ting Chou*¹; Wei-Yu Chen¹; Rui-Wen Song¹; Jenq-Gong Duh¹; ¹National Tsing Hua University #### 3:20 PM Break #### 3:40 PM Invited Mechanism of Recrystallization in Sn-based Ball Grid Array Lead-free Solder Joints during Thermomechanical Fatigue: Fu Guo¹; Shihai Tan¹; ¹Beijing University of Technology #### 4:00 PM **IMC Growth Behavior Along c-axis of Sn Grain under Current Stressing:** Fu Guo¹; *Yan Wang*²; Limin Ma²; ¹Beijing University of Technology; ²Beijing University of Technology #### 4:20 PM **Ostwald Ripening in near eutectic SnAgCu solder alloys**: *Randy Owen*¹; Mohammed Genanu¹; Eric Cotts¹; ¹Binghamton University, Physics Departement # Advanced Steel Metallurgy: Products and Processing — Lightweight Steels Program Organizers: Justin Raines, SSAB Americas; Charles Enloe, General Motors; Emmanuel De Moor, Colorado School of Mines Monday PM Room: A226 October 15, 2018 Location: Greater Columbus Convention Center Session Chairs: Allan Arenas-Serrano, Bilstein Cold Rolled Steel; Daniel Baker, GM Global Propulsion Systems #### 2:00 PM Keynote Newly Commercialized High Mn Steel Products and Process for Various Applications: Sang-Hyeon Lee¹; Inshick Suh¹; Sung Kyu Kim¹; TaeKyo Han¹; Won-Tae Cho¹; Unhae Lee¹; Myeong Hun Kang¹; Dongho Lee¹; Sang Ho Han¹; POSCO #### 2:40 PM Characterizing Microstructures in High Mn, High Al Steels for Next Generation Thick Plate Applications: *Katherine Sebeck*¹; Demetrios Tzelepis¹; Ian Toppler¹; ¹TARDEC #### 3:00 PM Effects of Micro-alloying and Processing History on Fe-Mn-Al-C Steel: *Krista Limmer*¹; Daniel Field¹; Bryan Cheeseman¹; Ryan Howell²; ¹US Army Research Laboratory; ²US Army PEO GCS #### 3:20 PM **Low-density Steels Scientific and Technological Macro-indicators**: Malena Andrade¹; *Bráulio Oliveira*¹; Douglas Milanez¹; Daniel Leiva¹; Guilherme Zepon¹; ¹Federal University of São Carlos #### 3:40 PM Break #### 4:00 PM Trade-off between Strength and Ductility byVariation in Microstructural Features and Recrystallization Kinetics of Medium Mn Multicomponent Alloy: Arnab Sarkar¹; Tapas Kumar Bandyopadhyay¹; ¹Indian Institute of Technology Kharagpur #### 4:20 PM Hot Deformation Behavior of a Low Density Austenitic Steel: Dean Pierce¹; Katherine Sebeck²; Krista Limmer³; Govindarajan Muralidharan¹; Tom Muth¹; David Frederick¹; Zhili Feng¹; ¹Oak Ridge National Laboratory; ²US Army Tank Automotive Research Development & Engineering Center (TARDEC); ³US Army Research Laboratory #### 4:40 PM Microstructural Evolution and Age Hardening Behavior of a Lightweight Ultrahigh Strength Fe-15Mn-11Al-0.9C-6Ni Steel: Michael Piston¹; ¹Missouri Science & Technology #### 5:00 PM A Study on the Micromechanical Deformation and Phase Transformation Behaviors in Lightweight Duplex Steel: *Shi-Hoon Choi*¹; Eun-Young Kim¹; Wan-Chuck Woo²; Dong-Kyu Kim²; ¹Sunchon National University; ²Korea Atomic Energy Research Institute # Advances in Dielectric Materials and Electronic Devices — Dielectrics and Magnetoelectrics II Program Organizers: Amar Bhalla, University of Texas; Ruyan Guo, The University of Texas at San Antonio; Rick Ubic, Boise State University; Danilo Suvorov, Jožef Stefan Institute Monday PM Room: B132 October 15, 2018 Location: Greater Columbus Convention Center Session Chairs: Rick Ubic, Boise State University; Luiz Fernando Cotica, State University of Maringa #### 2:00 PM Invited **Magnetoelectric Gyrators for I-V Conversion**: *Dwight Viehland*¹; Chung Ming Leung¹; Xin Zhuang¹; Jiefang Li¹; ¹Virginia Tech #### 2:20 PM Invited **NSMM Modeling and Design of Energy Conversion Materials**: *Steven Tidrow*¹; ¹Alfred University #### 2.40 PM A Phenomenological Theory for Lead-free Piezoelectrics based on Ba(Zr,Ti) O3-(Ba,Ca)TiO3 (BZT-BCT) Solid Solutions: George Rossetti¹; Nasser Khakpash¹; ¹University of Connecticut #### 3:00 PM **Dipole Engineering: Increasing Material Breakdown Strength and Capacitor Energy:** Steven Tidrow¹; *Soutik Betal*¹; Dustin Travis¹; Jessica Scoones¹; Walter Schulze¹; Steven Pilgrim¹; ¹Alfred University #### 3:20 PM Break #### 3:40 PM Orientation-modulated Crystal Structure and Energy Storage Behavior of Epitaxial Antiferroelectric (Pb_{0.98*}La_{0.02})(Zr_{0.95*}Ti_{0.08})O₃ thin films: *Min Gao*¹; Xiao Tang¹; Chung Ming Leung¹; Jiefang Li¹; Dwight Viehland¹; ¹Virginia Tech #### 4.00 PM Lead Free Ferroelectric [KNbO3]1-x[(BaNi1/2Nb1/2O3-d)]x: An Insight into Its Dielectric, Ferroelectric Ordering, and Phonon Behaviors.: Blanca Rosas¹; Karuna Mishra¹; Alvaro Instan¹; Ram Katiyar¹; ¹University of Puerto Rico #### 4:20 PM Effects of Electrode Microstructure on Resistance Degradation of SrTiO₃. Daniel Long¹; Biya Cai¹; Elizabeth Dickey¹; ¹North Carolina State University #### 4:40 PM $\label{eq:Mechanochemical synthesis of High Tc La_Ti_2O_7 Piezoceramic: Kaustubh Kambale^1; Ajit Kulkarni^2; Narayanan Venkataramani^2; Amruta Vairagade^1; Sandeep Butee^1; ^1College of Engineering Pune; ^2Indian Institute of Technology Bombay$ # Advances in Zinc-coated Sheet Steel Processing and Properties — Advances in Zinc-coated Sheet Steel Processing and Properties II Program Organizers: Frank Goodwin, ILZRO; Joseph McDermid, McMaster University Monday PM Room: A225 October 15, 2018 Location: Greater Columbus Convention Center Session Chair: Erika Bellhouse, ArcelorMittal Dofasco #### 2:00 PM A Novel Approach to the Direct Quantification of Iron Dissolution from the Steel Strip into the 55Al-2Mg-1.6Si-Zn Coating Alloy Bath: *Syed Islam*¹; Daniel Parker²; Nega Setargew²; Abdul Khaliq¹; Ma Qian¹; ¹RMIT University/ARC Research Hub for Australian Steel Manufacturing; ²BlueScope/ARC Research Hub for Australian Steel Manufacturing #### 2:20 PM Invited Growth of Intermetallic Compounds (IMCs) in an Al-Zn-Si-Mg Alloy Coating Bath: *Abdul Khaliq*¹; Daniel J. Parker²; Nega Setargew²; Ma Qian¹; ¹RMIT University, Melbourne Australia/ ARC Research Hub for Australian Steel Manufacturing, University of Wollongong; ²BlueScope Innovation/ARC Research Hub for Australian Steel Manufacturing, University of Wollongong #### 2:50 PM Microstructural Evolution in Al-Si Coating of Different Thickness of Hot Stamping Steels: *Igor Yakubtsov*¹; Raj Sohmshetty¹; ¹Ford Motor Company #### 3-10 PN Corrosion Resistance of Zinc Coatings Doped with Aluminum Obtained under Conditions of SHS: Borys Sereda¹; *Dmytro Sereda*²; ¹Zaporizhzhya State Engineering Academy; ²DDTU #### 3:30 PM Break #### 3:50 PM Investigation of the Microstructure and Mechanical Properties of Sheet Steel after Obtaining Zinc Coatings under SHS Conditions: *Borys Sereda*¹; Dmytro Sereda¹; Irina Sereda¹; ¹DDTU #### 4:10 PM TEM Characterisation of the Intermetallic Alloy Layer on 55%Al-Zn-2%Mg-1.5%Si Alloy Coated Steel: *Syed Islam*¹; Daniel Parker²; Nega Setargew²; Abdul Khaliq¹; Ma Qian¹; ¹RMIT University/ARC Research Hub for Australian Steel Manufacturing; ²BlueScope/ARC Research Hub for Australian Steel Manufacturing #### 4:30 PM Effect of Shearing Quality on Forming Limit Diagram for Vinyl Coated Metal: Jonghun Yoon¹; ¹Hanyang Univ. ERICA #### Alpha Sigma Mu Lecture Monday PM Room: C170 October 15, 2018 Location: Greater Columbus Convention Center #### 2:30 PM Invited The Role of Rapid Technology Advances and Socio-environmental Drivers on the Evolution of Process and Product Developments in Steel: Ronald O'Malley'; 'Missouri University of Science and Technology #### Boron, Boron Coatings, Boron Compounds and Boron Nanomaterials: Structure, Properties, Processing, and Applications — Novel Synthesis & Boron Suboxide Program Organizers: Jens Kunstmann, Technische Universität Dresden; Roumiana Petrova, New Jersey Institute of Technology; Scott Beckman, Washington State University Monday PM Room: B244/245 October 15, 2018 Location: Greater Columbus Convention Center Session Chair: Scott Beckman, Washington State University #### 2:00 PM Boron Suboxide: Changes in Densification and Microstructure Using Silica and Rare Earth Silicate Additives: Kristopher Behler¹; Jerry LaSalvia²; Chris Marvel³; Jenn Synowczynski-Dunn²; Scott Walck¹; W. Shoulders⁴; Martin Harmer³; ¹Arl (Survice Engineering); ²ARL; ³Lehigh University; ⁴ARL (ORAU) #### 2:20 PM Experimental Investigation of the Stoichiometry-hardness Relationship in Boron Suboxide: *Taylor Shoulders*¹; Kristopher Behler²; Jerry LaSalvia³; ¹ORAU; ²SURVICE; ³US Army Research Lab #### 2:40 PM Synthesis, Sintering and Mechanical Properties of Boron Suboxide (B6O) and Its Composites: *Atta Khan*¹; Kelvin Xie²; Vladyslav Domnich¹; Kevin Hemker²; Richard Haber¹; ¹Rutgers University; ²Johns Hopkins University #### 3:00 PM Effects of Oxygen Partial Pressure on the Oxidation of Boron-rich Silicon Boride: Muhammad Imam¹; Ramana Reddy¹; ¹University of Alabama #### 3:20 PM Break #### 3:40 PM Boron Nitride Aerogel as a Thermal Conductive 3D Network for Phase Change Materials: *Marjan Kashfipour*¹; Russell Dent¹; Nitin Mehra¹; Jiahua Zhu¹; ¹University of Akron #### 4:00 PM Improvement in Wear Resistance of AISI H13 Steel by Pack-boronizing Method: Niketan Manthani¹; ¹Kalyani Center for Technology and Innovation #### 4:20 PM Hardening of Steels with Boron Coatings Obtained under Self-propagating High Temperature: Borys Sereda¹; Dmytro Sereda²; ¹Zaporizhzhya State Engineering Academy; ²DDTU # Ceramic and Crystal Materials for Optics and Photonics — Session II Program Organizers: Yiquan Wu, Alfred University; Jas Sanghera, Naval Research Laboratory; Michael Squillante, RMD, Inc; Akio Ikesue, World-Lab. Co., Ltd; Mark Dubinskiy, Amy Research Laboratory Monday PM Room: A113 October 15, 2018 Location: Greater Columbus Convention Center Session Chairs: Jonathan Salem, NASA; Ivar Reimanis, Colorado School of Mines #### 2:00 PM Invited Micro Domain and Boundary Control for Ubiquitous Power Laser: *Takunori Taira*¹; ¹Inst. for Molecular Science #### 2:40 PM **Double Cladded Single Crystal Fiber for High-energy Lasers**: *Shyam Bayya*¹;
Woohong Kim¹; Brandon Shaw¹; Jason Myers¹; Syed Qadri¹; Rajesh Thapa²; Charles Askins²; John Peele²; Daniel Rhonehouse¹; Steven Bowman¹; Daniel Gibson¹; Joseph Kolis³; Brad Stadleman³; Jasbinder Sanghera¹; ¹Naval Research Laboratory; ²KeyW Corp.; ³Clemson University #### 3:00 PM Methods to Improve Particle Segregation and Mixing in Transparent Ceramic Nanocomposites for Mid-IR Solid State Lasers: Victoria Blair¹; Steven Kilczewski¹; Aubrey Fry²; Anthony DiGiovanni¹; Zackery Fleischman¹; ¹Army Research Laboratory; ²ORAU #### 3:20 PM Break #### 3:40 PM Invited **Development of Transparent Ceramic Fibers for Laser Applications**: *Hyunjun Kim*¹; Randall Hay²; Randall Corns¹; ¹Air Force Research Laboratory & UES, Inc.; ²Air Force Research Laboratory #### 4:20 PM Invited Fluorescent MgAlON Spinel Transparent Ceramics Doped by Functional Metallic Cations: Preparation, Structure and Properties: *Hao Wang*¹; Bowen Chen¹; Bingtian Tu¹; Weimin Wang¹; Zhengyi Fu¹; ¹Wuhan University of Technology #### 5:00 PM Invited Spark Plasma Sintering of Transparent Birefringent Ceramics with Fine Microstructures: Byungnam Kim¹; ¹National Inst for Materials Science # Characterization & Methods in Failure Analysis — Tools & Techniques II Program Organizers: Andrew Havics, PH2 LLC; Burak Akyuz, ATS, Inc.; Pierre Dupont, UMONS Faculté polytechnique de MONS (FPMs) Monday PM Room: A211 October 15, 2018 Location: Greater Columbus Convention Center Session Chairs: Erhan Ulann, Acuren Group Inc.; Mark Russell, Engineering Design & Testing Corporation; Tim Jur, Engineering Design & Testing Corporation; Ellen Wright, Engineering Systems Inc. #### 2:00 PM Rapid, Large Elemental Profiles by SEM/EDS Facilitated by a Silicon Drift Detector: *John Konopka*¹; ¹Thermo Fisher Scientific #### 2:20 PM Case Studies of Large Elemental Profiles Acquired by SEM/EDS Using a Silicon Drift Detector: John Konopka¹; ¹Thermo Fisher Scientific #### 2.40 PM Invited Fluorescence Microscopy & Macroscopy: Andrew Havics¹; ¹PH2 LLC #### 3:00 PM Invited **A Procedure for Examination of Combustion Product Analysis:** Tim Jur¹; *Burak Akyuz*²; ¹Engineering Design & Testing Corp; ²ATS, Inc. #### 3:20 PM Break #### 3:40 PM Failure Analysis of Rapid-aged Porcelain Insulators: Max Modugno¹; Hyojin Lee²; William Carty²; ¹Alfred University; ²New York State College of Ceramics at Alfred University #### 4:00 PM Invited Failure Analysis of Masonry Building: Ankit Mahajan¹; ¹Chandigarh University #### 4:20 PM Invited Characterization of the Composition of Plastic Parts as an Often Necessary Step in a Failure Analysis: $Tim Jur^1$; Richard Edwards¹; Caleb Davis¹; ¹Engineering Design & Testing Corp # Composition-Processing-Microstructure-Property Relationships of Titanium Alloys — Deformation and Transformations Program Organizers: Benjamin Morrow, Los Alamos National Laboratory; Carl Boehlert, Michigan State University; Kayla Calvert, TIMET - HTL; Yufeng Zheng, The Ohio State University Monday PM Room: C150 October 15, 2018 Location: Greater Columbus Convention Center Session Chairs: Adam Pilchak, US Air Force Research Lab; Asli Bulutsuz, Yildiz Technical University #### 2:00 PM Invited Strain-transformable Titanium Alloys for Improved Resistance/Ductility Trade-off: From Design Principles to Mechanical Properties: Frederic Prima¹; Fan Sun¹; Lola Lilensten¹; Yolaine Danard¹; Cédrik Brozek¹; Philippe Vermaut¹; Immanuel Freiherr Von Thungen²; Yvon Millet³; ¹Chimie ParisTech; ²SAFRAN TECH; ³TIMET Savoie #### 2:30 PM Investigation of Alpha/Beta Interface Structure in a Metastable Beta Titanium Alloy: Yufeng Zheng¹; William Clark¹; Hamish Fraser¹; ¹The Ohio State University #### 2:50 PM Invited New Experimental and Computational Tools to Understand and Predict Composition-processing-mircostructure-property-(performance) Relationships in Titanium Alloys: Thomas Ales¹; Brian Martin¹; Andrew Temple¹; D Harlow²; Peter Collins¹; ¹Iowa State University; ²Lehigh University #### 3:20 PM Invited Crystalline Defects Induced by Phase Transformations in Ti-alloys: Yipeng Gao^1 ; ¹Idaho National Laboratory #### 3:50 PM Break #### 4:10 PM Invited Development of a Quantitative Microstructure Simulator to Decipher Composition-processing-microstructure Relationships in Titanium Alloys: Rongpei Shi¹; Tae Wook Heo¹; Saad Khairallah¹; Joseph Mckeown¹; Manyalibo Matthews¹; ¹Lawrence Livermore National Laboratory #### 4:40 PM Investigation of Different Severe Plastic Deformation Methods Effect on Ti13Nb13Zr: Asli Günay Bulutsuz¹; Kadir Özaltin²; Witold Chrominski²; Malgorzata Lewandowska²; Mehmeh Emin Yurci¹; ¹Yildiz Technic University; ²Warsaw University of Technology #### 5:00 PM Strain Path Dependency of Damage Evolution in Titanium Alloy: A Multi-field Mapping Study: *Jiyun Kang*¹; Cemal Cem Tasan¹; ¹MIT #### 5:20 PM Effect of Caliber Rolling Temperature on Room and Elevated Temperature Tensile Properties of Ti-6Al-4V Alloy: *Jagadeesh Babu S M*¹; S. V. S. Narayana Murty²; N. Prabhu¹; B.P. Kashyap³; ¹Indian Institution Of Technology Bombay; ²Vikram Sarabhai Space Center, ISRO; ³Indian Institute of Technology Jodhpur # Controlled Synthesis, Processing, and Applications of Structural and Functional Nanomaterials — Session I Program Organizers: Haitao Zhang, University of North Carolina at Charlotte; Kathy Lu, Virginia Tech; Edward Gorzkowski, Naval Research Laboratory; Gurpreet Singh, Kansas State University; Kejie Zhao, Purdue University; Jian Shi, Rensselaer Polytechnic Institute Monday PM Room: D180 October 15, 2018 Location: Greater Columbus Convention Center Funding Support provided by: MilliporeSigma Session Chairs: Haitao Zhang, University of North Carolina at Charlotte; Jian Shi, Rensselaer Polytechnic Institute #### 2:00 PM Invited **Metal Nanoparticles Synthesized via Metal-in-Li Solutions**: *Tao Xu*¹; ¹Department of Chemistry and Biochemistry #### 2:30 PM Nanorods: From Synthesis Science to Metallic Glue Technology: Hanchen Huang¹; ¹Northeastern University #### 2:50 PM Molecular Dynamics Simulation of Melting and Solidification of Cu/Al And Ti/Al Core/Shell Nanoparticles: Farzin Rahmani¹; Sasan Nouranian; *Jungmin Jeon*¹; Shan Jiang¹; ¹University of Mississippi #### 3:10 PM Nanoscale Soldering of Magnetic-assisted Self-assembled Multi-segment Metallic Nanowires: *Jirui Wang*¹; Fan Gao¹; Chefu Su¹; Junwei Su¹; Hongwei Sun¹; Zhiyong Gu¹; ¹University of Massachusetts Lowell #### 3:30 PM Break #### 3:50 PM Invited Three-dimensional Mapping of Topological Relicts of Symmetry Breaking in Functional Nanomaterials: Edwin Fohtung¹; Dmitry Karpov¹; ¹New Mexico State University # MS&T18 #### MATERIALS SCIENCE & TECHNOLOGY #### 4:20 PM Self-organized 3D Networks of Tetragonal CuFe2O4: Pelagia Gouma¹; Gagan Jodhani¹; ¹The Ohio State University #### 4:40 PM Synthesis and Characterization of Ba2+, Al3+ and Sr2+, Al3+ and Ca2+, Al3+ Co-modified Multiferroic BiFeO3 Nanoparticles: Sikder Ayon¹; Ayeman Mazdi¹; Musavvir Mahmud¹; Ahmed Sharif¹; Hasan Usama¹; ¹Bangladesh University of Engineering and Technology #### 5:00 PM Invited Bioinspired Hierarchical 3D Carbon Architectures: Beyond Graphene and Nanotubes: Sharmila Mukhopadhyay¹; ¹Wright State University # Curricular Innovations and Continuous Improvement of Academic Programs (and Satisfying ABET along the Way): The Elizabeth Judson Memorial Symposium — The Classroom and Laboratory Program Organizers: Gregg Janowski, University of Alabama at Birmingham; Devarajan Venugopalan, University of Wisconsin-Milwaukee; Thomas Bieler, Michigan State University; Jeffrey Fergus, Auburn University; Janet Callahan, Boise State University; Ronald Gibala, University of Michigan; Tonya Stone, Mississippi State University Monday PM Room: B232 October 15, 2018 Location: Greater Columbus Convention Center Session Chairs: Jeffrey Fergus, Auburn University; Gregg Janowski, University of Alabama at Birmingham #### 2:00 PM Invited Incorporating Service-learning and Storytelling for a More Inclusive Materials Science Education: Eric Jankowski¹; ¹Boise State University #### 2:40 PM **Engaging Students through Research Sprints**: *Daniel Christe*¹; Matteo Caligaris¹; ¹Elsevier #### 3:00 PM **Additive Manufacturing in Undergraduate Engineering Curriculum**: Alison Polasik¹; *Cindy Waters*²; ¹The Ohio State University; ²North Carolina A&T State University #### 3:20 PM Break #### 3:40 PM Utilizing Digital Data in an Undergraduate Materials Kinetics Course: Susan Gentry¹; ¹University of California, Davis #### 4:00 PM Curricular Innovations at the South Dakota School of Mine and Technology: Experiential Learning Outcomes and Assessment: *Michael West*¹; William Cross¹; Jon Kellar¹; Bharat Jasthi¹; Grant Crawford¹; Sadegh Safarzadeh¹; ¹South Dakota School of Mines and Technology #### 4:20 PM Micro-projects to Engage, Educate and Entertain: Mike Ashby¹; Hannah Melia²; Luca Masi²; Marc Fry²; ¹University of Cambridge; ²Granta Design #### 4:40 PM The Role of Locally Sourced Materials in Engineering for Humanity Education: Ian Nettleship¹; Kent Harries¹; ¹University of Pittsburgh #### 5:00 PM Experiences and Outcomes of Teaching Senior Capstone Course: Raghu Echempati¹; ¹Kettering University # Environmental Degradation and Embrittlement of Structural Metals — Stress Corrosion Cracking II Program Organizers: Jun Song, McGill University; Ankit Srivastava, Texas A&M University; Homero Castaneda, Texas A&M University; Salim Brahimi, McGill University / IBECA Technologies; Frank Cheng, University of Calgary; Ronald Miller, Carleton University; Xin Pang, Canmetmaterials, Natural Resources Canada; Stephen Yue, McGill University Monday PM Room: C162A/162B October 15, 2018 Location: Greater Columbus Convention Cente Session Chair: Ankit Srivastava, Texas A&M University #### 2:00 PM Invited An Experimental Irradiation Assembly for the Performance of In-Reactor IASCC Tests under Cyclic Loading.: Sergei Shipilov¹; ¹Corrosion Engineering Solutions Ltd. #### 2:30 PM An Application of Stochastic Modeling to
PitCrack of Spent Nuclear Fuel Canisters: Zeev Shayer¹; 'Colorado School of Mines #### 2:50 PN Direct Observation of Pitting Corrosion Evolutions on Carbon Steel Surfaces at the Nano-to-micro-scales: Erika La Plante¹; Peng Guo¹; Bu Wang²; Xin Chen¹; Magdalena Balonis¹; Mathieu Bauchy¹; Gaurav Sant¹; ¹University of California Los Angeles; ²University of Wisconsin-Madison #### 3:10 PM Water Infrastructure Corrosion: What Prevents Us from Preventing It?: Sergei Shipilov¹; ¹Corrosion Engineering Solutions Ltd. #### 3:30 PM Break #### 3:50 PM Invited **Localised Corrosion of Stainless Steel Reinforcements in Concrete**: *David Bastidas*¹; ¹The University of Akron-NCERCAMP #### 4:20 PM Microstructure and Hydrogen Accelerated Fatigue Crack Growth Rates of Pipeline Steels: Eun-Ju Song¹; Joseph Ronevich¹; ¹Sandia National Laboratories #### 4:40 PM Evaluating the Potential for Atmospheric Corrosion and Subsequent Stress Corrosion Cracking of SS304 Used for Dry Storage of Spent Nuclear Fuel: *Tim Weirich*¹; Christopher Alexander²; Charles Bryan²; Eric Schindelholz²; Jenifer (Warner) Locke¹; ¹Ohio State University; ²Sandia National Laboratories # Glass, Amorphous, and Optical Materials: Common Issues within Science & Technology — Mechanical Properties of Glasses Program Organizers: John Kieffer, University of Michigan; Liping Huang, Rensselaer Polytechnic Institute Monday PM Room: A115 October 15, 2018 Location: Greater Columbus Convention Center Session Chair: To Be Announced #### 2:00 PM Invited **Increasing the Strength of Glass**: *Sheldon Wiederhorn*¹; Theo Fett²; ¹National Institute of Standards and Technology; ²Karlsruhe Institute of Technology #### 2:30 PM Invited **High Strength Glass for Foldable Applications**: *Timothy Gross*¹; ¹Corning Research and Development Corporation #### 3:00 PM Indentation Behavior of Glass Studied by Large Scale Molecular Dynamics Simulation: Liping Huang¹; Binghui Deng¹; Haidong Liu¹; Yunfeng Shi¹; Rensselaer Polytechnic Institute #### 3:20 PM Break #### 3:40 PM Invited Network Topology and Property Understanding in Borate Glasses: Randall Youngman¹; ¹Corning Incorporated #### 4:10 PM Invited Pressure Effects on Boron and Aluminum Coordination Numbers and Mechanical Properties: *Jingshi Wu*¹; Timothy Gross¹; Liping Huang²; Siva Priya Jaccani²; ¹Corning Inc.; ²Rensselaer Polytechnic Institute #### 4·40 PM Applying Topological Constraint Theory to Six-fold-coordinate Amorphous Hydrogenated Boron Carbide: Michelle Paquette¹; Bradley Nordell²; Anthony Caruso¹; Paul Rulis¹; Nathan Oyler¹; William Lanford³; David Gidley⁴; Ridwan Sakidja⁵; Jinwoo Hwang⁶; Sean King⁷; ¹University of Missouri-Kansas City; ²University of Nebraska-Lincoln; ³University at Albany; ⁴University of Michigan; ⁵Missouri State University; ⁶Ohio State University; ⁷Intel Corporation #### 5:00 PM Understanding the Role of Zirconia on Crystallization, Microstructure and Mechanical Performance K-Mg-B-Al-Si-F Based Glasses: *Mrinmoy Garai*¹; Shibayan Roy¹; ¹Indian Institute of Technology (IIT) Kharagpur IMS Symposium on Metallography and Microstructural Characterization of Materials and the Correlation of Microstructure to Mechanical Properties — Metallography and Microstructural Characterization of Materials and the Correlation of Microstructure to Mechanical Properties I Program Organizers: Daniel Dennies, DMS, Inc.; James Martinez, NASA Johnson Space Center; Michael Keeble, Buehler, A Division of ITW; Jaret Frafjord, IMR Test Labs - Portland Monday PM Room: A212 October 15, 2018 Location: Greater Columbus Convention Center Session Chairs: Jaret Frafjord, IMR Test Labs - Portland; Chris Bagnall, MCS Associates, Inc; Mike Keeble, Buehler, A Division of ITW #### 2:00 PM Invited **Analyzing the Effect of Overheating HY-80/100 Steel**: *Gabriel Lucas*¹; Brian Battle¹; Johnathon Brehm²; ¹Scot Forge Company; ²University of Wisconsin-Madison #### 2:20 PM **Austenite-bainite Transformation Kinetics in Austempered AISI 5160 Steel:** *Xue Han*¹; Gary Barber¹; Zhenpu Zhang¹; Xichen Sun²; Bingxu Wang¹; Jian Zhu²; ¹Oakland University; ²Fiat-Chrysler LLC #### 2:40 PM **Dynamic Hall-petch Effect in AISI 321 Austenitic Stainless Steel: Role of Grain Size and Deformation Mode**: *Ahmed Tiamiyu*¹; Akindele Odeshi¹; Jerzy Szpunar¹; ¹University of Saskatchewan #### 3:00 PM Invited The Application of Fracture Toughness Testing Using Vickers Indents: $Michael\ Keeble^1;\ ^1$ Buehler #### 3:20 PM Break #### 3:40 PM Invited **Hardness Testing Per ASTM E18**: Daniel Dennies¹; *James Lane*²; ¹DMS, Inc.; ²Professional Analysis and Consulting, Inc. #### 4:00 PM Invited Evaluation of Hardness Test Blocks: George Vander Voort 1 ; 1 Vander Voort Consulting L.L.C. **4:20 PM Panel Discussion:** The members of this panel shall represent various industries, ASTM and ISO committees, etc.; shall discuss the various types of hardness testing; and debate issues brought up by the moderator and the audience. # Innovative Processing and Synthesis of Ceramics, Glasses and Composites — Processing II Program Organizers: Narottam Bansal, National Aeronautics and Space Administration; Jitendra Singh, Retired, U.S. Army Research Laboratory Monday PM Room: A120 October 15, 2018 Location: Greater Columbus Convention Center Session Chairs: Narsingh Singh, University of Maryland, Baltimore County #### 2:00 PM Invited Development of Large Bandgap Materials Using Reactive Growth in Al-Si Eutectic for Optical and RF Applications: Narsingh Singh¹; Ching Hua Su²; Puneet Gill²; Bradley Arnold¹; Fow-Sen Choa¹; Brian Cullum¹; Kamdeo Mandal¹; Christopher Cooper¹; ¹University of Maryland, Baltimore County; ²NASA Marshall Space Flight Center #### 2:30 PM Innovation of Graphene Fibre Composite Processing Using Pressurised Gyration: Amalina Amir¹; Harshit Porwal²; Suntharavathanan Mahalingam¹; Mohan Edirisinghe¹; ¹University College London; ²Queen Mary University of London #### 2:50 PM Governing Mechanisms of Crack-Healing in Ceramic Materials: Fariborz Tavangarian¹; ¹Pennsylvania State University, Harrisburg #### 3:10 PM In-situ High Temperature Micromechanical Testing of Ultrafine Grained Yttria-stabilized Zirconia Processed by Spark Plasma Sintering: Jaehun Cho¹; Jin Li¹; Qiang Li¹; Han Wang¹; Jie Ding¹; Sichuang Xue¹; Haiyan Wang¹; Troy Holland²; Amiya Mukherjee³; Xinghang Zhang¹; ¹Purdue University; ²Colorado State University; ³University of California, Davis #### 3:30 PM Break #### 3:50 PM Morphology Control of Metallic Coatings by Electrochemical Deposition: *Manoj Mahapatra*¹; Mark King¹; ¹University of Alabama at Birmingham #### 4:10 PM **Processing Effects on Dielectrics Produced via Aerosol Deposition**: *Eric Patterson*¹; Scooter Johnson¹; Edward Gorzkowski¹; ¹U.S. Naval Research Lab #### 4:30 PM **Single Crystal Alpha-alumina Nanofibers**: Fateh Mikaeili¹; ¹Ohio State University #### 4:50 PM Physical, Structural and Optical Properties of Doped Vanadate Systems: Savidh Khan¹; Kulvir Singh¹; ¹Thapar Institute of Engineering and Technology #### 5:10 PM Morphological Transition and Evolution of Shapes in Glassy State: Narsingh Singh¹; Fow-Sen Choa¹; Stacey Sova¹; Christopher Cooper¹; Brad Arnold¹; Lisa Kelly¹; K.D. Mandal²; Narayan Singh²; ¹University of Maryland, Baltimore County; ²Indian Institute of Technology (BHU) Varanasi # Interfaces, Grain Boundaries and Surfaces from Atomistic and Macroscopic Approaches — Structure & Chemistry Program Organizers: John Blendell, Purdue University; Ming Tang, Rice University; Shen Dillon, University of Illinois; Wayne Kaplan, Technion - Israel Institute of Technology; Dominique Chatain, CNRS, Aix-Marseille University Monday PM Room: A122 October 15, 2018 Location: Greater Columbus Convention Center Session Chair: Hadas Sternlicht, Brown University #### 2:00 PM Invited **Electric Field Effects on Ceramic Grain Boundaries**: Wei Qin¹; Lauren Hughes¹; *Klaus Van Benthem*¹; ¹University of California, Davis #### 2:30 PM Invited Combining Density Functional Theory Calculations with Machine Learning for Multi-scale Insights into Mo Alloy Grain Boundaries: Richard Tran¹; Hui Zheng¹; Chi Chen¹; Xiangguo Li¹; Naixie Zhou¹; Jian Luo¹; *Shyue Ping Ong*¹; ¹University Of California, San Diego #### 3:00 PM Invited Grain Boundary Microscopic Degrees of Freedom: The Key(s) to Understanding Radiation Damage?: Mitra Taheri¹; ¹Drexel University #### 3:30 PM Break #### 3:50 PM Invited The Effect of Grain Size and Grain Boundary Energy on Complexion Transitions: *Amanda Krause*¹; Animesh Kundu¹; Richard Vinci¹; Martin Harmer¹; ¹Lehigh University #### 4:10 PM Applications of QTAIM toward an Understanding of Segregation Phenomena: Malavikha Rajivmoorthy¹; Michael Hoerner¹; John Speer¹; Mark Eberhart¹; ¹Colorado School of Mines #### 4:30 PM Atomistic Modeling of Interfacial Segregation and Structural Transitions in Ternary Alloys: *Yang Hul*; Timothy Rupert¹; ¹University of California, Irvine #### 4:50 PM Thermal Grooving Study of Grain-boundary Energies and Diffusion Mechanisms during Ni Coarsening in an SOFC-anode: Patricia Haremski¹; Matthias Wieler²; Anika Marusczyk²; Michael Hoffmann³; Paul Hoffrogge⁴; Daniel Schneider⁵; Britta Nestler⁵; Piero Lupetin²; ¹Robert Bosch GmbH & Karlsruhe Institute of Technology; ²Robert Bosch GmbH; ³Karlsruhe Institute of Technology; ⁴Karlsruhe University of Applied Sciences & Karlsruhe Institute of Technology #### 5:10 PM Understanding Interfacial Behavior in Aluminum-carbon Hybrid Materials through Atomistic Modeling: Christopher Shumeyko¹; Daniel Cole¹; Christopher Weinberger²; ¹US Army Research Lab; ²Colorado State University # International Symposium on Ceramic Matrix Composites — Testing and Damage Characterization Program Organizers: Jitendra Singh, Retired, U.S. Army Research Laboratory; Narottam Bansal, National Aeronautics and Space Administration; Jacques Lamon, CNRS; Sung Choi, Naval Air Systems Command Monday PM Room: A114 October 15, 2018 Location: Greater Columbus Convention Center Session Chair: George
Jefferson, US Air Force Research Laboratory #### 2:00 PM Characterization of SiC Fibers Creep in Air and Vacuum: Amjad Almansow¹; James Kiser¹; Ramakrishna Bhatt²; ¹NASA Glenn Research Center; ²Ohio Aerospace Institute at NASA Glenn Research Center #### 2:20 PM Multi-axial Failure Characterization of Oxide-oxide CMCs: George Jefferson¹; Larry Zawada²; Jennifer Pierce³; Eric Jones⁴; Craig Przybyla⁴; ¹Air Force Research Laboratory; ²UTC; ³University of Dayton Research Institute; ⁴AFRL #### 2:40 PM Investigating Damage Mechanisms of CMC Blade Root Sub-element Coupons: Eric Jones¹; George Jefferson¹; Larry Zawada²; Jennifer Pierce³; Craig Przybyla¹; ¹AFRL; ²UTC; ³UDRI #### 3.00 PM Oxidation and Embrittlement of SiC/SiC Composites: Ken Kawanishi¹; Shinji Muto²; Ben Callaway³; Frank Zok³; ¹IHI INC.; ²IHI Corporation; ³University of California, Santa Barbara #### 3:20 PM Break #### 3:40 PM **Degradation of BN Interfaces in SiC-SiC Composites at Elevated Temperatures**: *Evan Callaway*¹; Frank Zok¹; ¹University of California, Santa Barbara #### 4:00 PM Mode I and Mode II Interlaminar Fracture Properties of a SiC/SiC Ceramic Matrix Composite: *Michael Presby*¹; Hariharan Rangarajan¹; Nkemjika Ike¹; Yogesh Singh¹; Gregory Morscher¹; Frank Abdi²; Sung Choi³; ¹The University of Akron; ²AlphaSTAR Corporation; ³Naval Air Systems Command #### 4:20 PM Analyzing Damage Progression in SiC/SiC CMCs Using In-situ Microtomography: Ashley Hilmas¹; Kathleen Sevener¹; John Halloran¹; Michael Thouless¹; ¹University of Michigan # International Symposium on Defects, Transport and Related Phenomena — Defect and Novel Devices Program Organizers: Tatsuya Kawada, Tohoku University; Manfred Martin, RWTH Aachen University; Sangtae Kim, University of California, Davis; William Chueh, Stanford University Monday PM Room: B242/243 October 15, 2018 Location: Greater Columbus Convention Center Session Chairs: Xin Guo, Huazhong University of Science and Technology; Yoshihiro Yamazaki, Kyushu University #### 2:00 PM Invited **Developments of New Lithium Ion Conductors and Their Application to All-solid-state Batteries**: *Ryoji Kanno*¹; Satoshi Hori¹; Kota Suzuki¹; Masaaki Hirayama¹; ¹Tokyo Institute of Technology #### 2:40 PM Invited **Solid State Ionics Approach towards Artificial Intelligence**: *Xin Guo*¹; ¹Huazhong University of Science and Technology #### 3:20 PM Break #### 3:40 PM Invited Enhanced Photocatalytic Activities of Strontium Titanate by Oxygen Nonstoichiometry: Yoshihiro Yamazaki¹; ¹Kyushu University #### 4:20 PN Study of the Modes of Adsorption and Electronic Structure of p-aminobenzoic Acid over (001) SrTiO3 Crystal Surface: Luis Villamagua¹; Freddy Marcillo¹; Manuela Carini²; ¹Universidad Tecnica Particular de Loja; ²University of Calabria #### 4:40 PM Measurement of Thermal Conductivity in GaN Thin Films and Interface Resistance between GaN and Its Substrate: Vinay Chauhan¹; Marat Khafizov¹; ¹The Ohio State University # Joining of Advanced and Specialty Materials (JASM XX) — Brazing of Advanced Materials Program Organizers: Mathieu Brochu, Mcgill University; Anming Hu, University of Tennessee Knoxville; Boian Alexandrov, Ohio State University; Darren Barborak, WeldQC, Inc; Akio Hirose, Osaka University; Peng He, Harbin Institute of Technology; Zhiyong Gu, University of Massachusetts Lowell Monday PM Room: C172 October 15, 2018 Location: Greater Columbus Convention Center Session Chair: Michael Halbig, NASA Glenn Research Center #### 2:00 PM Porous Nickel Interlayer Enabled Silver Brazing for Ceramic-ceramic Joining and/or Dual Atmosphere Stainless Steel-ceramic Joining, Quan Zhou¹; Lindsay Fricano¹; Yuxi Ma¹; Thomas Bieler¹; *Jason Nicholas*¹; ¹Michigan State University #### 2:20 PN Interface Reaction and Wetting Kinetics of Ag-CuO Doped with TiO2 over YIG Ceramics: Wanqi Zhao¹; Tiesong Lin¹; Peng He¹; Dusan P Sekulic²; ¹Harbin Institute of Technology; ²University of Kentucky # MS&T18 #### MATERIALS SCIENCE & TECHNOLOGY #### 2:40 PM Multiscale Modeling and Damage Zone Analysis of Ni-based Superalloy Brazed Joints for High Temperature Gas Turbine Engine Applications: *Jacob Wildofsky*¹; ¹The Ohio State University #### 3:00 PM Effect of In Addition on the Thermal Property, Wettability and Interfacial Reaction of Novel Sn–Zn–Bi–In Lead-free Solder: *Jian-Chun Liu*¹; Xinhua Gao¹; Zhijun Yue¹; Haiyan Zhang¹; Gong Zhang²; Katsuaki Suganuma³; ¹China Ship Development and Design Center; ²Tsinghua University; ³Osaka University #### 3:20 PM Break #### 3:40 PM 3-D Micro Joining in Stereolithographic Additive Manufacturing of Ceramic Components: Soshu Kirihara¹; Osaka University #### 4:00 PM Silver Oxide Decomposition Assisted Direct Bonding of Silicon Carbide: *Tomoki Matsuda*¹; Keita Motoyama²; Tomokazu Sano²; Akio Hirose²; ¹Osaka University; ²Osaka Univ #### 4:20 PM Seal Ring Method for High-temperature, High-pressure Metal to Ceramic Transitions: *Allyssa Bateman*¹; Yaiza Rodriguez¹; Luke Schoensee¹; Timothy Phero¹; Kyu Han²; Jesse Nachlas²; Brian Jaques¹; ¹Boise State University; ²HiFunda, LLC. #### 4-40 PM Brazing WC-CO to Inconel 600 Using Carbon Nanotubes Reinforced Cu-Zn Filler Metal: *G. Castro-Sánchez*¹; G. Mendoza-Suarez¹; Jose Lemus-Ruiz¹; A.L. Drew²; ¹Universidad Michoacana de San Nicolás de Hidalgo; ²Concordia University # Joining of Advanced and Specialty Materials (JASM XX) — Friction Stir and Friction Welding I Program Organizers: Mathieu Brochu, Mcgill University; Anming Hu, University of Tennessee Knoxville; Boian Alexandrov, Ohio State University; Darren Barborak, WeldQC, Inc; Akio Hirose, Osaka University; Peng He, Harbin Institute of Technology; Zhiyong Gu, University of Massachusetts Lowell Monday PM Room: C171 October 15, 2018 Location: Greater Columbus Convention Center Session Chairs: Yuri Hovanski, Brigham Young University; Judy Schneider, University of Alabama at Huntsville #### 2:00 PM Invited Twenty Seven Years of Stirring It up – Metallically Speaking: *Judy Schneider*¹; ¹University of Alabama at Huntsville #### 2:30 PM **Utilizing Ultrasonic Thermometry to Monitor Friction Stir Welding Temperature Profiles**: *Zachary Myers*¹; Judith Schneider¹; Donald Yuhas²; ¹University of Alabama In Hunstville; ²Industrial Measurement Systems, Inc. #### 2:50 PM **Development of Methodology to Determine the Temperature Influence on Microstructure Evolution during Friction Stir Welding**: *Anton Naumov*¹; Iurii Golubev¹; Fedor Isupov¹; Iuliia Morozova¹; Cornelius Spree¹; ¹Peter the Great St. Petersburg Polytechnic University #### 3:10 PM **Development of a Numerical Model for Dissimilar Joining by FSW**: Fumikazu Miyasaka¹; Kenta Mitsufuji¹; ¹Osaka University #### 3:30 PM Break #### 3:50 PM Friction Stir Welding of Hot Rolled and Annealed Armor Steel: William Evans¹; Martin McDonnell²; Antonio Ramirez¹; Mike Eff³; ¹The Ohio State University; ²TARDEQ; ³EWI #### 4:10 PM **Development of V-Alloy/SUS316L Dissimilar Joint Using Friction Stir Welding**: *Hisashi Serizawa*¹; Hirotaka Ogura²; Yoshiaki Morisada¹; Hidetoshi Fujii¹; Hiroaki Mori²; Takuya Nagasaka³; ¹JWRI, Osaka University; ²Osaka University; ³National Institute for Fusion Science #### 4:30 PM Microstructures and Mechanical Properties of FSW Joint of 430 MPa and 560 MPa Grade Steel: *Kohei Takeya*¹; Tomoki Matsuda¹; Tomokazu Sano¹; Akio Hirose¹; Atsushi Takada²; Muneo Matsushita²; Naoya Hayakawa²; Rinsei Ikeda²; ¹Osaka Univercity; ²JFE Steel Corporation #### 4:50 PM High-frequency Linear Friction Welding of Aluminum Alloys and Stainless Steel: *Hironobu Adachi*¹; Tomoki Matsuda¹; Tomkazu Sano¹; Akio Hirose¹; Ryo Yoshida²; Hisashi Hori²; Qinglong Pan³; Hikotaro Ochiai³; Shozo Ono³; ¹Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University,; ²Nippon Light Metal Company, Ltd.; ³Mitsui Engineering & Shipbuilding Co., Ltd. #### 5:10 PM Influence of Microstructure on the Fracture Behavior of Friction Stir Spot Welded Joint between Zinc Coated Steel and 6061 Aluminum Alloy: Kiriko Owada¹; Tomoki Matsuda¹; Tomokazu Sano¹; Akio Hirose¹; Asahi Numata¹; Hiroto Shoji¹; Mitsuru Ohata¹; ¹Osaka University #### Light Metal Technology – Applications for the Transportation Industry — Titanium/Aluminum Alloys Development Program Organizers: Julie Levesque, Quebec Metallurgy Center; Mihaiela Isac, McGill Metals Processing Centre; Xiaoming Wang, Purdue University; Roderick Guthrie, McGill University; Sa Ge, Hatch Ltd.; Kaan Inal, University of Waterloo; Frederic Laroche, Rio Tinto Monday PM Room: B130 October 15, 2018 Location: Greater Columbus Convention Center Session Chairs: Mihaiela Isac, McGill University; Julie Lévesque, Quebec Metallurgy Center; Roderick Guthrie, McGill University; Carsten Siemers, Technische Universität Braunschweig / Institute for Materials #### 2:00 PM Keynote Advanced Titanium Alloys with Tailored Properties for Aerospace and Automotive Applications: Carsten Siemers¹; Florian Brunke¹; Martin Bäker¹; Technische Universität Braunschweig / Institute for Materials #### 2:40 PM Orientation Dependent Spheroidization Response of a-colonies during Sub β-transus Annealing of Ti-6Al-4V Alloy: Shibayan Roy¹; Satyam Suwas²; ¹Materials Science Center, Indian Institute of Technology Kharagpur; ²Department of Materials Engineering, Indian Institute of Science, Bangalore #### 3:00 PM Superplasticity and Constitutive Relationship in a Ti-based Metallic Glassy Composite: Wang Y.S. #### 3:20 PM Break #### 3:40 PM Redesigning AA6201 Aluminum Alloy to Achieve a Combination of High Strength, Electrical Conductivity and Thermal Stability: Vincent Jansen¹; Francisco Flores¹; David Dunand²; Nhon Vo¹; ¹NanoAl; ²Northwestern University #### 4.00 PM **Development of Ultra-conductive Aluminum Alloys as Low-weight Electrical Conductors in Transportation Applications**: *Keerti Kappagantula*¹; Aditya Nittala¹; Frank Kraft¹; ¹Ohio University #### 4:20 PM High-temperature Performance of 3000-series Aluminum Alloys with Addition of Thermally Stable
Nano-precipitates: Francisco Flores¹; Evander Ramos²; David Dunand³; Nhon Vo²; ¹NanoAl LLC; ²NanoAl; ³Northwestern University #### 4.40 PM Microstructure and Mechanical Properties of Al-Mg Alloys with High Contents of Mg: *Yaojun Lin*¹; Jiani Sun²; Zhigang Yan³; Zhibo Liu²; ¹Wuhan University of Technology; ²Wuhan University of Technology; ³Yanshan University #### 5:00 PM Effect of Alternate Drawing on the Ductility of Drawn Wires for Aluminum Wire Harness: Chihiro Takuma¹; Kazunari Yoshida¹; ¹Tokai University # Materials for Nuclear Applications and Extreme Environments — Radiation Effects on Materials' Structure and Properties Program Organizers: Cory Trivelpiece, Savannah River National Laboratory; Dev Chidambaram, University of Nevada, Reno; Raul Rebak, GE Global Research; Yutai Katoh, Oak Ridge National Laboratory; Jake Amoroso, Savannah River National Laboratory; Kevin Fox, Savannah River National Laboratory Monday PM Room: D183 October 15, 2018 Location: Greater Columbus Convention Center Session Chair: Karl Whittle, University of Liverpool #### 2:00 PM Microstructural Evolution of NFA and Cr₃C₂@SiC-NFA Derived Materials under Thermal Treatment: Kaustubh Bawane¹; Kathy Lu¹; ¹Virginia Tech #### 2:20 PM Microstructural and Conductivity of Second-generation High Temperature Superconductors Irradiated at ORNL's HFIR: Philip Edmondson¹; 'Oak Ridge National Laboratory #### 2:40 PM Phase Field Study of the Formation Mechanism of Gas Bubble Superlattice in Irradiated Materials: *Yipeng Gao*¹; Daniel Schwen¹; Chao Jiang¹; Yongfeng Zhang¹; ¹Idaho National Laboratory #### 3:00 PM Influence of the Enthalpy Landscape on the Irradiation-induced Disordering of Minerals: N. M. Anoop Krishnan¹; *Mathieu Bauchy*²; ¹IIT Delhi; ²University of California, Los Angeles #### 3:20 PM Break #### 3.40 PM Post Irradiation Annealing Kinetics and Mechanisms in RPV Steels with Nanoscale Mn-Ni-Si Precipitates: *Nathan Almirall*¹; Shipeng Shu²; Peter Wells¹; Takuya Yamamoto¹; Dane Morgan²; Soupitak Pal¹; G. R. Odette¹; ¹University of California Santa Barbara; ²University of Wisconsin-Madison #### 4:00 PM Quantification of Defects Using Raman Spectroscopy in Low Dose Irradiation in 3C-SiC: Vinay Chauhan¹; Marat Khafizov¹; ¹The Ohio State University #### 4.20 PM **Two-temperature Model Simulations of High Energy Cascades.**: *Eva Zarkadoula*¹; German Samolyuk¹; William Weber²; ¹Oak Ridge National Laboratory; ²University of Tennessee #### 4:40 PM Radiation Effects in Binary Carbides: Karl Whittle¹; ¹University of Liverpool #### 5:00 PN Radiation Response of Nanoporous Metals: Xinghang Zhang¹; Jin Li¹; ¹Purdue University # Materials Issues in Nuclear Waste Management — Nuclear Waste Form Processing and Synthesis II Program Organizers: Cory Trivelpiece, Savannah River National Laboratory; Jason Lonergan, Washington State University; Jake Amoroso, Savannah River National Laboratory; Yutai Katoh, Oak Ridge National Laboratory; Kevin Fox, Savannah River National Laboratory; Josef Matyas, Pacific Northwest National Laboratory Monday PM Room: D282 October 15, 2018 Location: Greater Columbus Convention Center Session Chair: Devon McClane, Savannah River National Laboratory #### 2:00 PM Invited Increasing the Liquor Throughput of the UK Vitrification Plants: Nick Gribble¹; James Stevens¹; ¹Natioanl Nuclear Laboratory #### 2:40 PM Silver Functionalized Silica Aerogel: Effect of Aging on Iodine Sorption Performance: *Josef Matyas*¹; Eugene Ilton¹; Libor Kovarik¹; ¹PNNL #### 3:00 PM The Feasibility of Melt-processing Ceramic Waste Forms for High-level Waste: Jake Amoroso¹; Christopher Dandeneau¹; ¹Savannah River National Laboratory #### 3:20 PM Break #### 3:40 PM Invited Vitrification of Highly Active Waste Streams in the UK: the Zirconium Molybdate Hydrate (ZMH) Challenge: Donna McKendrick¹; ¹National Nuclear Laboratory #### 4:20 PM Invited Fabrication of Ceramic Technetium Waste Forms: Thomas Hartmann¹; ¹University of Nevada, Las Vegas # MATSCITECH.ORG NATSCITECH.ORG MATERIALS SCIENCE & TECHNOLOGY # Materials Property Understanding through Characterization — Metals I Program Organizers: Indrajit Dutta, Corning Incorporated; Nicholas Smith, Corning Incorporated Monday PM Room: B240/241 October 15, 2018 Location: Greater Columbus Convention Center Session Chairs: Indrajit Dutta, Corning Incorporated; Nicholas Smith, Corning Incorporated; Bryan Wheaton, Corning Incorporated #### 2:00 PM Invited **Dynamic Physical Simulation of Cr-Mo Steel at Elevated Temperatures**: *Adam Foltz*¹; Stephen Bartolucci¹; ¹US Army ARDEC #### 2:40 PM Characterization of Creep-fatigue Deformation in 9Cr-1MoV Steel and Weldments: Harrison Whitt¹; Tyler Payton¹; Wei Zhang¹; Michael Mills¹; Ohio State University #### 3:00 PM Invited Microstructure Characterization of Electrodeposited Nickel Tested at High Strain Rates: Jonathan Ligda¹; Daniel Casem¹; Heather Murdoch¹; ¹US Army Research Laboratory #### 3:40 PM Break #### 4:00 PM Influence of Cryogenic Treatment on Electrical and Thermal Properties of Gray Cast Iron: Susil Putatunda¹; *Deepak Joshi*¹; James Boileau²; ¹Wayne State University; ²Ford Motor Company #### 4:20 PM Quantitative Assessment of Short-range Order In Magnetostrictive Fe-rich Binary Alloys: *Richard Laroche*¹; Travis Willhard¹; Sivaraman Guruswamy¹; ¹University of Utah #### 4:40 PM Statistical Modeling of Effect of Porosities on Mechanical Behavior of High Performance Cast Metals: Mustafa Rifat¹; Robert Voigt¹; Saurabh Basu¹; ¹Penn State #### Next Generation Biomaterials — Biomaterials II Program Organizers: Roger Narayan, University of North Carolina; Vipul Davé, Johnson & Johnson; Mohan Edirisinghe, University College of London; Sanjiv Lalwani, Lynntech, Inc. Monday PM Room: D182 October 15, 2018 Location: Greater Columbus Convention Center Session Chairs: Pelagia Gouma, The Ohio State University; James Earthman, University of California, Irvine #### 2:00 PM Growth Factor-encapsulated and Cell-laden Scaffolds for Gastrointestinal Tract Regeneration: Lin Guo¹; Min Wang¹; ¹The University of Hong Kong #### 2:20 PM Invited **High-throughput Electrospinning of Advanced Biomaterials**: *Pelagia Gouma*¹; ¹The Ohio State University #### 2:40 PM Invited Making Antimicrobial Fibrous Patches and Filters using Novel Electrohydrodynamics and Pressurised Gyration Devices: Mohan Edirisinghe¹; ¹University College of London #### 3:00 PM Invited Precision Assembly through Tunable Interfaces: Candan Tamerler¹; ¹University of Kansas #### 3:20 PM Break #### 3:40 PM Invited Quantitative Percussion Diagnostics of Cracks and Other Closed Defects: A New Paradigm in Dentistry and Beyond: Aboozar Mapar¹; Alejandra Lopez¹; Heejun Clough¹; Cherilyn Sheets²; *James Earthman*¹; ¹University of California, Irvine; ²Newport Coast Oral Facial Institute #### 4:00 PM Invited Synergistic Combination of Surface Texturing and Nitric Oxide Release to Improve Biomaterial Resistance to Infection and Coagulation: *Lichong Xu*¹; Christopher Siedlecki¹; ¹Penn State College of Medicine #### 4:20 PM Invited The Antioxidant Role of Silicon in the Reduction of Oxidative Damage to Bone and Vascular Cells: *Venu Varanasi*¹; Felipe Monte²; Pranesh Aswath²; Harry Kim³; ¹Texas A&M HSC; ²University of Texas at Arlington; ³Texas Scottish Rite Hospital #### 4:40 PM Synthesis, Characterization, and In Vitro Study of Drug Loaded Biodegradable Magnesium Alloys for Anti-inflammatory Implantable Applications: Zia Ur Rahman¹; Waseem Haider¹; ¹Central Michigan University # Perspectives for Emerging Materials Professionals — Session II Program Organizers: Andrew Frerichs, The NanoSteel Company; Dharma Maddala, Arconic Technology Center Monday PM Room: B231 October 15, 2018 Location: Greater Columbus Convention Center Session Chair: Andrew Frerichs, The NanoSteel Company #### 2:00 PM Developing a Keen Eye for the Presence of Leadership to Help Develop Your Own Professional Abilities: Robert Schwartz¹; ¹Missouri S&T #### 2:20 PM International Experience: Preparing American Engineers with Global Perspective: Mufit Akinc¹; ¹Iowa State University #### 2:40 PM Invited No Speed Limit! How to Fast Track Your Scientific Career by Taking a Detour through Germany: $Carl\ Krill^1$; $\ ^1$ Ulm University #### 3:00 PM Making Time to Think at Work: Daniel Miracle¹; ¹Air Force Research Laboratory #### 3:20 PM Break #### 3:40 PM Invited Making the Most of Mentoring: Emily Kinser¹; ¹IBM #### 4:00 PM Scientific and Technical Leadership in Government Labs: Daniel Miracle¹; ¹Air Force Research Laboratory #### 4:20 PM The Power of Attitudes: Cullen Hackler¹; ¹Porcelain Enamel Institute Inc. # Processing and Performance of Materials Using Microwaves, Electric and Magnetic Fields, Ultrasound, Lasers, and Mechanical Work – Rustum Roy Symposium — Session II Program Organizers: Morsi Mahmoud, King Fahd University of Petroleum and Minerals - KFUPM; Dinesh Agrawal, Pennsylvania State University; Guido Link, Karlsruhe Institute of Technology; Motoyasu Sato, Chubu University; Rishi Raj, University of Colorado; Victoria Blair, Army Research Laboratory Monday PM Room: A125 October 15, 2018 Location: Greater Columbus Convention Center Session Chairs: Masahiro Yoshimura, National Cheng Kung University; Daudi Waryoba, Penn State DuBois #### 2:00 PM Invited Energy and Productivity Potential of Electrotechnologies in Industrial Process Heating Systems: *Joe Cresko*¹; Arvind Thekdi²; Kiran Thirumaran³; Sachin Nimbalkar³; ¹DOE Advanced Manufacturing Office; ²E3M Inc; ³Oak Ridge National Laboratory #### 2:40 PM Invited **Biofilm Formation Behaviors Formed by E.Coli and S. Epidermis under Weak Alternating Electromagnetic Fields**: *Hideyuki Kanematsu*¹; Takaya Katsuragawa¹; Dana Barry²; Senshin Umeki³; Akiko Ogawa¹; Nobumitsu Hirai¹; Takeshi Kougo¹; Yoshimitsu Mizunoe⁴; ¹National Institute of Technology, Suzuka College; ²Clarkson University; ³Tohoku University; ⁴The Jikei University School of Medicine #### 3:20 PM Break #### 3:40 PM Invited Investigating
Far-from-equilibrium Effects of External Electric Fields In Ceramics Processing: B. Reeja Jayan¹; 'Carnegie Mellon University #### 4:20 PM Utilization of Magnetic Fields and Mechanical Loads in the Fabrication of Enhanced Alnico Magnets with Near-Final Shape: *Emily Rinko*¹; Iver Anderson²; Aaron Kassen¹; Emma White²; Wei Tang²; Lin Zhou²; Matthew Kramer²; ¹Iowa State Univ; ²Ames Laboratory #### 4:40 PM Effects of Pore Size and Heating Method on Drying Porous Fused Silica: Peter Loomis¹; ¹Virginia Polytechnic Institute #### 5:00 PM **Microwave Enhanced Digestion of Gibbsite in Sodium Hydroxide**: *Ben Dillinger*¹; David Clark¹; Carlos Suchicital¹; Sam Kingman²; Andrew Batchelor²; Chris Dodds²; ¹Virginia Polytechnic Institute and State University; ²University of Nottingham #### 5:20 PM Effect of Electric Current Pulse Treated above Liquidus on Microstructure and Properties of Primary Carbide in Hypereutectic High Cr Cast Irons: *Geng BaoYu*¹; Zhou RongFeng¹; ¹Kunming University of Science and Technology # PSDK XIII: Phase Stability and Diffusion Kinetics — Gibbs Award Session II/ Modeling of Properties Program Organizers: Zi-Kui Liu, Pennsylvania State University; Michael Gao, National Energy Technology Laboratory; Hans Seifert, Karlsruhe Institute of Technology; Wei Xiong, University of Pittsburgh; Raymundo Arroyave, Texas A & M University Monday PM Room: A213 October 15, 2018 Location: Greater Columbus Convention Center Session Chairs: Michael Gao, National Energy Technology Laboratory; Yongho Sohn, University of Central Florida #### 2:00 PM Invited Modeling of Solidification and Precipitation in Magnesium Alloys: Alan Luo¹; Jiashi Miao¹; Chuan Zhang²; ¹The Ohio State University; ²CompuTherm LLC #### 2:20 PM Invited Thermodynamic Assessment of Slag-matte-metal Equilibria in the Cu–Fe–Al–Ca–Mg–Si–O–S System for Pyrometallurgical Production of Copper: Sergei Decterov¹; Denis Shishin²; Evgueni Jak²; ¹Ecole Polytechnique De Montreal; ²Pyrosearch, University of Queensland #### 2:40 PM Invited Gibbs, Schreinemakers, and Mechanisms to Form Three-phase Miscibility Gaps: Shuanglin Chen¹; John Morral²; ¹CompuTherm LLC; ²The Ohio State University #### 3:00 PM Invited Multicomponent Phase Equilibria and Diffusion: Critical Knowledge in Alloy Development for Additive Manufacturing: *Yongho Sohn*¹; Le Zhou¹; ¹University of Central Florida #### 3:20 PM Break #### 3:40 PM Invited Computational Modeling of High-Entropy Alloys: *Michael Gao*¹; Jeffrey Hawk¹; David Alman¹; Mike Widom²; ¹National Energy Technology Lab; ²Carnegie Mellon University #### 4:10 PM **CALPHAD Modeling of the Molar Volume**: *Ursula Kattner*¹; ¹National Institute of Standards & Technology #### 4:30 PM Computational Investigations of Interface Stability between Thermoelectric Materials Yb14MnSb11 and Co: Xiao Yu Chong¹; Jorge Paz Soldan Palma¹; Yi Wang¹; Drymiotis Fivos²; Kurt Star²; Jean-Pierre Fleurial²; Vilupanur Ravi²; Zi-Kui Liu¹; ¹Pennsylvania State University; ²Jet Propulsion Laboratory #### 4:50 PM Effect of Composition Dependent Molar Volume on Accuracy of Interdiffusion Analysis in Multicomponent Systems: Aparna Tripathi¹; *Kaustubh Kulkarni*²; ¹Indian Institute of Technology Kanpur; ²Indian Institute of Technology Kanpur #### 5:10 PM In/Bi2(Se,Te)3 Interfacial Reactions and Bi-In-Se-Te Phase Diagram: Sinnwen Chen¹; Yohanes Hutabalian²; ¹National Tsing Hua University; ²Department of Chemical Engineering, National Tsing Hua University # Rare Earth Metals and Critical Materials: Synthesis, Processing, Production, Recent Advances — Rare Earth Magnets and Critical Materials Program Organizers: Yellapu Murty, MC Technologies LLC; Jack Lifton, Jack Lifton, LLC; Eric Klier, U. S. Army Research Laboratory; Michael McKittrick, U.S. Department of Energy; Ian London, Avalon Rare Metals Inc Monday PM Room: B131 October 15, 2018 Location: Greater Columbus Convention Center Session Chairs: Yellapu Murty, MC Technologies; Jack Lifton, Jack Lifton LLC #### 2:00 PM Invited Are Rare Earths Critical for the Electrification of Motor Vehicles?: Jack Lifton¹; ¹Jack Lifton, LLC #### 2:40 PM Invited Current Technology Status and Future Needs for Rare Earth Permanent Magnets for Industrial Applications: John Ormeord¹; ¹JOC LLC 3:20 PM Break #### 3:40 PM Thermomagnetic Processing and Differential Scanning Calorimetry of Permanent Magnet Materials: *Michael Kesler*¹; Orlando Rios¹; Brandt Jensen²; Ikenna Nlebedim²; Scott McCall³; Alexander Baker³; Matthew Kramer²; Lin Zhou²; Michael McGuire¹; ¹Oak Ridge National Laboratory; ²Ames Laboratory; ³Lawrence Livermore National Laboratory #### 4:10 PM Separation of Rare Earth from Nd-Fe-B Magnet Scraps Using Molten Salt Electrolysis: *Hirokazu Konishi*¹; Hideki Ono¹; Tetsuo Oishi²; Toshiyuki Nohira³; Yuichiro Koizumi¹; ¹Osaka University; ²National Institute of Advanced Industrial Science and Technology; ³Kyoto University #### 4:40 PM Pyrometallurgical Recycling of NdFeB Magnet Scarps by Using Silicon Wafer Cutting Sludge: $Kim\ Jong\ Ho^{1};\ ^{1}$ Rist # Responsive Functional Nanomaterials — Responsive Smart Nanomaterials Program Organizers: Wenzhuo Wu, Purdue University; Weiyang Li, Dartmouth College; Sarina Sarina, Queensland University of Technology; Wenxian Li, University of Wollongong; Jiahua Zhu, University of Akron Monday PM Room: D181 October 15, 2018 Location: Greater Columbus Convention Center Session Chair: Jiahua Zhu, University of Akron #### 2:00 PM **Boosting Thermal Conduction in Polymers by Lowering Inter-chain Thermal Resistance via Organic Molecules**: *Nitin Mehra*¹; Marjan Kashfipour¹; Jiahua Zhu¹; ¹University of Akron #### 2:20 PM Computational Design of Thermochromic Film for Building Energy Efficiency: Influence of Particle Size, Shape, and Concentration: *Jianying Hu*¹; Xiong Yu¹; ¹Case Western Reserve University #### 2:40 PM Field-effect Transistors Made from Solution-grown Two-dimensional Tellurene: Yixiu Wang¹; Gang Qiu¹; Ruoxing Wang¹; Peide Ye¹; Wenzhuo Wu¹; Purdue University #### 3:00 PM Electrically and Thermally Triggered Three-dimensional Graphene Foam-reinforced Shape Memory Epoxy Composites: *Adeyinka Idowu*¹; Benjamin Boesl¹; Arvind Agarwal¹; ¹Florida International University #### 3:20 PM Break #### 3:40 PM Embedding Conductive Nanomaterials into Polymers by Direct Printing for Flexible Pressure Sensors: Rachel Aga¹; Roberto Aga²; Emily Heckman²; ¹Wright State University; ²Air Foce Research Laboratory #### 4:00 PM Highly Deformable Hierarchical Heterostructure Printed Liquid Electrode Self-assembled Two-dimensional Semiconductor for Wearable Electronics and Sensors: *Ruoxing Wang*¹; Wenzhuo Wu¹; ¹Purdue University # Selection of Materials for Application in Corrosive Environments — Materials Selection Symposium - Session II Program Organizers: Ajit Mishra, Haynes International; Matthew Asmussen, Pacific Northwestern National Laboratory; Sudhakar Mahajanam, Pinnacle Advanced Reliability Technologies; Wilfred Binns, Nuclear Waste Management Organization; John Zhang, Gamry Instruments; Guang-Ling Song, Xiamen University; Eric Schindelholz, Sandia National Laboratories; Raul Rebak, GE Global Research Monday PM Room: A220 October 15, 2018 Location: Greater Columbus Convention Center Session Chairs: Ajit Mishra, Haynes International; Matthew Asmussen, Pacific Northwest National Laboratory #### 2:00 PM Keynote Cast Alumina-forming Stainless Steels for High Temperature Corrosive Environments: Govindarajan Muralidharan¹; Yukinori Yamamoto²; Michael Brady²; Donovan Leonard²; Ercan Cakmak²; Tanya Ros³; Stanley Fauske⁴; Garrett Hadley⁵; Roman Pankiw⁵; Jim Myers⁶; ¹Oak Ridge National Laboratory; ²Oak Ridge National Lab; ³ArcelorMittal Global R & D; ⁴ArcelorMittal Coatesville; ⁵Duraloy Technologies; ⁶MetalTek International #### 2:40 PM Galvanic Corrosion Resistance of Mixed-material Joints Fabricated by Resistance Spot Riveting: Paul Krell¹; Jenifer Locke¹; ¹The Ohio State University #### 3:00 PM Crevice Corrosion: A Critical Degradation Mechanism in Reinforced Concrete: Lei Yan¹; Guangling Song¹; Dajiang Zheng¹; ¹Center for Marine Materials Corrosion and Protection, Xiamen University #### 3:20 PM Break #### 3:40 PM Understanding the Effect of Anodic Polarization on SCC Resistance of AA6111 to Simulate Coupling with CFRP for Automotive Applications: *Katrina Catledge*¹; Jenifer (Warner) Locke¹; ¹The Ohio State University #### 4:00 PM Overview of an Innovative Approach to SCC Inspection and Evaluation of Canister in Dry Storage: Zeev Shayer¹; ¹Colorado School of Mines #### 4.20 PM The Corrosion Behavior of Mg in Marine Envrionment: Fuyong Cao¹; Guang-Ling Song¹; Chen Zhao¹; Jing You¹; ¹Xiamen University # Sintering and Related Powder Processing Science and Technologies — Miscellaneous Sintering Topics Program Organizers: Ricardo Castro, University of California, Davis; Zachary Cordero, Rice University; Eugene Olevsky, San Diego State University; Wolfgang Rheinheimer, Purdue University Monday PM Room: B142/143 October 15, 2018 Location: Greater Columbus Convention Center Session Chair: Christopher Marvel, Lehigh University #### 2:00 PM Invited Simulation of Solid-state Sintering: A Phase-field Approach: *Johannes Hötzer*¹; Marco Seiz²; Veronika Rehn²; Michael Kellner²; Britta Nestler²; ¹Karlsruhe University Of Applied Science; ²Karlsruhe Institute of Technology #### 2:40 PM **Sinter-cracking in 3D Printed Green Bodies**: *Zachary Cordero*¹; Reid Carazzone¹; ¹Rice University #### 3:00 PM Rapid Sintering of Cerium Oxide Ceramics: Nimrod Yavo¹; Asaf Nissenbaum¹; Tal-El Shaul¹; Ellen Wachtel¹; Orit Mendelson²; Giora Kimmel³; *Igor Lubomirsky*¹; Ori Yeheskel²; ¹Weizmann Institute Of Science; ²Nuclear Research Center Negev; ³Ben Gurion University #### 3:20 PM Effect of Excess B₂O₃ on the Density, Microstructure, and Hardness of Reactively Hot-pressed Boron Suboxide: Kristopher Behler¹; Howard Payne²; Jerry LaSalvia³; Chris Marvel⁴; Scott Walck⁵; W. Shoulder⁴; Lionel Vargas-Gonzalez³; Martin Harmer⁴; ¹US Army
Research Laboratory (Survice Engineering); ²ARL (CQL); ³ARL; ⁴Lehigh University; ⁵Arl (Survice Engineering) #### 3:40 PM Break #### 4:00 PM Study on Joining Process of Sulfide Dispersed Bronze and Steel Plate: *Hirokazu Yamasaki*¹; Tomohiro Sato¹; Masanori Takuma¹; Ken-ichi Saitou¹; Yoshimasa Takahashi¹; ¹Kansai University #### 4:20 PM Synthesis of TaB2 Ceramics by Reduction of Ta2O5 with B4C: Melis Kaplan¹; Onuralp Yucel¹; Filiz Sahin¹; Gultekin Goller¹; Ipek Akin¹; ¹Istanbul Technical University #### 4:40 PM Fractal Correction of Coble's Sintering Model: Vojislav Mitic¹; Ljubiša Kocic¹; Vesna Paunovic¹; Goran Lazovic²; Zoran Nikolic¹; ¹University of Nis; ²University of Belgrade # Small-scale Properties of Materials and Length-scale Phenomena — In-situ Assessments Program Organizers: Meysam Haghshenas, University of North Dakota; Charles Lu, University of Kentucky; Finn Giuliani, Imperial College London Monday PM Room: A121 October 15, 2018 Location: Greater Columbus Convention Center Session Chairs: Steve Bull, Newcastle University; Robert Klassen, Western University #### 2:00 PM Invited **In-situ Stable Fracture of Ceramic Interfaces**: Finn Giuliani¹; ¹Imperial College London #### 2:20 PM Invited **Dislocation Transmission through Grain Boundaries: Insights from In-situ Micromechanical Experiments:** *Gerhard Dehm*¹; Natalya Malyar¹; Christoph Kirchlechner¹; ¹Max-Planck-Insititute #### 2:40 PM Invited **In-situ Deformation Behavior of Metallic Glass Composites at the Small Length-scales**: Vahid Hasannaeimi¹; Saideep Muskeri¹; *Sundeep Mukherjee*¹; ¹University of North Texas #### 3:00 PM Invited In-situ Mechanics of a Super-lightweight and Ultra-stiff 3D Graphene-Metal Metamaterial: Pranjal Nautiyal¹; Mubarak Mujawar¹; Benjamin Boesl¹; Arvind Agarwal¹; ¹Florida International University #### 3:20 PM Break #### 3:40 PM Invited In-situ Microcompression Transient Plasticity and Fatigue Tests for Reliable Extraction of Deformation Activation Parameters: Creep, Stress Relaxation, Strain Rate Sensitivity and High Cycle Fatigue Tests: Gaurav Mohanty¹; Johann Michler²; ¹Tampere University of Technology; ²Empa - Swiss Federal Laboratories for Materials Science and Technology #### 4:00 PM Invited Specimen Considerations in Quantitative In-situ Micromechanical Testing: Robert Wheeler¹; ¹Microtesting Solutions LLC #### 4:20 PM In-situ TEM Investigations of Ductile Thin Films on Brittle Substrates: Role of Film Microstructure on Interface Stability: *Alice Lassnig*¹; Christoph Gammer¹; Velislava Terziyska²; Tanja Jörg²; Daniel Kiener²; Christian Mitterer²; Megan Cordill¹; ¹Erich Schmid Institute of Materials Science; ²Montanuniversität Leoben #### 4:40 PM Invited Atomic-scale Insights into Contacts between Nanoscale Bodies: *In-situ* Experiments and Matched Atomistic Simulations: *Tevis Jacobs*¹; Sai Bharadwaj Vishnubhotla¹; Subarna Khanal¹; Rimei Chen²; Xiaoli Hu²; Ashlie Martini²; ¹University of Pittsburgh; ²University of California, Merced #### 5:00 PM Invited Enhanced fracture Toughness of Ceramic Coated Carbon Nanotube Foams through Efficient Stress Delocalization: An In-situ Study: *Atieh Moridi*¹; Cem Tasan¹; John Hart¹; ¹Massachussetts Institute of Technology #### 5:20 PM Invited In-situ Spectroscopic Analysis of the Indentation-induced Phase Transformation of Crystalline and Amorphous Silicon Thin Films by Raman Spectroscopy Enhanced Indentation Technique (RS-IT): *Yvonne Gerbig**; Chris Michaels**; Robert Cook**; *National Institute of Standards and Technology # Surface Properties of Biomaterials — Biomedical Devices for Tissue Engineering and Regenerative Medicine Program Organizers: Venu Varanasi, University of Texas at Arlington; Ryan Bock, Amedica Corporation; Jason Langhorn, DePuy Synthes Joint Reconstruction; Susmita Bose, Washington State University; Amit Bandyopadhyay, Washington State University Monday PM Room: D281 October 15, 2018 Location: Greater Columbus Convention Center Session Chair: Venu Varanasi, University of Texas at Arlington; Ryan Bock, Amedica Corporation; Neelam Ahuja, University of Texas at Arlington #### 2:00 PM Invited Bone-muscle Crosstalk: The Power of the "Kines" and Their Future Tissue Engineering Applications: ChengLin Mo¹; Jian Huang¹; Zhiying Wang¹; Leticia Brotto¹; Lynda Bonewald¹; Venu Varanasi¹; *Marco Brotto*¹; ¹University of Texas at Arlington #### 2:40 PM Invited **3D Live Printed Gelatin and Chitosan Nanosilicate Scaffolds for Bone and Vascular Regeneration**: *Venu Varanasi*¹; Taha Azimaie¹; Azhar Ilyas²; Tugba Cebe³; Phillip Kramer¹; Neelam Ahuja¹; ¹Texas A&M HSC; ²New York Institute of Technology; ³University of Texas at Arlington #### 3:20 PM Break #### 3:40 PM Starch-hydroxyapatite Based Bone Scaffolds Using a Slurry Based 3D Printer: Caitlin Koski¹; Bonny Onuike¹; Amit Bandyopadhyay¹; Susmita Bose¹; ¹Washington State University #### 4:00 PM Osteogenic Silicon Nitride Implants for Rapid Biomineral Formation: Neelam Ahuja¹; Kamal Awad¹; Pranesh Aswath¹; Venu Varanasi²; University of Texas at Arlington; ²Texas A&M College of Dentistry #### 4:20 PM Compounded PEEK/Silicon Nitride Composite Exhibits Enhanced Osteoconductivity and Bacteriostasis: Ryan Bock¹; Giuseppe Pezzotti²; Wenliang Zhu²; Elia Marin²; Alfredo Rondinella²; Francesco Boschetto²; Bryan McEntire¹; B. Sonny Bal³; ¹Amedica Corporation; ²Kyoto Institute of Technology; ³University of Missouri #### 4:40 PM Additive Manufacturing of Heterogeneous Bio-resorbable Constructs for Soft Tissue Applications: Parimal Patel¹; Panos Shiakolas¹; Prashanth Ravi¹; Tre Welch²; Tushar Saini¹; ¹University of Texas at Arlington; ²University of Texas Southwestern Medical Center #### 5:00 PM Antimicrobial Property of Zn Doped Hydroxyapatite: Arjak Bhattacharjee¹; Anshul Gupta¹; Prem Murugan¹; Pradyut Sengupta²; Saravanan Matheshwaran¹; Indranil Manna³; Kantesh Balani¹; ¹IIT Kanpur; ²IMMT Bhubaneswar; ³IIT Kharagpur # Symposium on Large Fluctuations and Collective Phenomena in Materials VI - Mean Field Theory and Other Theoretical Models — Mean Field Theory and Other Theoretical Models Program Organizers: Peter Liaw, University of Tennessee; Karin Dahmen, University of Illinois at Urbana Champaign; Xie Xie, FCA US LLC; Yong Zhang, University of Science and Technology Beijing Monday PM Room: B235 October 15, 2018 Location: Greater Columbus Convention Center Session Chair: Peter Liaw, The University of Tennesee #### 2:00 PM Invited Effect of Microstructural Features, Strain Rate and Temperature on the Deformation Mechanism of Al-Mg-Sc Alloy: Mageshwari Komarasamy¹; *Rajiv Mishra*¹; ¹University of North Texas #### 2:20 PM Invited Characteristic Orientation Relationships and Unusual Deformation Mechanisms in Al-Al2Cu Nano-laminates: *Jian Wang*¹; Shujuan Wang²; Guisen Liu¹; Amit Misra²; ¹University of Nebraska–Lincoln; ²University of Michigan #### 2:40 PM Invited **Serrated Flow in AlMgCuZn-based Lightweight High Entropy Alloys**: *Yong Zhang*¹; ¹Beijing University of Science and Technology #### 3:00 PM Shear-band Dynamics in Bulk Metallic Glasses by Thermal Imaging: *Xie Xie*¹; Yu-Chieh Lo²; Yang Tong³; Junwei Qiao⁴; Gongyao Wang¹; Shigenobu Ogata⁵; Hairong Qi¹; Karin Dahmen⁶; Yanfei Gao⁷; Peter Liaw⁸; ¹The University of Tennessee; ²National Chiao Tung University; ³City University of Hong Kong; ⁴Taiyuan University of Technology; ⁵Osaka University; ⁶University of Illinois at Urbana Champaign; ⁷The University of Tennessee; Oak Ridge National Laboratory; ⁸The University of Tennessee #### 3:20 PM Break #### 3:40 PM Nanoscale Serration and Creep Characteristics of Al0.5CoCrCuFeNi Highentropy Alloys: *Shuying Chen*¹; Weidong Li¹; Xie Xie¹; Jamieson Brechtl¹; Bilin Chen¹; Peizhen Li²; Guangfeng Zhao²; Fuqian Yang²; Junwei Qiao³; Karin Dahmen⁴; Peter Liaw⁵; ¹The University of Tennessee; ²University of Kentucky; ³Taiyuan University of Technology; ⁴University of Illinois at Urbana Champaign; ⁵University of Tennessee #### 4:00 PM Invited Scaling Behaviors of Serrated Flows in Bulk Metallic Glasses: *Junwei Qiao*¹; Jiaojiao Li¹; Zhong Wang¹; Yucheng Wu¹; Peter Liaw²; Karin Dahmen³; ¹Taiyuan University of Technology; ²University of Tennessee; ³University of Illinois at Urbana Champaign #### 4:20 PM Invited A Comprehensive Analysis of the Serration Behavior in Multi-principle Element Systems: *Jamieson Brechtl*¹; Xie Xie¹; Shuying Chen¹; Zhong Wang²; Rui Feng¹; Haoyan Diao¹; Bilin Chen¹; Yunzhu Shi³; Karin Dahmen⁴; Peter Liaw¹; Steven Zinkle¹; ¹University of Tennessee; ²Taiyuan University of Technology; ³University of Science and Technology Beijing; ⁴University of Illinois Urbana-Champaign #### 4:40 PM Invited Plastic Dynamics of the High Entropy Alloy at Cryogenic Temperatures: Jingli Ren^1 ; 1 Zhengzhou University # Synthesis, Characterization, Modeling, Properties and Applications of Functional Porous Materials — Porous Materials II *Program Organizers:* Lan Li, Boise State University; Winnie Wong-Ng, National Institute of Standards and Technology; Kevin Huang, University of South Carolina Monday PM Room: B144/145 October 15, 2018 Location: Greater Columbus Convention Center Session Chair: Winnie Wong-Ng, National Institute of Standards and Technology #### 2:00 PM Invited Gas Adsorption and Transport in Nanoporous Materials for Sustainable Hydrocarbon Recovery and Compressed Fluid Storage in Unconventional Environments: Greeshma Gadikota¹; ¹University of Wisconsin, Madison #### 2:20 PM Invited **Porous Manganese Dioxide Octahedral Molecular Sieve (OMS)**: *Lan Li*¹; Winnie Wong-Ng²; ¹Boise State University; ²National Institute of Standards and Technology (NIST) #### 2:40 PM Invited Energetics of Guest – host Interactions: Di Wu¹; ¹Washington State University #### 3:00 PM Pulsed Electrodeposition of Gas-diffusion Electrocatalysts for Carbon Dioxide Reduction: Brian Skinn¹; Sujat Sen²; McLain Leonard²; Rajeswaran Radhakrishnan¹; Dan Wang¹; Antoni Forner Cuenca²; Timothy Hall¹; Stephen Snyder¹; Fikile Brushett²; E Taylor¹; ¹Faraday
Technology, Inc.; ²Department of Chemical Engineering, Massachusetts Institute of Technology #### 3:20 PM Break #### 3:40 PM Invited Mixed Conductor Membrane Reactor for Carbon Capture and Oxidative Dehydrogenation of Ethane into Ethylene: Peng Zhang¹; Kevin Huang¹; ¹University of South Carolina #### 4:00 PM Invited High Temperature Stability of Porous Carbonated Wollastonite (β-CaSiO₃): Daniel Kopp¹; Rudresh Gowda¹; Ryan Anderson¹; Jun Wang¹; Kevin Blinn¹; Richard Riman¹; ¹Rutgers University #### 4:20 PM Characterization of Coal Fly Ash for the Production of Coagulant for Usage in Wastewater Treatment: *Momboyo Clotilde Apua*¹; Geoffrey S. Simate¹; ¹University of the Witwatersrand #### 4:40 PM A Simple Fabrication of Stearic Acid Functionalized Polypyrrole Encapsulated Melamine Formaldehyde (SA/PPy/MF) Superhydrophobic/Superoleophilic Macroporous Sponge for Oil-water Separation: M Gopinath¹; Love Dashairya¹; Partha Saha¹; ¹NIT Rourkela #### **User-related Failures — Transportation** Program Organizers: Andrew Havics, PH2 LLC; Burak Akyuz, ATS, Inc.; Pierre Dupont, UMONS Faculté polytechnique de MONS (FPMs) Monday PM Room: A210 October 15, 2018 Location: Greater Columbus Convention Center Session Chairs: Matthew Fox, National Transportation Safety Board; Joseph Lemberg, Exponent; William Carden, Mcswain Engineering; Craig Clauser, Craig Clauser Engineering Consulting; Dale Alexander, Engineering Systems Incorporated #### 2:00 PM **Failure Analysis of a Propeller from a Curtiss Jenny**: *Matthew Fox*¹; ¹National Transportation Safety Board #### 2:20 PM Investigation of a Compressor Turbine Blade Failure Involving the Fir Tree Attachment Condition: *Ellen Wright*¹; Gary Novak¹; Richard Baron¹; David Ahearn¹; Dale Alexander¹; ¹Engineering Systems Inc. (ESi) #### 2:40 PM Failure Analysis of Diesel-electric Locomotive Components: Marcel Pitz¹; ¹General Electric #### 3:00 PM Investigation of a Train Derailment from a Fractured Wheel: $Erik\ Mueller^1;$ 1NTSB #### 3:20 PM Break #### 3:40 PM Invited **Passenger Ferry Loss of Propulsion**: *David Shamrell*¹; ¹Engineering Design & Testing Corp. #### 4:00 PM Invited **Environmental Cracking in Aluminum Ship Material**: *Benjamin Palmer*¹; John Lewandowski¹; ¹Case Western Reserve University #### 4:20 PM Invited Mechanism of Crack Initiation and Propagation in a Stryker Light Armored Vehicle.: Sergei Shipilov¹; ¹Corrosion Engineering Solutions Ltd. #### 4:40 PM Invited Commercial Truck Cab Retention Failure and Crashworthiness in a Jackknifing Event: William Carden¹; Eric Van Iderstine¹; ¹McSwain Engineering, Inc. #### MS&T18 Plenary Session Tuesday AM Room: Union Station B October 16, 2018 Location: Greater Columbus Convention Center #### 8:00 AM Introductory Comments #### 8:10 AM Plenary ACerS Edward Orton, Jr. Memorial Lecture: Regenerative Engineering: Materials in Convergence: Cato Laurencin¹, ¹University of Connecticut # MSaT18 #### MATERIALS SCIENCE & TECHNOLOGY 8:50 AM Award Presentation 8:55 AM Introductory Comments 9:00 AM Plenary AIST Adolf Martens Memorial Steel Lecture: Steel – A Lot to Learn: *John Speer*¹; ¹Colorado School of Mines 9:40 AM Award Presentation 9:45 AM Introductory Comments 9:50 AM Plenary ASM/TMS Joint Distinguished Lectureship in Materials and Society Award: The Ecosystem of Research, Education, and Community: Lynnette Madsen¹; ¹National Science Foundation 10:30 AM Award Presentation # 10th International Symposium on Green and Sustainable Technologies for Materials Manufacturing and Processing — Session III Program Organizers: Yiquan Wu, Alfred University; Hisayuki Suematsu, Nagaoka University of Technology; Surojit Gupta, University of North Dakota; Junichi Tatami, Yokohama National University; Enrico Bernardo, University of Padova; Zhengyi Fu, Wuhan University of Technology; Rajiv Asthana, University of Wisconsin-Stout; Allen Apblett, Oklahoma State University; Richard Sisson, Worcester Polytechnic Institute; Tatsuki Ohji, National Institute of Advanced Industrial Science and Technology; Mritunjay Singh, Ohio Aerospace Institute Tuesday PM Room: B233 October 16, 2018 Location: Greater Columbus Convention Center Session Chairs: Yiquan Wu, Alfred University; Zhengyi Fu, Wuhan University of Technology 2:00 PM Invited SiOC-based Energy Storage Materials: Ralf Riedel¹; Magdalena Graczyk-Zajac¹; Dragoljub Vrankovic¹; ¹T U Darmstadt 2:20 PM Invited Porosity Control of Geopolymer Hydrogen Recombination Catalyst Support for Radioactive Waste Containers: *Hisayuki Suematsu*¹; Taro Utsumi¹; Isamu Kudo²; Tadachika Nakayama¹; Koichi Niihara¹; ¹Nagaoka University of Technololgy; ²ADVAN ENG Co. Ltd. 2:40 PM Invited Polymer-derived Porous Mo2C/Mo5Si3/C/SiC Ceramic Nanocomposites for Hydrogen Evolution Reaction: Zhaoju Yu¹; ¹Xiamen University 3:00 PM Invited Sintering Ceramics with Limited Grain Growth by Quasi-plastic Deformation as Dominating Mechanism: *Zhengyi Fu*¹; Weimin Wang¹; Hao Wang¹; ¹Wuhan University of Technology 3:20 PM Synthesis of Intermetallic Silicide Powders by Microwave Assisted Combustion Reaction: Rajalekshmi Pillai¹; Sreekumar Chockalingam¹; Sam Baker¹; ¹SRS Holdings LLC 3:40 PM **Metallurgical History of Tellurium**: *Kristian Mackowiak*¹; Lukas Bichler¹; ¹University of British Columbia - Okanagan Campus 4:00 PM $\textbf{Strategies for Patenting "Green" Technologies: \textit{Van Vekris1}; \ ^1Sim \ \& \ McBurney}$ #### 4:20 PM Successfully Patenting "Green" Materials and Processes: Van Vekris¹; ¹Sim & McBurney # ACerS Frontiers of Science and Society - Rustum Roy Lecture Tuesday PM Room: A111/112 October 16, 2018 Location: Greater Columbus Convention Center Session Chair: L. David Pye, Alfred University #### 1:00 PM Invited Imagination and Innovation in the Land of Machines: David Morse¹; ¹Corning Incorporated # Additive Manufacturing of Composites and Complex Materials III — Ceramic Additive Manufacturing Program Organizers: Dirk Lehmhus, Fraunhofer - Ifam; Jonathan Spowart, Air Force Research Laboratory; Nikhil Gupta, New York University; Eric Jaegle, Max-Planck-Institut Fuer Eisenforschung Tuesday PM Room: A222 October 16, 2018 Location: Greater Columbus Convention Center Session Chair: To Be Announced #### 2:00 PM Introductory Comments #### 2:10 PM Additive Manufacturing of Ceramic Materials for Aerospace Applications: *Matthew Dickerson*¹; Lisa Rueschhoff¹; Luke Baldwin¹; Connor Wyckoff¹; Michael Cinibulk¹; Hilmar Koerner¹; Matthew Dalton¹; ¹Air Force Research Laboratory #### 2:40 PM **Direct Writing LTCC Stacks Utilizing Ceramic On-Demand Extrusion**: Wenbin Li¹; *Austin Martin*¹; Jeremy Watts¹; Ming Leu¹; Gregory Hilmas¹; Tieshu Huang²; ¹Missouri University of Science and Technology; ²NNSA's Kansas City National Security Campus #### 3:00 PM Extrusion-based 3D Printing of Molecular Sieve Zeolite for Gas Absorption Applications: Nishant Hawaldar¹; Hye-Young Park²; Yeon-Gil Jung²; Jing Zhang¹; ¹Indiana University Purdue University Indianapolis; ²Changwon National University, Republic of Korea #### 3:20 PM **Optimizing Process Parameters to Binder Jet Ceramics**: *Edgar Mendoza*¹; Daming Ding¹; Baby Reeja Jayan¹; Jack Beuth¹; ¹Carnegie Mellon University #### 3:40 PM **Preparation of Ceramic Core through 3D Printing Technology**: *Hye-Yeong Park*¹; Hyun-Hee Choi¹; Bong-Gu Kim¹; Geun-Ho Choi¹; Eun-Hee Kim¹; Yeon-Gil Jung¹; Jing Zhang¹; ¹Changwon National University #### 4:00 PM **Optimization of Printing Parameters for 3D Printed PLA**: Nishant Hawaldar¹; Piyush Raikar¹; *Tejesh Dube*¹; Jing Zhang¹; ¹IUPUI # Additive Manufacturing of Metals: Microstructure and Material Properties — Biomedical and Functional AM Materials Program Organizers: Andrzej Wojcieszynski, ATI Specialty Materials; Ulf Ackelid, Freemelt AB; Ola Harrysson, North Carolina State University; Sudarsanam Babu, The University of Tennessee, Knoxville Tuesday PM Room: A214 October 16, 2018 Location: Greater Columbus Convention Center Session Chair: Timothy Horn, North Carolina State University #### 2:00 PM Additive Manufacturing of Biocompatible Ti Alloy (Ti-Nb-Zr-Ta) for Implant Applications: *Maija Nystrom*¹; Juha Kotila¹; Eugene Ivanov²; Eduardo Del-Rio²; ¹EOS Finland; ²Tosoh SMD Inc. #### 2:20 PM Additive Manufacturing: An Approach to Enhance Osteoblast Function and Resistance to Localized Corrosion for Biomedical Applications: Jahangir Khan Lodhi¹; Waseem Haider¹; Kashif Miraj Deen²; ¹Central Michigan University; ²University of British Columbia #### 2:40 PM Electron Beam Melting Approaches for Titanium Alloy Octet Lattice Structure Fabrication: Andrew Neils¹; Abbas Moftakhar²; Liang Dong¹; Haydn Wadley¹; ¹University of Virginia Department of Materials Science; ²General Electric #### 3:00 PM Tensile Properties and Processing Induced Variability in Laser Additive Manufactured Ti-6Al-4V Cellular Structure: Husain Alnaser¹; Anthony Sanders²; Ravi Chandran¹; ¹University of Utah; ²Ortho Development Corp. #### 3:20 PM Study of the Ti53Nb Alloy Fabricated by Selective Laser Melting: *Jhoan Sebastian Guzmán Hernández*¹; Fernando Gomes Landgraf¹; Daniel Leal Bayerlein²; João Ferreira Neto²; Railson Bolsoni Falcão²; Edwin Sallica Leva²; Rafael Nobre¹; ¹University of Sao Paulo; ²IPT – Institute for Technological Research #### 3:40 PM **Direct Laser Deposition of Titanium-copper Binary Alloys**: *Duyao Zhang*¹; Dong Qiu¹; Mark Easton¹; Mark Gibson²; David StJohn³; ¹RMIT University; ²CSIRO; ³The University of Queensland #### 4:00 PM **Development of Nitinol Alloys for Additive Manufacturing**: *Kerri Horvay*¹; Christopher Schade¹; ¹Hoeganaes Specialty Metal Powders LLC. #### 4:20 PM Advances in Metal Additive Manufacturing of Nanofunctionalized Materials: Brennan Yahata¹; Hunter Martin¹; Jacob Hundley¹; Julie Miller¹; Tobias Schaedler¹; Eric Clough¹; Randall Schubert¹; Mark Omasta¹; ¹Hrl Laboratories, LLC # Additive Manufacturing of Metals: Microstructure and Material Properties — Characterization Methods for AM Program Organizers: Andrzej Wojcieszynski, ATI Specialty
Materials; Ulf Ackelid, Freemelt AB; Ola Harrysson, North Carolina State University; Sudarsanam Babu, The University of Tennessee, Knoxville Tuesday PM Room: A215 October 16, 2018 Location: Greater Columbus Convention Center Session Chair: Todd Palmer, The Pennsylvania State University #### 2:00 PM Fundamental Characterization of Porosity in SLM by Micro-CT Scan: Subin Shrestha¹; Tom Starr¹; Kevin Chou¹; ¹University of Louisville #### 2.20 PV Nanoindentation: A Suitable Tool in Metal Additive Manufacturing: Carlos Botero¹; Emilio Jiménez-Piqué²; Stefan Roos¹; Per Skoglund¹; Andrei Koptyug¹; Lars-Erik Rännar¹; Mikael Bäckström¹; ¹SportsTech Research Centre, Mid Sweden University; ²Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya #### 2:40 PM Validation of Methods for Mechanical and Microstructural Property Measurement of Sub-standard Sized SLM Test Specimens: Tanni Alam¹; Jonathan Raush¹; Congyuan Zeng²; Shengmin Guo¹; ¹University of Louisiana at Lafayette; ²Louisiana State University #### 3:00 PM **Texture Analysis of Additively Manufactured Ti-6Al-4V Using Neutron Diffraction**: *Gennadi Rafailov*¹; Asaf Pesach¹; Eitan Tiferet¹; Sven C. Vogel¹; Elad N Caspi¹; ¹LANL #### 3:20 PM Microstructural Characterization of Alternative Manufacturing Techniques of U6Nb: Additive Manufactured, Cast and Wrought: Eloisa Zepeda-Alarcon¹; Donald Brown¹; Bjorn Clausen¹; Amanda Wu²; ¹Los Alamos National Laboratory; ²Lawrence Livermore National Laboratory #### 3:40 PM Manipulation of Mechanical Properties of WAAM Deposited Material through Active Cooling: Andre Corpus¹; Michael Maughan¹; ¹University of Idaho #### 4:00 PM **Feasibility of Repairing Parts Using Electron Beam Melting**: Per Skoglund¹; Carlos Botero¹; Andrei Koptyug¹; *Lars-Erik Rännar*¹; Mikael Bäckström¹; ¹SportsTech Research Centre, Mid Sweden University #### 4:20 PM Near Net-shape, Additively Manufactured Metal Parts with Stress-free Isotropic Microstructures via Sintering: Shashank Holenarasipura Raghu¹; Michael Gibson¹; Nihan Tuncer¹; Brian Kernan¹; Anna Trump¹; Jesse Cataldo¹; Ellen Benn¹; Shannon Taylor¹; Alexander Barbati¹; Animesh Bose¹; Lisa Maiocco¹; Desktop Metal # MATSCITECH.ORG NATSCITECH.ORG MATERIALS SCIENCE & TECHNOLOGY # Additive Manufacturing of Metals: Post Processing – Heat Treatment I Program Organizers: Ola Harrysson, North Carolina State University; Andrzej Wojcieszynski, ATI Specialty Materials; Ulf Ackelid, Freemelt AB; S. Babu, Indian Institute of Technology Madras Tuesday PM Room: A216 October 16, 2018 Location: Greater Columbus Convention Center Session Chair: Ola Harrysson, NC State University #### 2:00 PM Invited **To Post-process Or Not to Post-process**: *Moataz Attallah*¹; Uriel Tradowsky¹; Luke Carter¹; Ji Zou¹; Sheng Li¹; Chunlei Qiu¹; ¹University of Birmingham #### 2:40 PM Microstructure and Properties of Additive Laser Powder Bed Fusion Processed and Heat-treated Co-Cr-Mo Alloy: Boateng Twum Donkor¹; Vijay Vasudevan¹; Seetha Mannava¹; Michael Kattoura¹; ¹University of Cincinnati #### 3:00 PM Parametric Investigation of Selective Laser Melting and Post-Heat Treatment for Al10SiMg Alloys: *Holden Hyer*¹; Sharon Park¹; Le Zhou¹; Bjorn Tolentino¹; Edward Dein¹; Brandon McWilliams²; Kyu Cho²; Yongho Sohn¹; ¹University of Central Florida; ²U.S. Army Research Laboratory #### 3:20 PM Impact of Hot Isostatic Pressing (HIP) on the Mechanical Behavior of Additively Manufactured Ti-6Al-4V by Directed Energy Deposition: *Jayme Keist*¹; Todd Palmer¹; ¹Penn State #### 3:40 PM Selective Laser Melting of Ti6-Al-4V with High Build Rates and Following Hot Isostatic Pressing: *Dominik Ahlers*¹; Florian Hengsbach¹; Madison Burns¹; Peter Koppa¹; Thomas Tröster¹; Mirko Schaper¹; ¹Paderborn University #### 4:00 PM Effects of Post-build Thermal Processing on the Microstructure of Laser Powder-bed Produced 17-4 PH Stainless Steel: Eric Lass¹; Carelyn Campbell¹; Maureen Williams¹; ¹NIST # Additive Manufacturing: In-situ Process Monitoring and Control — Session III Program Organizers: Ulf Ackelid, Freemelt AB; Andrzej Wojcieszynski, ATI Specialty Materials; Sudarsanam Babu, The University of Tennessee, Knoxville; Ola Harrysson, North Carolina State University Tuesday PM Room: A221 October 16, 2018 Location: Greater Columbus Convention Center Session Chair: Sudarsanam Babu, University of Tennessee, Knoxville #### 2:00 PM Overview of In-situ Quality Assurance: Why Is It Needed and Which Tools Can Be Used?: Robin Day¹; ¹RWTH Aachen University Digital Additive Production #### 2:20 PM The Potential of Backscatter Electron Imaging in Selective Electron Beam Malting for Quality Management: Fuad Osmanlic¹; ¹Friedrich-Alexander-Universität Erlangen-Nürnberg #### 2:40 PM Application of Data Sciences Tools to Qualify Additive Manufacturing Processes – Evaluation of Electron Beam – Powder Bed Fusion Process with Unused and Recycled Powders of Ni- and Ti-alloys: Sujana Chandrasekar¹; Jamie Coble¹; Sudarsanam Babu¹; Vincent Paquit²; Peeyush Nandwana²; Sean Yoder²; Ryan Dehoff²; ¹The University of Tennessee, Knoxville; ²Oak Ridge National Laboratory #### 3:00 PM New Electron Beam Powder Bed Fusion System with Open Source Software, Tailored for Materials Research and Development: *Ulf Ackelid*¹; Patrik Ohldin¹; Robin Stephansen¹; Martin Wildheim¹; Fredrik Ostman¹; Ulric Ljungblad¹; ¹Freemelt AB #### 3:20 PM **Design of Flexible Multilayer Powder Feed System for In-situ X-ray Studies**: *Somashekara M Adinarayanappa*¹; Ryan Ott¹; Matt Kramer¹; Peter Collins²; ¹Ames Laboratory; ²Iowa State University #### 3:40 PM Autonomous L-PBF Powder Bed Anomaly Classification Using a Multi-scale Convolutional Neural Network: Luke Scime¹; Jack Beuth¹; ¹Carnegie Mellon University #### 4:00 PM **Instant Monitoring and Controlling of the Thermal Conditions in Additive Manufacturing:** Stephan Ulassin¹; Jonathan Holman¹; *Serdar Tumkor*¹; ¹University of Pittsburgh # Additive Manufacturing: Modeling and Simulation of AM Materials, Processes, and Mechanics — AM Modeling - Session III Program Organizers: Jing Zhang, Indiana University-Purdue University Indianapolis; Li Ma, Johns Hopkins University Applied Physics Laboratory; Xinghua Yu, Oak Ridge National Laboratory; Yeongil Jung, Changwon National University Tuesday PM Room: A223 October 16, 2018 Location: Greater Columbus Convention Center Session Chairs: Jing Zhang, Indiana University - Purdue University Indianapolis; Xinghua Yu, Oak Ridge National Laboratory #### 2:00 PM Simulation Assisted Design for Additive Manufacturing: Lukas Masseling¹; Ulrich Thombansen¹; Kevin Brigden²; Pam Whitaker²; Javier Gutierrez³; *Mustafa Megahed*⁴; ¹Fraunhofer ILT; ²Renishaw; ³ITP Aero; ⁴Esi Group #### 2:20 PM Temperature-dependent Charpy Impact Property of 3D Printed 15-5 Stainless Steel: Sugrim Sagar¹; Yi Zhang¹; Yeon-Gil Jung²; Jing Zhang¹; Hye-Young Park²; ¹Indiana University-Purdue University Indianapolis; ²Changwon National University #### 2:40 PM A Microstructural Modelling Approach for Ni Superalloys Built by Additive Manufacturing: Guilherme Faria¹; Kamal Kadirvel¹; Wei Zhang¹; Yunzhi Wang¹; Antonio Ramirez¹; ¹Dept. of Materials Science and Eng. - The Ohio State University #### 3:00 PM Phase Field Modeling of Dendritic Formation in Additively Manufactured Ti-6Al-4V: Linmin Wu 1 ; $Lingbin\ Meng^1$; Jing Zhang 1 ; 1 IUPUI #### 3:20 PM Materials-genome-based Numerical Investigation of Microstructure Evolution and Cracking during Ceramic Additive Manufacturing: Xiangyang Dong¹; ¹Missouri University of Science and Technology #### 3:40 PM Design and Construction of 3D Printed Parts by Using Composite Laminate Theory: *Jordan Garcia*¹; Y. Charles Lu¹; ¹University of Kentucky #### 4:00 PM **Microstructure Prediction in Additively Manufactured Inconel 718**: *Joe Pauza*¹; Runbo Jiang¹; Lonnie Smith¹; Christopher Pistorius¹; Anthony Rollett¹; ¹Carnegie Mellon University #### 4:20 PM Analysis of Fatigue Behavior of 3d Printed 15-5 Stainless Steel: A Combined Modelling and Experimental Study: Anudeep Padmanabhan¹; Jing Zhang¹; ¹Indiana University - Purdue University Indianapolis # Additive Manufacturing: Powder Characterization and Recycling — Recyclability of Powders and Characterization Program Organizers: Sudarsanam Babu, The University of Tennessee, Knoxville; Andrzej Wojcieszynski, ATI Specialty Materials; Ulf Ackelid, Freemelt AB; Ola Harrysson, North Carolina State University Tuesday PM Room: A224 October 16, 2018 Location: Greater Columbus Convention Center Session Chair: Sudarsanam Babu, University of Tennessee, Knoxville #### 2:00 PM Invited Changes in Surface Chemistry of Metal Powders during Powder Bed Fusion Processing: Eduard Hryha¹; ¹Chalmers University of Technology #### 2:40 PM Characterization of Spatter Particles Produced by PBF: Christopher Rock¹; Tim Horn¹; Rashmi Vadlakonda¹; North Carolina State University #### 3:20 PM Interstitial Gain Modeling for Effective Powder Recyclability in Selective Laser Melting(SLM) Additive Manufacturing(AM) for Ti6Al4V Alloy: Aniruddha Das¹; Mathieu Brochu¹; ¹McGill University #### 3:40 PM Recyclability of Metal Powder Feedstock in Additive Manufacturing: Characterization of 316L Stainless Steel: Michael Heiden¹; Josh Koepke¹; David Saiz¹; Chris DiAntonio¹; Lisa Deibler¹; Daniel Tung¹; Jeffrey Rodelas¹; Bradley Jared¹; ¹Sandia National Labs # Advanced Microelectronic Packaging, Emerging Interconnection Technology, and Pb-free Solder — Session III Program Organizers: Iver Anderson, Iowa State University / Ames Laboratory; Carol Handwerker, Purdue University; Albert T. Wu, National Central University Tuesday PM Room: B230 October 16, 2018 Location: Greater Columbus Convention Center Session Chairs: Carol Handwerker, Purdue University; Eric Chason, **Brown University** #### 2:00 PM Invited Comparisons between Orientation Measurements in Solder Joints and Solder Bumps Using High Energy X-ray Diffraction and Electron Backscattered Diffraction Mapping: Quan
Zhou¹; Justin Roe¹; Thomas Bieler¹; Tae-Kyu Lee²; ¹Michigan State University; ²Portland State University #### 2:20 PV Microstructural Evolution due to Thermal Cycling Leadless Chip Carriers: *Alyssa Yaeger*¹; Carol Handwerker¹; John Blendell¹; Ganesh Subbarayan¹; Travis Dale¹; Elizabeth McClamrock¹; ¹Purdue University #### 2:40 PM **Solid State Interfacial Reactions at Pb-free Solder / Surface Finish Interface:** Faramarz Hadian¹; Harry Schoeller²; Eric Cotts¹; ¹Binghamton University; ²Universal Instruments Corporation #### 3:00 PM Invited What Makes Sn Whiskers Nucleate and Grow: Insight from Real-time Measurements and Modeling: Eric Chason¹; Nupur Jain¹; Andrew Hitt¹; Fei Pei²; ¹Brown University; ²Amphenol-tcs #### 3:20 PM Formation and Evolution of Tin Surface Defects Using Cyclic Thermal and Mechanical Loading: *Xi Chen*¹; Carol Handwerker¹; John Blendell¹; ¹Purdue University #### 3:40 PM **Dislocations Resulted Recrystallization in Tin Whiskers Formation during Thermal Cycling**: Congying Wang¹; Carol Handwerker¹; John Blendell¹; ¹Purdue University #### 4:00 PM Simulation of Microstructural Evolution and Whisker Growth in Thin Films: *Xiaorong Cai*¹; Marisol Koslowski¹; ¹Purdue University MATERIALS SCIENCE & TECHNOLOGY # Advanced Steel Metallurgy: Products and Processing — Iron and Steelmaking, Processing, and Cleanliness Program Organizers: Justin Raines, SSAB Americas; Charles Enloe, General Motors; Emmanuel De Moor, Colorado School of Mines Tuesday PM Room: A226 October 16, 2018 Location: Greater Columbus Convention Center Session Chairs: Ashish Singh, Welspun Tubular LLC; Shobhit Bhartiya, Big River Steel LLC #### 2:00 PM Numerical Simulation of Fluid Flow during the Steel Refining Process in an Electric Arc Furnace: Yuchao Chen¹; Armin Silaen¹; Chenn Zhou¹; ¹Purdue University Northwest #### 2:30 PM **Formation and Evolution of Inclusions in GCR15 Bearing Steels**: Gong Cheng¹; Jiaheng Duan¹; Wenbo Wang¹; *Lifeng Zhang*¹; ¹University of Science and Technology Beijing #### 2:50 PM Complex Precipitation of MnS and Oxides in Heavy Rail Steels: Wen Yang¹; Xuewei Zhang¹; Yanping Chu¹; Lifeng Zhang¹; Gong Cheng¹; ¹University of Science and Technology Beijing #### 3:10 PM Application of Ultrasonic Non-destructive Testing System and ANSYS Simulation to Assess Defects in Continuously Cast Steel Slabs: Zhanfang Wu¹; Hsiang Ling Juan¹; C. Isaac Garcia¹; ¹University of Pittsburgh #### 3:30 PM Control of the Slab Corner Precipitation Behavior for Micro-alloyed Steels Continuous Casting: Zhaozhen Cai¹; Miao-yong Zhu¹; ¹Northeastern University #### 3:50 PM The Influence of SEN and Upnozzle Design on the Flow Character for the Slab Quality: Yu Yanwen¹; ¹Baoshan Iron Steel Co. Ltd. #### 4:10 PM **Improvement in Refractory Life of Smelting Reduction Furnace**: *Koichi Takahashi*¹; Daisuke Kondo¹; Sohei Takagaki¹; Keisuke Adachi¹; Masanori Nishikori¹; ¹JFE Steel Corporation # Advances in Dielectric Materials and Electronic Devices — Advanced Dielectrics and Energy Program Organizers: Amar Bhalla, University of Texas; Ruyan Guo, The University of Texas at San Antonio; Rick Ubic, Boise State University; Danilo Suvorov, Jožef Stefan Institute Tuesday PM Room: B132 October 16, 2018 Location: Greater Columbus Convention Center Session Chair: Steven Tidrow, Alfred University #### 2:00 PM Invited Factors Affecting the Electrocaloric Cooling Performance of Ferroelectric Perovskites: Florian Weyland¹; Nikola Novak¹; George Rossetti²; ¹Technical University of Darmstadt; ²University of Connecticut #### 2:20 PM Processing of 2-D Ceramic Nanofillers/PVDF Dielectric Nanocomposites for Enhanced Energy Storage Capability: *Dokyun Kwon*¹; Yumin Goh¹; Hyunseung Cho¹; Hyunjeong Bae¹; Hoisub Shin¹; ¹Korea Aerospace University #### 2:40 PM Invited Features of the PbTiO3-CaTiO3 Morphotropic Phase Boundary: Ducinei Garcia¹; Flávia Estrada¹; ¹Federal University of Sao Carlos #### 3:00 PM Antiferroelectric Materials as Dielectric Coolants: Theory and Experiments: Bouchra Asbani¹; Brigita Rozic²; Hana Ursic²; Mimoun El Marssi¹; Rasa Pirc²; Jurij Koruza³; Barbara Malic²; *Zdravko Kutnjak*²; ¹University of Picardie Jules Verne; ²Jozef Stefan Institute; ³Technische Universitaet Darmstadt #### 3:20 PM Capacitors as Thermal-to-Electric Energy Conversion Devices: Steven Tidrow¹; *Jessica Scoones*¹; Dustin Travis¹; Soutik Betal¹; Steven Pilgrim¹; Walter Schulze¹; ¹Alfred University #### 3:40 PM Pyrolytic Graphite-copper Thermocouple for Non-invasive Direct Temperature Measurement: Abdul-Sommed Hadi¹; Jonathan Lann²; Tyler Fricks²; Bryce Hill²; ¹Montana Tech of the University of Montana; ²Montana Technological University #### 4:00 PM Invited Electric Field Control of Interfacial Magnetism through Ionic Liquid Gating: *Zhongqiang Hu*¹; Ziyao Zhou¹; Ming Liu¹; ¹Xi²an Jiaotong University #### 4:20 PM Effect of Calcination and Sintering Temperature on Dielectric Properties of Giant Dielectric Ti<0.9>(Al<0.5>Nb<0.5>)<0.1>O<2> Ceramics: Ranabrata Mazumder¹; Subhra Sourav Jana¹; Sumit Choudhary¹; S. Abhinay¹; ¹National Institute of Technology Rourkela # Advances in Solid Oxide Fuel Cell Technology — SOFCs for Stationary Applications Program Organizers: Scott Swartz, Nexceris LLC; Matthew Seabaugh, Nexceris LLC; Jeff Stevenson, Pacific Northwest National Laboratory Tuesday PM Room: D281 October 16, 2018 Location: Greater Columbus Convention Center Session Chairs: Jeff Stevenson, Pacific Northwest National Laboratory; Patcharin Burke, Department of Energy #### 2:00 PM Invited Solid Oxide Fuel Cell Stack Technology: Status and Challenges: Nguyen Minh¹; ¹University of California, San Diego #### 2:20 PM Invited Overview of DOE Office of Fossil Energy's Solid Oxide Fuel Cell Program: Patcharin Burke¹; Shailesh Vora¹; ¹Department of Energy, National Energy Technology Laboratory #### 2:40 PM Invited Innovative Natural-gas Technologies for Efficiency Gain in Reliable and Affordable Thermochemical Electricity-generation (Integrate): David Tew¹; ¹ARPA-E #### 3:00 PM Invited Functional Interfacial Layers to Reduce Detrimental Cell Interactions: *Neil Kidner*¹; Steve Bradshaw¹; Kari Riggs¹; David Kopechek¹; Gene Arkenberg¹; Matthew Seabaugh¹; Scott Swartz¹; 'Nexceris LLC #### 3:20 PM Invited Combining Experiments, Modeling, and Systems Analysis to Enable Solid Oxide Fuel Cell Technology: *Harry Abernathy*¹; Gregory Hackett¹; Shiwoo Lee¹; Thomas Kalapos¹; ¹National Energy Technology Laboratory #### 3:40 PM SupircatTM: A High Performing Internal Reforming Catalyst Technology for SOFC Applications: *Naftali Opembe*¹; Matthew Seabaugh¹; Scott Swartz¹; Douglas Mitchell¹; Sergio Ibanez¹; ¹Nexceris LLC #### 4:00 PM Nano-CeO2 Catalyst Deposition Using Bio-adhesive Catechol Surfactants for Efficient Enhancement of SOFC Electrodes: Ozcan Ozmen¹; John Zondlo¹; Edward Sabolsky¹; Shiwoo Lee²; Gregory Hackett²; Harry Abernathy²; Neil Kidner³; Matthew Seabaugh³; ¹West Virginia University; ²US DOE-National Energy Technology Laboratory; ³Nexceris, LLC #### 4:20 PM Quantitative Analysis of Multi-scale Microstructural Heterogeneities in SOFC Electrodes: *Rubayyat Mahbub*¹; Mingzhen Feng¹; Tim Hsu¹; William Epting²; Ross Cunningham¹; Gregory A Hackett²; Harry Abernathy²; Anthony D Rollett¹; Shawn Litster¹; Peter Kenesei³; David B Menasche¹; Robert Suter¹; Paul A Salvador¹; ¹Carnegie Mellon University; ²U.S. DOE National Energy Technology Laboratory; ³Argonne National Laboratory #### **ASM Edward DeMille Campbell Memorial Lecture** Tuesday PM Room: C170 October 16, 2018 Location: Greater Columbus Convention Center #### 12:45 PM Invited Sustainable Materials Development: A Case Study Approach: Julie Schoenung¹; ¹University of California, Irvine #### Boron, Boron Coatings, Boron Compounds and Boron Nanomaterials: Structure, Properties, Processing, and Applications — Physical Properties of Bulk Systems Program Organizers: Jens Kunstmann, Technische Universität Dresden; Roumiana Petrova, New Jersey Institute of Technology; Scott Beckman, Washington State University Tuesday PM Room: B244/245 October 16, 2018 Location: Greater Columbus Convention Center Session Chair: Jens Kunstmann, TU Dresden #### 2:00 PM Invited Chemical Space Partitioning in New Intermetallic Borides MNi₂₁B₂₀ (M = In, Sn): Andreas Leithe-Jasper¹; Frank Wagner¹; Qiang Zheng¹; Juri Grin¹; ¹MPI-CPfS #### 2:40 PM Invited Thermoelectric Properties of Boron-rich Metal Borides: Masatoshi Takeda¹; ¹Nagaoka University of Technology #### 3:20 PM Question and Answer Period #### 3:40 PM Invited $\begin{tabular}{ll} \textbf{Temperature-dependent Site Occupation in Elemental Beta Boron}: $Michael Widom^1; $$ 1 Carnegie Mellon University $$$ #### 4:20 PM Invited Insights on Hydogenated Alpha-tetragonal Boron and the Phase Diagram of Two-dimensional Boron Oxide: Jens Kunstmann¹; ¹Tu Dresden # Careers in Industry — Networking and Careers for Material Scientists Program Organizers: Kathleen Shugart Cissel, UES Inc; Krista Grayson, Mo-Sci Corporation Tuesday PM Room: B231 October 16, 2018 Location: Greater Columbus Convention Center Session Chairs: Amanda Krause, Lehigh; Kathleen Cissel, UES, Inc #### 2:00 PM Invited Networking: Kristen Brosnan¹; ¹GE Global Research #### 2:40 PM Invited How Advanced Degrees in MSE Enable Business Opportunities: Robert Wheeler¹; ¹Microtesting Solutions LLC #### 3:00 PM Invited **Developing Your Career at a National Laboratory**: *Marissa Reigel*¹; ¹Savannah River National Lab #### 3:40 PM Invited What R&D Means in a Small Company: Steven Jung¹; ¹Mo-Sci Corporation #### 4:00 PM Invited So What Next? Careers at Large Companies for Graduates with Materials Science Backgrounds: Adam Stevenson¹; ¹Saint-Gobain #### 4:40 PM Invited Airplane Material Advancements to Meet Future Industry Demand: Daniel Sievers¹; ¹Boeing # Ceramic and Crystal Materials for Optics and Photonics — Session III Program Organizers: Yiquan Wu, Alfred University; Jas Sanghera, Naval Research Laboratory; Michael Squillante, RMD, Inc; Akio Ikesue,
World-Lab. Co., Ltd; Mark Dubinskiy, Amy Research Laboratory Tuesday PM Room: A113 October 16, 2018 Location: Greater Columbus Convention Center Session Chairs: Do-Kyung Kim, Korea Advanced Institute of Science & Tech; Victoria Blair, Army Research Laboratory #### 2:00 PM Invited The Elusiveness of Tough, Transparent Ceramics: Ivar Reimanis¹; ¹Colorado School of Mines #### 2:20 PM Invited Testing and Design of Nd:YVO4 Laser Amplifier Components for the ICESat-2 Altimeter: *Jonathan Salem*¹; Nicholas Sawruk²; Eric Baker¹; ¹NASA Glenn Research Center; ²Fibertek #### 3:00 PM Updated Advances in Coherent Poly-propagation of Diffracted White Light in Natural Silicates: Michelle Stem¹; ¹Complete Consulting Services LLC # MSeT18 #### MATERIALS SCIENCE & TECHNOLOGY #### 3:20 PM Invited **Transparent Ceramics for Laser and Optical Applications**: *Long Zhang*¹; Benxue Jiang¹; Xiaojian Mao¹; Qiangqiang Zhu¹; ¹Shanghai Institute of Optical and Fine Mechanics. Chinese Academy of Science # Characterization & Methods in Failure Analysis — Fatique & Fracture I Program Organizers: Andrew Havics, PH2 LLC; Burak Akyuz, ATS, Inc.; Pierre Dupont, UMONS Faculté polytechnique de MONS (FPMs) Tuesday PM Room: A211 October 16, 2018 Location: Greater Columbus Convention Center Session Chairs: Guiru Liu, Progress Rail; Nicholas Cherolis, Baker Risk; Wesley Pridemore, General Electric-Aviation; Pierre Dupont, Schaeffler Belgium Sprl/bvba; Conrad Park, Case Western Reserve University #### 2:00 PM Invited William FAIRBAIN Was Not at All Tired by Fatigue Aid August WÖHLER!: Pierre Dupont¹; ¹Schaeffler Belgium Sprl/Bvba #### 2:40 PM The Unusual Case of Pressure Bottles Bursting Open after Decades of Service: Donato Firrao¹; Luca Marmo¹; Paolo Matteis¹; ¹Politecnico Di Torino #### 3:00 PM Invited **Advanced Mill Roll Life Cycle Management**: *Konstantin Redkin*¹; Christopher Hrizo¹; Kevin Marsden¹; ¹WHEMCO Inc #### Composition-Processing-Microstructure-Property Relationships of Titanium Alloys — Phase Transitions & Alloy Design Program Organizers: Benjamin Morrow, Los Alamos National Laboratory; Carl Boehlert, Michigan State University; Kayla Calvert, TIMET - HTL; Yufeng Zheng, The Ohio State University Tuesday PM Room: C150 October 16, 2018 Location: Greater Columbus Convention Center Session Chairs: Benjamin Morrow, Los Alamos National Laboratory; Yufeng Zheng, The Ohio State University #### 2:00 PM Invited The Dynamic Behavior of Titanium: Capturing Phase Transitions under Extreme Loading: David Jones¹; Benjamin Morrow¹; Ellen Cerreta¹; Paulo Rigg²; ¹Los Alamos National Lab; ²Dynamic Compression Sector, Washington State University #### 2:30 PM Investigation of α Phase Formation in Metastable β Ti Alloys: Petr Harcuba¹; Jana Smilauerova¹; Václav Holy¹; ¹Charles University in Prague #### 2:50 PM Study of the Transition Region between ω and β Phases in Ti-15Mo by X-ray Diffraction: Jana Šmilauerová¹; Petr Harcuba¹; Jozef Veselý¹; Miloš Janecek¹; Václav Holý¹; ¹Charles University #### 3:10 PM Invited **Stability of Two Phase (alpha/omega) Microstructure in Shocked Titanium**: *Reeju Pokharel*¹; Benjamin Morrow¹; Adrian Losko¹; Donald Brown¹; Jun-Sang Park²; ¹Los Alamos National Lab; ²Argonne National Lab #### 3:40 PM Invited The Role of Non-conventional Transformation Pathways and Structural Instabilities on the Microstructural Evolution in Metastable Beta-titanium Alloys: Yufeng Zheng¹; Yunzhi Wang¹; Rajarshi Banerjee²; Dipankar Banerjee³; Hamish Fraser¹; ¹Ohio State University; ²University of North Texas; ³Indian Institute of Science #### 4:10 PM Invited Tuning the Scale of a Precipitates in ß-titanium Alloys for Achieving High Strength: Srinivas Aditya Mantri¹; Deep Choudhuri¹; Talukder Alam¹; *Rajarshi Banerjee*¹; ¹University of North Texas #### 4:40 PM Microstructure Design by Two Step Phase Transformation in ß Ti-alloys: *Dong Wang*¹; Tianlong Zhang¹; Yunzhi Wang²; ¹Xi'An Jiaotong University; ²The Ohio State University # Controlled Synthesis, Processing, and Applications of Structural and Functional Nanomaterials — Session II Program Organizers: Haitao Zhang, University of North Carolina at Charlotte; Kathy Lu, Virginia Tech; Edward Gorzkowski, Naval Research Laboratory; Gurpreet Singh, Kansas State University; Kejie Zhao, Purdue University; Jian Shi, Rensselaer Polytechnic Institute Tuesday PM Room: D180 October 16, 2018 Location: Greater Columbus Convention Center Funding Support provided by: MilliporeSigma Session Chairs: Kathy Lu, Virginia Tech; Haitao Zhang, University of North Carolina at Charlotte #### 2:00 PM Keynote Wafer Scale Two-dimensional Transition Metal Dichacogenide Materials and Devices: Linyou Cao¹, ¹North Carolina State University #### 2:40 PM Study of Low-temperature Photocatalytic Protonation of 2D MoO3 Nanoflakes with Pure Alcohol: Soheil Razmyar 1 ; $Haitao\ Zhang^1$, 1 UNC Charlotte #### 3:00 PM Permselective H2/CO2 Separation and Desalination of Hybrid GO/rGO Membranes with Controlled Pre-crosslinking: *Han Lin*¹; Ruochen Liu²; Shailesh Dangwal²; Seok-Jhin Kim²; Nitin Mehra¹; Yifan Li¹; Jiahua Zhu¹; ¹The University of Akron; ²Oklahoma State Unicersity #### 3:20 PM Keynote Complexity of Intercalation In-between 2D Transition Metal Carbides "MXenes" and Their Applications as Energy Storage Materials: $Michael Naguib^1$; ¹Tulane University # Deformation and Transitions at Grain Boundaries VI – Grain Boundary Energy and Structure I Program Organizers: Thomas Bieler, Michigan State University; Shen Dillon, University of Illinois; Saryu Fensin, Los Alamos National Laboratory; Jian Luo, University of California San Diego; Douglas Spearot, University of Florida Tuesday PM Room: A123 October 16, 2018 Location: Greater Columbus Convention Center Session Chairs: Shengfeng Yang, Indiana University Purdue University Indianapolis; Timothy Rupert, University of California Irvine #### 2:00 PM Invited Charting the Chemical Landscape of Grain Boundaries: An Atomistic Method to Determine Ground-state Complexions.: Peter Larsen¹; Arvind Kalidindi¹; Christopher Schuh¹; ¹MIT #### 2:30 PM Invited **Decorating Defects with Segregating Dopants to Tailor Mechanical Properties:** *Timothy Rupert*¹; ¹University of California Irvine #### 3:00 PM Invited Modeling Grain Boundary Phases Transitions with Atomistic Simulations: Shengfeng Yang¹; Jian Luo²; ¹Indiana University Purdue University Indianapolis; ²University of California, San Diego #### 3:30 PM Invited Grain Boundary Energy and Velocity Shift during Grain Growth of Nanocrystalline Magnesium Aluminate: Ricardo Castro¹; Dereck Muche¹; ¹University of California, Davis #### 4:00 PM Mechanical Properties of Nanocrystalline-nanotwinned Silver Strengthened by Copper Impurity Segregation: *Xing Ke*¹; Frederic Sansoz¹; Y. Morris Wang²; Ryan Ott³; Jaime Marian⁴; ¹The University of Vermont; ²Lawrence Livermore National Laboratory; ³Ames Laboratory; ⁴University of California Los Angeles #### 4:20 PM Role of Grain Boundaries on Damage Evolution in Wrought and Additively Manufactured (AM) Tantalu: George Gray¹; Veronica Livescu¹; Thomas Nizolek¹; Carl Trujillo¹; Roberta Beal¹; David Jones¹; ¹Los Alamos National Lab # Environmental Degradation and Embrittlement of Structural Metals — Hydrogen Embrittlement I Program Organizers: Jun Song, McGill University; Ankit Srivastava, Texas A&M University; Homero Castaneda, Texas A&M University; Salim Brahimi, McGill University / IBECA Technologies; Frank Cheng, University of Calgary; Ronald Miller, Carleton University; Xin Pang, Canmetmaterials, Natural Resources Canada; Stephen Yue, McGill University Tuesday PM Room: C162A/162B October 16, 2018 Location: Greater Columbus Convention Center Session Chair: Jun Song, McGill University #### 2:00 PM Invited Relating the Crystallographic Character of Individual Grain Boundaries to Their Hydrogen Embrittlement Susceptibility: Michael Demkowicz¹; ¹Texas A&M University #### 2:30 PM A Novel Experimental-numerical Approach to Investigate Hydrogen Enhanced Localized Plasticity (HELP) Mechanism: Seyedeh Mohadeseh Taheri Mousavi¹; Benjamin Cameron¹; Motomichi Koyama²; C. Cem Tasan¹; ¹MIT; ²Kyushu University #### 2:50 PM Hydrogen Effects on the Evolution of Plastic Deformation and Intergranular Failure of Ni: A Study across Length Scales: *Kaila Bertsch*¹; Shuai Wang²; Akihide Nagao³; Ian Robertson²; ¹University of Illinois at Urbana-Champaign; ²University of Wisconsin-Madison; ³International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University #### 3:10 PM Invited **Hydrogen-microvoid Interactions in Metals**: *Zhiliang Zhang*¹; ¹Norwegian University of Science and Technology #### 3:30 PM Hydrogen Trapping and Kinetics at Phase Boundaries in High-strength Steels: An Atomistic Study: Xiao Zhou¹; Xiaohan Bie¹; Jun Song¹; ¹McGill University #### 3:50 PM Hydrogen Embrittlement of 4340 Steel with Martensitic and Bainitic Microstructures for Fastener Applications: Dane Hyer-Peterson¹; Kip Findley¹; Colorado School of Mines # Glass, Amorphous, and Optical Materials: Common Issues within Science & Technology — ACerS GOMD Alfred R. Cooper Award Session Program Organizers: John Kieffer, University of Michigan; Liping Huang, Rensselaer Polytechnic Institute Tuesday PM Room: A115 October 16, 2018 Location: Greater Columbus Convention Center Session Chair: Neville Greaves, University of Cambridge #### 2:00 PM Introductory Comments #### 2:10 PM Invited A Multiscale Approach to the Mechanical Properties of Glass: Tanguy Rouxel'; ${}^{1}\text{University}$ of Rennes 1 #### 2:50 PM Invited Structural Relaxation versus Crystallization in a Deeply Undercooled Glass: Ricardo Felipe Lancelotti¹; Daniel Roberto Cassar¹; Edgar Zanotto¹; ¹Federal University of Sao Carlos #### 3:30 PM Invited **Alfred R. Cooper: The Melody Lingers On**: *John Mauro*¹; ¹The Pennsylvania State University #### 4:10 PM Invited Effects of B2O3/SiO2 Substitution on Structure and In Vitro Bioactivity of Phosphosilicate
Bioactive Glasses: *Jincheng Du*¹; Xiaonan Lu¹; Mengguo Ren¹; ¹University of North Texas #### 4:50 PM Invited Therapeutic Bioactive Glass Nanoparticles and the Challenge of Ion Incorporation: *Julian Jones*¹; ¹Imperial College IMS Symposium on Metallography and Microstructural Characterization of Materials and the Correlation of Microstructure to Mechanical Properties — Metallography and Microstructural Characterization of Materials and the Correlation of Microstructure to Mechanical Properties II Program Organizers: Daniel Dennies, DMS, Inc.; James Martinez, NASA Johnson Space Center; Michael Keeble, Buehler, A Division of ITW; Jaret Frafjord, IMR Test Labs - Portland Tuesday PM Room: A212 October 16, 2018 Location: Greater Columbus Convention Center Session Chairs: Jaret Frafjord, IMR Test Labs - Portland; Chris Bagnall, MCS Associates, Inc; Mike Keeble, Buehler, A Division of ITW #### 2:00 PM Invited ASM-IMS Henry Clifton Sorby Lecture: Summary of Analysis of Human and Methodological Factors Affecting the Accuracy and Precision of Quantitative Descriptions of the Microstructure of Materials: Agnieszka Szczotok¹; Jan Cwajna¹; ¹Silesian University of Technology, Faculty of Materials Engineering and Metallurgy #### 3:00 PM Invited Macrocharacterization and Mapping of Creep Damage in Semi-circular Notched Bar Creep Tests: *John Siefert*¹; Tapasvi Lolla¹; ¹Electric Power Research Institute #### 3:20 PM Martempering and the Fracture Toughness of a Medium Carbon Secondary Hardening Steel: Warren Garrison¹; Yu Lin¹; Yaxu Zheng²; ¹Carnegie Mellon University; ²University of Science and Technology Beijing #### 3:40 PM The Study of the Embrittlement of a Medium Carbon Secondary Hardening Steel on Cooling from the Austenitizing Temperature: Yu Lin¹; Yaxu Zheng²; Warren Garrison¹; ¹Carnegie Mellon University; ²University of Science and Technology Beijing #### 4:00 PM The Effect of Long-period Stacking-ordered Structure (LPSO) on Deformation Behavior of Magnesium Rare Earth Alloys: *Kun Li*¹; R.D.K. Misra²; ¹University of Texas El Paso; ²UTEP #### 4:20 PM Experimental Investigation and Computational Modeling of the Multiaxial Plasticity Behavior of DP600 at Macro and Microscales: *Shipin Qin*¹; Ross McLendon²; Victor Oancea²; Allison Beese¹; ¹Department of Materials Science and Engineering, Pennsylvania State University; ²Dassault Systemes SIMULIA Corp. # Interfaces, Grain Boundaries and Surfaces from Atomistic and Macroscopic Approaches — Surface Properties Program Organizers: John Blendell, Purdue University; Ming Tang, Rice University; Shen Dillon, University of Illinois; Wayne Kaplan, Technion - Israel Institute of Technology; Dominique Chatain, CNRS, Aix-Marseille University Tuesday PM Room: A122 October 16, 2018 Location: Greater Columbus Convention Center Session Chair: Wolfgang Rheinheimer, Purdue University #### 2:00 PM Invited **Development of Electronic Materials Using Combinatorial Substrate Epitaxy**: Elizabeth Mao¹; Julia Wittkamper¹; Haobo Li¹; Catherine Zhou¹; Wilfrid Prellier²; Gregory Rohrer¹; *Paul Salvador*¹; ¹Carnegie Mellon University; ²Laboratoire CRISMAT, CNRS UMR 6508, ENSICAEN, Normandie Université #### 2:30 PM Role of Hydrogen-bond Reorientation and Second Shell Waters and Surfaces on Proton Transport: Jesse Lentz¹, Stephen Garofalini¹, ¹Rutgers University #### 3:00 PM On the Kinetics of Si Grain Boundary Segregation in an Iridium Alloy during Continuous Cooling: Dean Pierce¹; Govindarajan Muralidharan¹; Lee Heatherly¹; Cecil Carmichael¹; George Ulrich¹; 'Oak Ridge National Laboratory #### 3:20 PM Adsorption and Diffusion of Oxygen on Pure and Partially Oxidized Al and Ni Surfaces: Krishan Kanhaiya¹; Hendrik Heinz¹; ¹University of Colorado Boulder #### 3-40 PM Influence of Polarization Magnitude on the Photochemical Reactivity of BaTiO₃: Wenjia Song¹; Paul Salvador¹; Gregory Rohrer¹; ¹Carnegie Mellon University #### 4:00 PM **Atomistic Methods for Prediction of Static Friction**: *William Joost*¹; Kelly Harrington¹; Pantcho Stoyanov¹; ¹Pratt & Whitney #### International Symposium on Ceramic Matrix Composites — Damage Evaluation and Modeling Program Organizers: Jitendra Singh, Retired, U.S. Army Research Laboratory; Narottam Bansal, National Aeronautics and Space Administration; Jacques Lamon, CNRS; Sung Choi, Naval Air Systems Command Tuesday PM Room: A114 October 16, 2018 Location: Greater Columbus Convention Center Session Chair: Triplicane Parthasarathy, UES, Inc. #### 2:00 PM Invited Role of Extreme Values in Constituent Geometry and Property Distributions in Design of SiC/SiC CMCs: Frank Zok¹; ¹University of California Santa Barbara #### 2:40 PM Invited Modeling Environment Induced Property Degradation of SiC-fiber Reinforced CMCs: *Triplicane Parthasarathy*¹; Qingda Yang²; Brian Cox³; Michael Braginsky⁴; Olivier Sudre⁵; Dipen Patel¹; Craig Przybyla⁶; Michael Cinibulk⁶; ¹UES Inc; ²University of Miami; ³Arachne Consulting; ⁴UDRI; ⁵Teledyne Scientific; ⁶Air Force Research Laboratory #### 3:20 PM Life Limiting Behavior of Ceramic Matrix Composities (CMCs) under Static Interlaminar Shear Loading at Elevated Temperatures: Sean Kane¹; Sung Choi¹; D. Faucett¹; Luis Sanchez¹; ¹NAVAIR #### 3:40 PM Effects of Rebounding Velocity of Projectiles on Foreign Object Damage (FOD) in Ceramic Matrix Composites (CMCs): David Faucett¹; Cajer Gong¹; Nes Kedir²; Sung Choi¹; ¹NAVAIR; ²Purdue University #### 4:00 PM Inelastic Deformation Around Strain Concentrating Features in All-oxide Fiber Composites: Avery Samuel¹; Paul Christodoulou²; Frank Zok²; ¹University of California Santa Barbara; ²UCSB Materials Department #### 4.20 PM **Deformation and Failure in Pin-loaded All-oxide fiber Composites**: *Paul Christodoulou*¹; Avery Samuel¹; Frank Zok¹; ¹University of California, Santa Barbara # International Symposium on Defects, Transport and Related Phenomena — Gas-Solid Interface Transport Program Organizers: Tatsuya Kawada, Tohoku University; Manfred Martin, RWTH Aachen University; Sangtae Kim, University of California, Davis; William Chueh, Stanford University Tuesday PM Room: B242/243 October 16, 2018 Location: Greater Columbus Convention Center Session Chairs: Nicola Perry, University of Illinois at Urbana-Champaign; Koji Amezawa, IMRAM, Tohoku University #### 2:00 PM Invited Cathodic Reaction in SOFC and PCFC Investigated by Using Patterned Thin Film Model Electrode: Koji Amezawa¹; Keita Mizuno¹; Yuki Shinomiya¹; Yoshinobu Fujimaki¹; Takashi Nakamura¹; Yuta Kimura¹; Kiyofumi Nitta²; Oki Sekizawa²; Keiji Yashiro¹; Fumitada Iguchi¹; Hiroo Yugami¹; Tatsuya Kawada¹; ¹Tohoku University; ²JASRI #### 2:40 PM Invited Crystallinity and Microstructure Effects on Oxygen Surface Exchange Kinetics of Mixed Conducting Oxides: Ting Chen¹; George Harrington²; Kazunari Sasaki¹; Nicola Perry³; ¹wpi-12CNER, Kyushu University; ²MIT; ³University of Illinois at Urbana-Champaign #### 3:20 PM Invited A Comparison of the Wafer Curvature and X-ray Diffractometry Determined Mechanical Properties, Defect Chemistry, and Electrochemical Performance of Praseodymium Doped Ceria Thin Films: Yuxi Ma¹; Jason Nicholas¹; ¹Michigan State University #### 4:00 PM Oxygen Reduction Reaction on Ceria: Doping Matters: Maximilian Schaube¹; Rotraut Merkle¹; Joachim Maier¹; ¹Max Planck Institute for Solid State Research #### 4:20 PM Equivalent Circuit Analysis of Impedance Response and Potential Distribution in Multiple Carrier Electrolytes: Keiji Yashiro¹; Kotaro Okuyama¹; Arthur Bourdon¹; *Tatsuya Kawada*¹; ¹Tohoku University # Joining of Advanced and Specialty Materials (JASM XX) — Friction Stir and Friction Welding II/Other Solid State Joining Processes Program Organizers: Mathieu Brochu, Mcgill University; Anming Hu, University of Tennessee Knoxville; Boian Alexandrov, Ohio State University; Darren Barborak, WeldQC, Inc; Akio Hirose, Osaka University; Peng He, Harbin Institute of Technology; Zhiyong Gu, University of Massachusetts Lowell Tuesday PM Room: C171 October 16, 2018 Location: Greater Columbus Convention Center Session Chairs: Zhenzhen Yu, Colorado School of Mines; Judy Schneider, University of Alabama at Huntsville #### 2:00 PM Joining of Dissimilar Metals - Inconel718 and En24 Alloys by Continuous Drive Friction Welding: Vijay Gaikwad¹; ¹Bharat Forge Ltd. #### 2:20 PM Invited **High Speed Friction Stir Lap Welding of Automotive Al Alloys**: *Piyush Upadhyay*¹; Xiao Li²; Tim Roosendaal²; ¹Pacific Northwest National Laboratory; ²Pacific Northwest National Laboratory #### 2:40 PM Liquid Metal Embrittlement in Resistance Spot Welding of Zinc Coated Advanced High Strength Steel: *Erica Wintjes*¹; Andrew Macwan²; Elliot Biro¹; Norman Zhou¹; ¹University of Waterloo; ²ArcelorMittal Global Research #### 3:00 PM Impact Welding for Rapid Repair of Full-hard Precipitation Hardened Steel: Bert Liu¹; Anthony Palazotto¹; Anupam Vivek²; Glenn Daehn²; ¹Air Force Institute of Technology; ²The Ohio State University #### 3:20 PM Microstructure and Strength of Aluminum Alloy Jointed by Piezoelectric Actuator Augmented Resistance Spot Welding: *Na Wu*¹; Shujun Chen¹; Jun Xiao¹; Wei Zhang²; Chaoxiong Hu¹; ¹Beijing University of Technology; ²The Ohio State University #### 3:40 PM Effect of Surface Condition on Resistance Spot Welding of Press-hardened Steel: *Xu Han*¹; Mohammad Hadi Razmpoosh¹; Andrew Macwan²; Elliot Biro¹; Norman Zhou¹; ¹University of Waterloo; ²ArcelorMittal Global Research #### 4:00 PM Invited **Spot Joining of AA 7085 and DP 1180 Steel Using a Friction Riveting Approach:** Kevin Shirley¹; *Michael Miles*¹; Scott Grimshaw¹; Yong-Chae Lim²; Zhili Feng²; Eric Boettcher³; ¹Brigham Young University; ²Oak Ridge National Lab; ³Honda Rep. #### 4:20 PM Spot Impact Welding AA6111 Using Vaporizing Foil Actuator Welding: *Angshuman Kapil*¹; Taeseon Lee²; Anupam Vivek²; Ronald Cooper³; Elizabeth Hetrick³; Glenn Daehn²; ¹The Ohio State University; ²The Ohio State University, Department of Materials Science and Engineering; ³Ford Motor Company # Joining of
Advanced and Specialty Materials (JASM XX) — Welding Metallurgy I Program Organizers: Mathieu Brochu, Mcgill University; Anming Hu, University of Tennessee Knoxville; Boian Alexandrov, Ohio State University; Darren Barborak, WeldQC, Inc; Akio Hirose, Osaka University; Peng He, Harbin Institute of Technology; Zhiyong Gu, University of Massachusetts Lowell Tuesday PM Room: C172 October 16, 2018 Location: Greater Columbus Convention Center Session Chairs: Hiroaki Mori, Osaka University; Carolin Fink, The Ohio State University #### 2:00 PM Cracking During Powder Injection Laser Welding of Alloy G-30: Ben Sutton¹; Jeff Enneking²; Antonio Ramirez¹; ¹The Ohio State University; ²Framatome Inc. #### 2:20 PM Hot Cracking Susceptibility of Alloy 617 by Varestraint Test: *Shotaro Yamashita*¹; Yusuke Morikawa¹; Kosei Hiramatsu¹; Tomo Ogura¹; Kazuyoshi Saida¹; Kenji Kamimura²; Yasuhito Kamijyo²; Takahiro Niki²; ¹Osaka University; ²Toshiba Energy Systems & Solutions Corporation #### 2:40 PM Weldability of Ta-bearing Ni-Base Filler Metal 52XL: *Luke Johnson*¹; Carolin Fink¹; John Lippold¹; Steve McCracken¹; ¹The Ohio State University #### 3:00 PM Quantitative Evaluation of Reheat Cracking Susceptibility in Weld Metal of Ni-based Alloys: *Tomo Ogura*¹; Keisuke Kubota¹; Yuki Asahara¹; Shotaro Yamashita¹; Kazuyoshi Saida¹; ¹Osaka University #### 3:20 PM Quantification of the Susceptibility to Ductility Dip Cracking in Welds of Nibased Alloys: Samuel Luther¹; Boian Alexandrov¹; ¹Ohio State University #### 3:40 PM Effect of Interstitial Elements on the Solidification Behavior of High Chromium, Nickel Base Filler Metals: Louie Aguilar¹; Carolin Fink¹; Steve McCracken²; ¹The Ohio State University; ²Electric Power Research Institute #### 4.00 PM **Stress Relief Cracking of High Temperature Alloys**: *Rishi Kant*¹; John DuPont¹; ¹Lehigh Univeristy #### 4:20 PM Welding Metallurgy and Weldability of High-temperature HEA System AlCoCrCuFeNi: Alec Martin¹; Carolin Fink¹; ¹Ohio State University #### Light Metal Technology – Applications for the Transportation Industry — High Strength Aluminium Alloys Program Organizers: Julie Levesque, Quebec Metallurgy Center; Mihaiela Isac, McGill Metals Processing Centre; Xiaoming Wang, Purdue University; Roderick Guthrie, McGill University; Sa Ge, Hatch Ltd.; Kaan Inal, University of Waterloo; Frederic Laroche, Rio Tinto Tuesday PM Room: B130 October 16, 2018 Location: Greater Columbus Convention Center Session Chairs: Kaan Inal, University of Waterloo; Francisco Flores, NanoA #### 2:00 PM Characterization and Modeling of Aluminium Alloy 7075 in Naturally and Artificially Aged Conditions: *Julie Levesque*¹; Waqas Muhammad²; Augustin Gakwaya¹; ¹Laval University; ²University of Waterloo #### 2:20 PN Forming of High Strength Aerospace Alloys Using the Vaporizing Foil Actuator Method: $Bhuvi\ Nirudhoddi^1$; Yu Mao 1 ; Anupam Vivek 1 ; Glenn Daehn 1 ; 1 The Ohio State University #### 2:40 PM Mechanical Behaviors and Deformation Control of As-quenched Al-Cu Alloy for Large Aerospace Structures: *Qingyao Yuan*¹; Gang Wang²; Ke Ren³; Wenguang Wang¹; Yiming Rong³; ¹State Key Laboratory of Tribology, Tsinghua University; ²Tsinghua University; ³Mechanical and Energy Engineering Department, Southern University of Science and Technology of China #### 3:00 PM The Effects of Laser Shock Peening on Fatigue, Corrosion and Corrosion Fatigue Properties of Al7075 Alloy: *Anurag Sharma*¹; Vijay Vasudevan¹; Seetha Mannava¹; Domenico Furfari²; ¹University of Cincinnati, Ohio; ²Airbus #### 3:20 PM Laser Shock Processing of AZ31B Magnesium Alloy: The Generation of Gradient Twinning Microstructure: Bo Mao¹; Yiliang Liao¹; Bin Li¹; ¹University of Nevada, Reno ## Manufacturing-Related Failures — Welding/Joining Failures Program Organizers: Andrew Havics, PH2 LLC; Burak Akyuz, ATS, Inc.; Pierre Dupont, UMONS Faculté polytechnique de MONS (FPMs) Tuesday PM Room: A210 October 16, 2018 Location: Greater Columbus Convention Center Session Chairs: Thomas Kozina, NTN Bearing Co.; Jonathan Trenkle, The NanoSteel Company; Debbie Aliya, Aliya Analytical Incorporated; Ronald Pietrowski, Con Edison; Mark Hineman, Engineering Systems Incorporated; Craig Schroeder, Element #### 2:00 PM Failure Analysis of an Aircraft Fuel Line: Milo Kral¹; ¹University of Canterbury #### 2:20 PM Fatigue Life Simulation of Pipeline Elbow under Cyclic Loading: Xiankui Zhu¹; ¹EWI #### 2:40 PM Uncertainty and Sensitivity Analysis in Fatigue Life of Welded Joint Using Crystal Plasticity Simulations: *Takayuki Shiraiwa*¹; Manabu Enoki¹; ¹University of Tokyo #### 3:00 PM Invited Non Destructive Screening of Solder BGAs for Lead-free Compliance: *Meredith Nevius*¹; Andrew Schultz¹; ¹Exponent Inc. #### 3:20 PM Microstructure and Mechanical Behavior Associated to Linear Friction Welding Manufacturing Process: Michael Mendoza¹; Sanjeev Patil¹; Priyanka Agrawal¹; Alden Watts¹; Peter Collins¹; ¹Iowa State University #### 3:40 PM Metallurgical Failure Analysis of a Fractured Chain Link Weld: Craig Schroeder¹; Dave Moore²; ¹Element; ²Unified Engineering #### 4:00 PM Invited **Weldment Related Residual Stresses in the Extreme**: *Tim Jur*¹; Ronald Windham¹; ¹Engineering Design & Testing Corp # Materials for Nuclear Applications and Extreme Environments — Theory and Modeling of Nuclear Materials Program Organizers: Cory Trivelpiece, Savannah River National Laboratory; Dev Chidambaram, University of Nevada, Reno; Raul Rebak, GE Global Research; Yutai Katoh, Oak Ridge National Laboratory; Jake Amoroso, Savannah River National Laboratory; Kevin Fox, Savannah River National Laboratory Tuesday PM Room: D183 October 16, 2018 Location: Greater Columbus Convention Center Session Chair: Philip Edmondson, Oak Ridge National Laboratory #### 2:00 PM Invited Thermodynamics of Nuclear Fuel: Model Development and Application: Jacob McMurray¹; Theodore Besmann²; *Dongwon Shin*¹; ¹Oak Ridge National Laboratory; ²University of South Carolina #### 2:40 PM Compositional Control of Radionuclide Retention in Hollandite-based Ceramic Waste Forms for Cs-immobilization: *Kyle Brinkman*¹; Mingyang Zhao¹; Jake Amoroso²; Kristina Lilova³; Alexandra Navrotsky³; ¹Clemson University; ²Savannah River National Laboratory; ³University of California Davis #### 3:00 PM Density Functional Theory Study of the Point Defect Energetics in γ-LiAlO₂, Li₂ZrO₃, and Li₂TiO₃ Materials: *Yueh-Lin Lee*¹; Jamie Holber¹; Hari Paudel¹; Dan Sorescu¹; Yuhua Duan¹; ¹National Energy Technology Laboratory #### 3:20 PM Invited **Mechanistic Mesoscale Modeling of Sintering for UO₂ Fuel Pellets**: Ian Greenquist¹; *Michael Tonks*²; Yongfeng Zhang³; ¹Pennsylvania State University; ²University of Florida; ³Idaho National Laboratory #### 4:00 PM **Experimental Thermochemistry of Neptunium Compounds**: *Lei Zhang¹*; Ewa Dzik¹; Samuel Perry¹; Sarah Hickam¹; Ginger Sigmon¹; Jennifer Szymanowski¹; Alexandra Navrotsky¹; Peter Burns¹; ¹University of Notre Dame #### 4:20 PM Theoretical Investigation of Tritium Formations on the Surfaces of γ -LiAlO₂: *Ting Jia*¹; Hari Paudel¹; Zhi Zeng²; Yuhua Duan¹; ¹National Energy Technology Laboratory, United States Department of Energy; ²Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences # Materials Issues in Nuclear Waste Management — Corrosion Science in Nuclear Waste Management Program Organizers: Cory Trivelpiece, Savannah River National Laboratory; Jason Lonergan, Washington State University; Jake Amoroso, Savannah River National Laboratory; Yutai Katoh, Oak Ridge National Laboratory; Kevin Fox, Savannah River National Laboratory; Josef Matyas, Pacific Northwest National Laboratory Tuesday PM Room: D282 October 16, 2018 Location: Greater Columbus Convention Center Session Chair: Cory Trivelpiece, Savannah River National Laboratory #### 2:00 PV Corrosion Monitoring in the Performance Confirmation Period of the Yucca Mountain Geologic Repository: Raul Rebak¹; ¹GE Global Research #### 2:20 PM Invited The Role of CO2 upon Early-stage Corrosion Reactions of ISG: Robert Schaut¹; Steven Tietje¹; Nicholas Smith¹; Chris Bourgeois¹; ¹Corning Incorporated #### 3:00 PM Invited Materials Corrosion Issues in Nuclear Waste Management: Joseph Ryan¹; ¹Pacific Northwest National Laboratory #### 3:40 PM The Evolving Distribution of Technetium within Cementitious Waste Forms During Leach Testing.: *Matthew Asmussen*¹; Sarah Saslow¹; Joseph Westsik¹; Carolyn Pearce¹; Nikolla Qafoku¹; Jeffrey Serne¹; Gary Smith¹; ¹Pacific Northwest National Laboratory #### 4:00 PM Formation and Structure of Passivating Gels by Reactive Molecular Dynamics Simulations: Tao Du¹; Mathieu Bauchy¹; ¹University of California, Los Angeles # Materials Property Understanding through Characterization — Novel Non-Metallic Materials Program Organizers: Indrajit Dutta, Corning Incorporated; Nicholas Smith, Corning Incorporated Tuesday PM Room: B240/241 October 16, 2018 Location: Greater Columbus Convention Center Session Chairs: Indrajit Dutta, Corning Incorporated; Nicholas Smith, Corning Incorporated; Bryan Wheaton, Corning Incorporated #### 2:00 PM Invited A Programmable Detector for STEM-in-SEM Imaging: *Jason Holm*¹; Benjamin Caplins¹; Robert Keller¹; ¹National Institute of Standards and Technology #### 2:40 PM Invited Electrocatalyst Surface Wettability and its Correlation to Proton Exchange Membrane Fuel Cell (PEMFC) Performance: Anastasios Angelopoulos¹; ¹University of Cincinnati # MS&T18 #### MATERIALS SCIENCE & TECHNOLOGY #### 3:20 PM Describing Brain Boundary Character through a Triple Junction Distribution Function: Benjamin Schuessler¹; David Field¹; ¹Washington State University #### 3:40 PM The Reverse Direction of Modeling of Material Properties: Vladimir Ginzburg¹; ¹Int²l Rolling Mill Consultants, Inc. #### 4:00 PM Domain Investigation in Lead-free Bi_{0.5}Na_{0.5}TiO₃ Based Thin Films and Ceramics by Piezoresponse Force Microscope: Wei Ren¹; Jinyan Zhao¹; Gang Niu¹; Nan Zhang¹;
Lingyan Wang¹; Peng Shi¹; Ming Liu¹; Zuo-Guang Ye¹; ¹Xiʾan Jiaotong University #### 4:20 PM Use of Waste Gypsum from Hydrometallurgical Plant for the Recovery of Nickel from a Nickel Slag by Sulfurization: *Michel Kalenga Wa Kalenga*¹; Nurse Chauke¹; Willy Nheta¹; ¹University of Johannesburg #### Microalloyed Steels — Microalloyed Steels I Program Organizers: Emmanuel De Moor, Colorado School of Mines; Steven Jansto, CBMM-North America Inc; Robert Glodowski, RJG Metallurgical LLC Tuesday PM Room: A225 October 16, 2018 Location: Greater Columbus Convention Center Session Chair: Emmanuel De Moor, Colorado School of Mines #### 2:00 PM **Development of Steel Plate for Large Heat Input Welding**: JaeYong Chae¹; JaeYoung Cho¹; HwanGyo Jung¹; ¹POSCO #### 2:30 PM Effects of Alloying on Hot Deformation Behavior of Nb Microalloyed Steels: Evgueni Poliak¹; Olga Girina¹; Steven Jansto¹; ¹Arcelormittal #### 2:50 PM Modelling Precipitation and Austenite Grain Growth in Ti-Nb Microalloyed Steels: Alexis Graux¹; David De Castro²; Sophie Cazottes¹; Damien Fabrègue¹; Frédéric Danoix³; Matthieu Bugnet¹; Sílvia Molas⁴; Jose Maria Cabrera⁵; Sebastian Schreiber⁶; Djordje Mirkovic⁷; Michel Perez¹; ¹MATEIS - INSA LYON; ²CENIM; ³GPM - Rouen; ⁴CTM; ⁵Universitat Politècnica de Catalunya; ⁶Thyssenkrupp Steel Europe; ⁷Salzgitter Mannesmann Forschung #### 3:10 PM Invited Revisiting the Role of Nb Microalloying in Medium-high Carbon Long Products: Felipe Bastos¹; Beatriz Pereda²; Beatriz López²; Jose Rodriguez-Ibabe²; Marcelo Rebellato³; *Pello Uranga*²; ¹RMS and Tecnun (University of Navarra); ²CEIT and TECNUN (University of Navarra); ³RMS #### 3:30 PM Effect of Al and B Alloying on Phase Transformation in Nb Microalloyed Q&P Steels: Olga Girina¹; Oleg Yakubovsky¹; Damon Panahi¹; Steve Jansto²; ¹ArcelorMittal; ²CBMM North America, Inc. #### 3:50 PM Interphase Precipitation in a Low-carbon, Titanium-molybdenum-vanadium Microalloyed Steel: Caleb Felker¹; John Speer¹; Gang Liu²; Emmanuel De Moor¹; ¹Colorado School of Mines; ²Baoshan Iron and Steel Co. #### 4:10 PM Effect of Nb and Ti on the Microstructure, Texture and Tensile Properties of Al Added Low Density Medium Mn Steel: Arnab Sarkar¹; Tapas.Kr Bandyopadhyay¹; ¹Indian Institute of Technology Kharagpur # Modern Ceramic Manufacturing Methods and Applications — Modern Ceramic Manufacturing Methods and Applications Program Organizers: Keith DeCarlo, Blasch Precision Ceramics; William Carty, Alfred University; Nik Ninos, Calix Ceramic Solutions Tuesday PM Room: A120 October 16, 2018 Location: Greater Columbus Convention Center Session Chair: Keith DeCarlo, Blasch Precision Ceramics #### 2:00 PM Invited A Unified Approach to Ceramic Forming Processes Using Specific Volume Diagrams: William Carty¹; ¹Alfred University #### 2:40 PM **Electrostatic and Electrosteric Stabilization of SiC and B4C**: Alexander Turner¹; Hyojin Lee¹; Holly Shulman¹; William Carty¹; ¹New York State College of Ceramics at Alfred University #### 3:00 PM Eliminating Ceramic Powder Agglomerates for Improved Microstructures: Sarah Whipkey¹; Hyojin Lee¹; William Carty¹; ¹Alfred University #### 3:20 PM Invited Perspectives on Additive Manufacturing of Ceramics via Robocasting: *Joe Cesarano*¹; ¹Robocasting Enterprises #### 3:50 PM Invited Design and Characterization of Ceramics by Lithography-based Additive Manufacturing: Shawn Allan¹; ¹Lithoz America LLC #### 4:20 PM **Engineering Powders for Ceramic 3-D Printing**: Patrick Cigno¹; *William Carty*¹; ¹Alfred University # Nanotechnology for Energy, Environment, Electronics, Healthcare and Industry — Nanotechnology for Energy, Environment, Electronics, Healthcare and Industry - Session I Program Organizers: Gary Pickrell, Virginia Tech; Navin Manjooran, Siemens AG Tuesday PM Room: C161A/161B October 16, 2018 Location: Greater Columbus Convention Center Session Chairs: Gary Pickrell, Virginia Tech; Navin Manjooran, Siemens AG #### 2:00 PM Invited Excellent Friction and Anti-wear Reduction Properties of Carbon Nanomaterials Dispersed Mineral Oil: Sneha Sruthi V¹; Ramaprabhu S¹; Kamaraj M¹; ¹Indian Institute of Technology Madras #### 2:40 PM $\label{eq:controller} \textbf{3D Self-supported Anatase-Brookite Photocatalytic Nanomats: } \textit{Gagan Jodhani}^{!}; \textit{Selda Topcu}^{2}; \textit{Pelagia Gouma}^{!}; \ ^{!}Ohio \ State \ University; ^{!}Erciyes \ University$ #### 3:00 PM Biofuel Cells with Pressure-immobilized Enzymes on Carbon Nanotube Sheets: Biao Leng¹; Laila Al-Qarni¹; ¹New Jersey Institute of Technology #### 3:20 PM Conduction Mechanisms in Nanostructured Metal-oxide Gas Sensors: *Mohamad Al-Hashem*¹; Sheikh Akbar¹; Patricia Morris¹; ¹Ohio State University; #### 3.40 PM Effect of Electrospun Nanofibers on Growth Behavior of Fungal Cells: Arifa Parveen¹; North Carolina A & T State University #### 4:00 PM Effect of Graphene Hybridization on the Photocatalytic Behavior of Au Doped ZnO-GO Nanocomposite: Syed Ahmed¹; Waseem Haider¹; ¹Central Michigan University #### 4:20 PM Electrocatalytic Disinfection Using Nanostructured Titanium Suboxides: Hammad Malik¹; Krista Carlson¹; ¹University of Utah #### Next Generation Biomaterials — Biomaterials III Program Organizers: Roger Narayan, University of North Carolina; Vipul Davé, Johnson & Johnson; Mohan Edirisinghe, University College of London; Sanjiv Lalwani, Lynntech, Inc. Tuesday PM Room: D182 October 16, 2018 Location: Greater Columbus Convention Center Session Chairs: Enrico Bernardo, University of Padova; Xanthippi Chatzistavrou, Michigan State University #### 2:00 PM Invited **SEM Study of Simulated Clinical Use for Third-generation NiTi Files**: Thomas Burke¹; John Nusstein¹; Melissa Drum¹; Sara Fowler¹; William Brantley¹; John Draper¹; ¹Ohio State University #### 2:20 PM Invited Glass-ceramic Scaffolds by Additive Manufacturing of Engineered Glass-Silicone Mixtures: Hamada Elsayed¹; Martiniano Picicco²; Jozef Kraxner³; Arish Dasan³; *Enrico Bernardo*¹; ¹University of Padova; ²CETMIC, La Plata; ³FunGlass – Centre for Functional and Surface Functionalized Glass #### 2:40 PM Invited Improvement of Mechanical Properties of the Mg – Zr – Nd Alloy by Chemical Composition Optimization and Alloying with Silver: Nikita Aikin¹; Vadim Shalomeev¹; Sergey Sheyko¹; ¹Zaporozhye National Technical University #### 3:00 PM Invited **Microwave Processing of Bioceramics**: Yufu Ren¹; Prabaha Sikder¹; Sarit Bhaduri¹; ¹University of Toledo #### 3:20 PM Invited New Dental Composites with Bioactive and Bactericidal Properties: *Xanthippi Chatzistavrou*¹; Anna Lefkelidou²; Lambrini Papadopoulou²; Christopher Fenno³; Susan Flannagan³; Carlos González-Cabezas³; Nikos Kotsanos²; Petros Papagerakis³; ¹Michigan State University; ²Aristotle University of Thessaloniki; ³University of Michigan #### 3:40 PM The Antibacterial Efficiency & Biocompatibility of an Ag Containing Bioactive Bone Void Filler: Lawrence Sanders¹; Kapil Raghuraman¹; Aisling Coughlan¹; ¹University of Toledo #### 4:00 PM Invited Structural Design of Borosilicate Based Bioactive Glasses: Ashutosh Goel¹; Nicholas Stone-Weiss¹; Randall Youngman²; Hellmut Eckert³; Eric Pierce⁴; Nicholas Smith²; ¹Rutgers, The State University of New Jersey; ²Corning Incorporated; ³Universidade de Sao Paulo; ⁴Oak Ridge National Laboratory #### 4:20 PM An Osteoconductive Zn-bioactive Glass Treats 99.99% of Common Surgical Site Infections: Kapil Raghuraman¹; Lawrence Sanders¹; Aisling Coughlan¹; ¹University of Toledo # Processing and Performance of Materials Using Microwaves, Electric and Magnetic Fields, Ultrasound, Lasers, and Mechanical Work – Rustum Roy Symposium — Session III Program Organizers: Morsi Mahmoud, King Fahd University of Petroleum and Minerals - KFUPM; Dinesh Agrawal, Pennsylvania State University; Guido Link, Karlsruhe Institute of Technology; Motoyasu Sato, Chubu University; Rishi Raj, University of Colorado; Victoria Blair, Army Research Laboratory Tuesday PM Room: A125 October 16, 2018 Location: Greater Columbus Convention Center Session Chairs: Joe Cresko, U.S. Department of Energy; Hideyuki Kanematsu, Suzuka National College of Technology #### 2:00 PM Invited Soft Processing (= Green Processing) for Nano Carbons: Direct Fabrication of Functionalized Graphenes and Their Hybrids Inks via Submerged Liquid Plasma [SLP] and Electrochemical Exfoliation [ECE] under Ambient Conditions: Masahiro Yoshimura¹; National Cheng Kung University #### 2:40 PM Invited Interpreting Non-thermal Microwave Effects on Materials Process Enhancements: A Straightforward Irreversible Thermodynamic Approach: Boon Wong¹; ¹Retired #### 3:10 PM Invited Microwave Effect in the Crystallization Process of Glass-ceramics Materials: *Morsi Mahmoud*¹; ¹King Fahd University of Petroleum & Minerals #### 3:40 PV Experimental Measurement of Dielectric Properties of Powdery Materials: Towards a Standard Testing Procedure for Paraffin Mixtures: Robert Tempke¹; Terrence Musho¹; Christina Wildfire²; Dushyant Shekhawat³; Michael Spencer⁴; ¹WVU; ²NETL/ORISE; ³NETL; ⁴AECOM #### 4:00 PM Microwave Radiation-assisted Synthesis of Ceramic Oxide Thin Films: Electromagnetic Field Effects on Atomic Structure: Nathan Nakamura¹; Maxwell Telmer¹; Elizabeth Culbertson²; Simon Billinge²; B. Reeja Jayan¹; ¹Carnegie Mellon University; ²Columbia University #### 4:20 PM Enrichment of Rare Earths from Coal Fly Ash through Microwave-assisted Comminution and Microwave Pyrometallurgy: Edward Sabolsky¹; Gunes Yakaboylu¹; Katarzyna Sabolsky¹; John Zondlo¹; Terence Musho¹; Christina Wildfire²; Dushyant Shekhawat²; ¹West Virginia University; ²US DOE-National Energy Technology Laboratory #### 4.40 PM **Development of Magnetoelectric Gyrators with Multi-outputs**: *Chung Ming Leung*¹; Xin Zhuang²; Junran Xu²; Jiefang Li²; Dwight Viehland²; ¹Virginia Polytechnic Institute; ²Virginia Tech # PSDK XIII: Phase Stability and Diffusion Kinetics — Thermodynamics: Modeling and Experiments Program Organizers: Zi-Kui Liu, Pennsylvania State University; Michael
Gao, National Energy Technology Laboratory; Hans Seifert, Karlsruhe Institute of Technology; Wei Xiong, University of Pittsburgh; Raymundo Arroyave, Texas A & M University Tuesday PM Room: A213 October 16, 2018 Location: Greater Columbus Convention Center Session Chairs: Hans Seifert, KIT; Hojong Kim, PSU #### 2:00 PM Invited Determining Thermodynamic Properties of Alkaline-earths (Ba, Ca, and Sr) in Liquid Metals Using Electromotive Force Technique: *Hojong Kim*¹; Pennsylvania State University #### 2:30 PM The Impact of Alloy Elements to the Secondary Phase Stabilities in Grade 91 Alloy.: Andrew Smith¹; Mohammad Asadikiya²; *Yu Zhong*²; ¹Florida International University; ²Worcester Polytechnic Institute #### 2:50 PM High Throughput Magnetic Modeling of Cr-Fe-Ni Sigma Phase Working Toward a Description of Nickel Based Alloys: *Matthew Feurer*¹; Pinwen Guan¹; Shunli Shang¹; Allison Beese¹; Zi-Kui Liu¹; ¹Penn State University #### 3·10 PM $\label{eq:Re-assessment} \textbf{Re-assessment of the Ga-Li System}: \textit{Joel Fels}^i; Thomas \ Reichmann^2; Dajian \ Li^i; \\ Hans \ J\"{u}rgen \ Seifert^i; \ ^iKarlsruher \ Institute \ of \ Technology; ^2G-Technology \ GmbH$ #### 3:30 PM Invited **Electrochemical-thermodynamics of Lithium Batteries**: *Hans Seifert*¹; Weibin Zhang¹; Yong Du²; ¹Karlsruhe Institute of Technology; ²Central South University (CSU) #### 4:00 PM Thermodynamic Evaluation of La1-xSrxMnO3±d Cathode in the Presence of Cr-containing Humidified Air: Shadi Darvish¹; *Yu Zhong*¹; ¹Florida International University #### 4:20 PM Phase Stability and Mechanical Properties of Beta-phase Dendrites in Metallic Glass Matrix Composites: Yaxian Wang¹; Michael Gibbons¹; Nicolas Antolin¹; Wolfgang Windl¹; ¹Ohio State University # Rare Earth Metals and Critical Materials: Synthesis, Processing, Production, Recent Advances — Rare Earth Metals for Medical and Light Weight Structural Applications Program Organizers: Yellapu Murty, MC Technologies LLC; Jack Lifton, Jack Lifton, LLC; Eric Klier, U. S. Army Research Laboratory; Michael McKittrick, U.S. Department of Energy; Ian London, Avalon Rare Metals Inc. Tuesday PM Room: B131 October 16, 2018 Location: Greater Columbus Convention Center Session Chairs: David Dunand, Northwestren University; Yellapu Murty, MC Technologies #### 2:00 PM Invited Nanophotonic Rare-earth Based Probes for Early Detection of Cancer: Vidya Ganapathy¹; Charles Roth¹; Mark Pierce¹; Prabhas Moghe¹; Richard Riman¹; ¹Rutgers University #### 2:40 PM **Developing Lanthanoid-bearing Aluminum-based Metallic Glasses for Selective Laser Melting**: *Joe Croteau*¹; David Seidman²; David Dunand²; Nhon Vo¹; ¹NanoAl LLC; ²Northwestern University #### 3:10 PM Aluminum-cerium Alloys for Laser Powder Bed Fusion and Direct Metal Write Applications: *Hunter Henderson*¹; Zachary Sims²; Michael Kesler³; Alex Plotkowski; Max Neveau²; Scott McCall⁴, David Weiss⁵; Ryan Ott⁶; Ryan Dehoff³; Orlando Rios³; ¹Oak Ridge National Laboratory; ²University of Tennessee; ³Oak Ridge National Lab; ⁴Lawrence Livermore National Laboratory; ⁵Eck Industries, Inc.; ⁶Ames Laboratory #### 3:40 PM Invited **Developments in Al-Ce Alloy Casting and Post-processing**: *David Weiss*¹; Orlando Rios²; Zachary Sims²; Hunter Henderson²; Scott McCall³; Ryan Ott⁴; Aurelien Perron³; ¹ECK Industries Inc; ²Oak Ridge National Laboratory; ³Lawrence Livermore National Laboratory; ⁴The Ames Laboratory #### 4:20 PM Invited Partially Replacing Sc with Er and Yb in L12-Strengthened Aluminum Alloys: David Dunand¹; David Seiman¹; Nhon Vo²; ¹Northwestern University; ²Nanoal, LLC # Responsive Functional Nanomaterials — Functional Nanomaterials for Energy and Sensing Program Organizers: Wenzhuo Wu, Purdue University; Weiyang Li, Dartmouth College; Sarina Sarina, Queensland University of Technology; Wenxian Li, University of Wollongong; Jiahua Zhu, University of Akron Tuesday PM Room: D181 October 16, 2018 Location: Greater Columbus Convention Center Session Chair: Zhen Liu, Frostburg State University #### 2:00 PM Kinetic Studies of Indoor Volatile Organic Compounds Removal with Functional TiO2-based Coating: Xiong (Bill) Yu¹; *Zhuoying Jiang*¹; ¹Case Western Reserve University #### 2:20 PM **Light Illumination Room Temperature Gas Sensing Mechanism of ZnO/SnO2 Heterostructures**: *BuYu Yeh*¹; Akbar Sheikh¹; Morris Patricia¹; ¹The Ohio State University #### 2:40 PM **Localizing Microwave Heat by Surface Polarization of Titanate Nanostructures for Enhanced Catalytic Reaction Efficiency**: *Tuo Ji*¹; Jiahua Zhu¹; ¹University of Akron #### 3:00 PM Invited Highly Transparent and Flexible Triboelectric Nanogenerators: Fengru Fan¹; ¹University of California, Santa Barbara #### 3:40 PM **Organic Bullet Resistance System**: *Brent Patterson*¹; Zhen Liu¹; ¹Frostburg State University 4:00 PM Panel Discussion # Selection of Materials for Application in Corrosive Environments — Materials Selection Symposium - Session III Program Organizers: Ajit Mishra, Haynes International; Matthew Asmussen, Pacific Northwestern National Laboratory; Sudhakar Mahajanam, Pinnacle Advanced Reliability Technologies; Wilfred Binns, Nuclear Waste Management Organization; John Zhang, Gamry Instruments; Guang-Ling Song, Xiamen University; Eric Schindelholz, Sandia National Laboratories; Raul Rebak, GE Global Research Tuesday PM Room: A220 October 16, 2018 Location: Greater Columbus Convention Center Session Chairs: Matthew Asmussen, Pacific Northwest National Laboratory; Jeff Binns, NWMO #### 2:00 PM Keynote The Roles of Alloy Composition, External Oxygen Reduction and Internal Proton Reduction in the Crevice Corrosion of Ni-Cr-Mo Alloys: Jeff Henderson¹; Nafiseh Ebrahimi¹; Vahid Dehnavi¹; David Shoesmith¹; James Noel¹; ¹The University of Western Ontario #### 2:40 PM Materials Selection to Avoid Corrosion in Wet Flue Gas Desulfurization (FGD) System Absorbers and Components: *John Shingledecker*¹; Steve Kung¹; ¹Epri #### 3:00 PM Comparison of the Corrosion Behavior of Automotive Wrought and Ablation Cast Al-Mg-Si Alloys: *Dadi Zhang*¹; Jenifer Locke¹; ¹The Ohio State University #### 3:20 PM Machine Learning Approach to Predict Cyclic Oxidation Behavior of Nibased Alloys: *Jiheon Jun*¹; Dongwon Shin¹; Sebastien Dryepondt¹; Govindarajan Muralidharan¹; J. Allen Haynes¹; Bruce Pint¹; ¹Oak Ridge National Lab #### 3:40 PM Diffusion of CR In the Haynes 230 Alloy during Corrosion in MGCL2-KCL Molten Salt: Yuxiang Peng¹; Ramana Reddy¹; ¹University of Alabama #### 4:00 PM Dew Point Corrosion Behavior of Steels in Exhaust Systems: $Minho\ Jo^1$; Byoung Ho Lee 1 ; 1 Posco #### 4:20 PM The Influence of Thermal Cycle Frequencies on the Parabolic Rate Constants of Alloys: *Joseph Meyer*¹; ¹Haynes International # Sintering and Related Powder Processing Science and Technologies — Field Assisted Sintering I: Fundamentals Program Organizers: Ricardo Castro, University of California, Davis; Zachary Cordero, Rice University; Eugene Olevsky, San Diego State University; Wolfgang Rheinheimer, Purdue University Tuesday PM Room: B142/143 October 16, 2018 Location: Greater Columbus Convention Center Session Chair: Zachary Cordero, Rice University #### 2:00 PM Invited On the Mixed Conduction in Yttria Stabilized Zirconia in High Electric Fields: Reiner Kirchheim¹; ¹University of Goettingen #### 2:40 PM Invited The Scientific Questions and Technological Opportunities of Flash Sintering: From a Case Study of ZnO to Other Ceramics: *Jian Luo*¹; ¹University of California. San Diego #### 3:20 PM Invited Grain Growth during Spark Plasma and Flash Sintering of Ceramic nNanoparticles: Rachman Chaim¹; Geoffroy Chevallier²; Alicia Weibel²; Claude Estournes²; ¹Israel Institute of Technology; ²Université de Toulouse #### 4:00 PM A Mathematical Approach to Spark Plasma Sintering of Amorphous Alloys: *Tanaji Paul*¹; Sandip Harimkar¹; ¹Oklahoma State University #### 4:20 PM Controllable Interface Approach in Field-assisted Sintering: Eugene Olevsky¹; Charles Maniere²; Geuntak Lee²; Elisa Torresani²; ¹San Diego State University; ²San Diego State Univ # Small-scale Properties of Materials and Length-scale Phenomena — Structure I Program Organizers: Meysam Haghshenas, University of North Dakota; Charles Lu, University of Kentucky; Finn Giuliani, Imperial College London Tuesday PM Room: A121 October 16, 2018 Location: Greater Columbus Convention Center Session Chairs: Erik Herbert, Michigan Technological University; Afrooz Barnoush, Norwegian University of Science and Technology #### 2:00 PM Invited **Pop-in Behavior during Nanoindentation: Elastic-plastic Transitions Versus Limited Slip Conditions:** *David Bahr*¹; Raheleh Rahimi¹; Alexandra Burch¹; Michael Maughan²; Sichuang Xue¹; Xinghang Zhang¹; ¹Purdue University; ²University of Idaho #### MATERIALS SCIENCE & TECHNOLOGY #### 2:20 PM Invited Modeling Slip Transmission across Alpha/Beta Interface in Ti-alloys Using Microscopic Phase-field: *Pengyang Zhao*¹; Chen Shen²; Ju Li³; Stephen Niezgoda¹; Michael Mills¹; Yunzhi Wang¹; ¹Ohio State University; ²GE Global Research; ³MIT #### 2:40 PM Invited **Quantifying Crack Growth in Ultrathin Ductile Sheets**: Wade Lanning¹; Syed Javaid¹; Camilla Johnson¹; *Christopher Muhlstein*¹; ¹Georgia Institute of Tech #### 3.00 PM In-situ Stable Crack Growth at the Micron Scale: Giorgio Sernicola¹; T. Ben Britton¹; Finn Giuliani¹; ¹Imperial College London #### 3:20 PM Invited Analysis of Indentation Creep for High Hardness/Modulus Ratio Materials: *Donald Stone*¹; Z. Humberto Melgarejo²; Joseph Jakes³; Yousuf Mohammed⁴; Abdelmageed Elmustafa⁴; ¹University of Wisconsin; ²Univ of Wisconsin; ³USDA Forest Products Laboratory; ⁴Old Dominion University #### 3:40 PM Invited Defect Structure and Migration Dynamics in Two Dimensional (2d) Crystals and Van Der Waals Heterostructures: Nasim Alem¹; ¹Pennsylvania State University #### 4:00 PM Invited Understanding the Role of Interfaces on Solute Segregation in Nanocrystalline Materials and Its Influence on Mechanical
Behavior: *Ankit Gupta*¹; Garritt J. Tucker¹; ¹Colorado School of Mines # Solid State Processing — Friction Stir Processing and Other Torsion Processing Techniques Program Organizers: Richard Fonda, Naval Research Laboratory; Simon Larose, National Research Council Canada Tuesday PM Room: B140/141 October 16, 2018 Location: Greater Columbus Convention Center Session Chair: Paul Allison, University of Alabama #### 2:00 PM Invited The Non-equilibrium Processing Nature of Additive Friction Stir Deposition: $Hang Yu^{\dagger}$; Viriginia Tech #### 2:20 PM Microstructure-property Relationship on Stress-state and Strain-rate Behavior of AM AFS-Deposition Aluminum Alloy 6061: *Brandon Phillips*¹; Dustin Avery¹; C. J. T. Mason¹; Paul Allison¹; J. B. Jordon¹; ¹The University of Alabama #### 2:40 PM Friction Stir Processing of Super Duplex Stainless Steel and its Effect on Tensile Properties: *Nithyanand Prabhu*¹; Manjesh Kumar Mishra¹; A. Gourav Rao²; I. Balasundar³; B. P. Kashyap⁴; ¹Indian Institute Of Technology Bombay; ²Naval Materials Research Laboratory; ³Defence Metallurgical Research Laboratory; ⁴Indian Institute of Technology Jodhpur #### 3:00 PM Processing, Microstructural Evolution and Strength Properties of Copper Matrix Composites Containing Nano-sized Polymer Derived SiCN Particles: *Ajay Kumar P.*¹; Satish Kailas²; ¹University of Wisconsin-Milwaukee, Materials Dept; ²Indian Institute of Science, Bangalore #### 3:20 PM Characterization of Pure Copper Wire Produced by Shear-sssisted Processing and Extrusion: Xiao Li¹; Glenn Grant¹; ¹Pacific Northwest National Lab #### 3:40 PM Achieving High-strength Zn-Mg Hybrids through High-pressure Torsion: David Hernández Escobar¹; Hakan Yilmazer²; Megumi Kawasaki³; Carl Boehlert¹; Michigan State University; ²Yildiz Technical University; ³Oregon State University #### 4:00 PM Multi-objective Optimization of Multi-channel Spiral Twist Extrusion Process Using a Response Surface Approach and Finite Element Analysis: Dina Fouad¹; Amr Moataz¹; Waleed El-Garaihy²; Hanadi Salem¹; ¹The American University in Cairo, Egypt; ²Suez Canal University, Ismailia, Egypt #### Special Session on Innovation by Entrepreneurs, Startups, and Small Businesses — Special Session on Innovation by Entrepreneurs, Startups, and Small Businesses Program Organizer: Amber Black, Los Alamos National Laboratory Tuesday PM Room: B232 October 16, 2018 Location: Greater Columbus Convention Center Session Chair: Amber Black, Los Alamos National Laboratory #### 2:00 PM Current and Future Applications of Rare Earth Phosphors and Nanophosphors: *Josh Collins*¹; ¹Intelligent Material Solutions, Inc. #### 2:20 PN ALD NanoSolutions, Inc. – from Lab Curiosity to Commercial Market Development Plants: Alan Weimer¹; ¹University of Colorado #### 2:40 PN Magnetically Textured Ceramic-Polymer Composites for High Strength Applications: $Randall\ Erb^{1};\ ^{1}DAPS\ Lab$ #### 3:00 PM Patenting Strategies for Small Business: Van Vekris¹; ¹Sim & McBurney #### 3:20 PM The Transition to Commercialization: Alexander Smith¹; ¹Swift Textile Metalizing 3:40 PM Panel Discussion ## Surface Protection and Spray Technology for Enhanced Materials Performance: Science, Technology, and Application — Cold Spray Coatings Program Organizers: Kang Lee, NASA Glenn Research Center; Jun Song, McGill University; Yutaka Kagawa, The University of Tokyo; Dongming Zhu, NASA Glenn Research Center; Rodney Trice, Purdue University; Daniel Mumm, University of California, Irvine; Mitchell Dorfman, Oerlikon Metco (US) Inc.; Christian Moreau, Concordia University; Emmanuel Boakye, UES Inc.; Edward Gorzkowski, Naval Research Laboratory; Scooter Johnson, Naval Research Laboratory; Richard Chromik, McGill University; Stephen Yue, McGill University Tuesday PM Room: B234 October 16, 2018 Location: Greater Columbus Convention Center Session Chairs: Jun Song, McGill University; Richard Chromik, McGill University #### 2:00 PM Invited The Effect of Metal Powder Properties on the Cold Spray of Ti Metal-matrix Composites: Venkata Naga Vamsi Munagala¹; Rohan Chakrabarty¹; Jun Song¹; Richard Chromik¹; ¹McGill University #### 2:40 PM The Role of Ceramic Characteristics in Cold Sprayed Metal/Ceramic Interfaces: Sara Imbriglio¹; Raynald Gauvin¹; Nicolas Brodusch¹; Maniya Aghasibeig²; Richard Chromik¹; ¹McGill University; ²National Research Council Canada #### 3:00 PM Cold Spraying of Mixed Sn-Al Powders: Andre Liberati¹; Hanqing Che¹; Phuong Vo²; Stephen Yue¹; ¹McGill University; ²National Research Council Canada #### 3:20 PM Understanding Ceramic Deposition and Bonding in Metal-ceramic Composite Cold Spray from Finite-element Studies: Rohan Chakrabarty¹; Jun Song¹; ¹McGill University #### 3:40 PM Cold Spray Characteristics of Bimodal Size 316L/Fe Powder Mixtures: Xin Chu¹; Phuong Vo²; Stephen Yue¹; ¹McGill University; ²National Research Council Canada ## Synergy in Multiscale Modeling and Experiments to Resolve Complex Disordered Solids — Session I: Multiscale Modeling-driven Synergy Program Organizers: Ridwan Sakidja, Missouri State University; Jinwoo Hwang, Ohio State University; Jincheng Du, University of North Texas; Matthew Kramer, Iowa State University; David Drabold, Ohio University Tuesday PM Room: B246 October 16, 2018 Location: Greater Columbus Convention Center Session Chairs: Jincheng Du, University of North Texas; Ridwan Sakidja, Missouri State University #### 2:00 PM Invited **Local Order in Metallic Liquids and Glasses**: *Matthew Kramer*¹; Y Sun¹; F. Zhang¹; C.Z. Wang¹; K.M. Ho¹; M.I. Mendelev¹; ¹Ames Laboratory #### 2:40 PM Invited Structure and Properties of Multicomponent Nuclear Waste Glasses: Insights from Molecular Dynamics Simulations: Jincheng Du¹; ¹University of North Texas #### 3:10 PM Mesoscale Model of Metallic Glass Nanomechanical Experiments: Achieving Matching Length and Time Scales: *Thomas Hardin*¹; Christopher Schuh¹; ¹Massachusetts Institute of Technology #### 3:40 PM Predictive Design and Fabrication of Complex Disordered Solids: Modeling of Pre-Ceramic Polymers: Paul Rulis¹; Michelle Paquette¹; Jinwoo Hwang²; Ridwan Sakidja³; Nathan Oyler⁴; ¹UMKC Dept. Physics and Astronomy; ²The Ohio State University; ³Missouri State University; ⁴UMKC Department of Chemistry #### 4.10 PM **Molecular Dynamics Simulation Study on Amorphous B4C**: *Nirmal Baishnab*¹; Rajan Khadka¹; Ridwan Sakidja¹; ¹Missouri State University ## Synthesis, Characterization, Modeling, Properties and Applications of Functional Porous Materials — Porous Materials III Program Organizers: Lan Li, Boise State University; Winnie Wong-Ng, National Institute of Standards and Technology; Kevin Huang, University of South Carolina Tuesday PM Room: B144/145 October 16, 2018 Location: Greater Columbus Convention Center Session Chair: Kevin Huang, University of South Carolina #### 2:00 PM Invited **Defect-driven Nanoporous Electrode Materials for Energy Storage Systems**: *Hui Xiong*¹; ¹Boise State University #### 2:20 PN Freeze Tape Casting: A Promising Fabrication Technique for High Energy Density Electrodes for Li-Ion Batteries: Milad Azami Ghadkolai¹; Lakshman Ventrapragada¹; Stephen Creager¹; Rajendra Bordia¹; ¹Clemson University #### 2:40 PN Hybrid Silicon and Carbon-Based Polymers: Processing, Characterization and Properties: *Michelle Greenough*¹; Rajendra Bordia¹; ¹Clemson University #### 3:00 PM Template-free Synthesis of Highly Ordered Mesoporous Carbons (HOMCs) for Supercapacitor Applications: *Tugrul Yumak*¹; Gunes Yakaboylu¹; Changle Jiang¹; John Zondlo¹; Jingxin Wang¹; Edward Sabolsky¹; ¹West Virginia University #### 3:20 PM Invited Fabrication and Mechanical Behavior of Bulk Micro-sized Porous Cu via Electrochemical De-alloying of Cu–Fe Alloys: Fei Chen¹; Lijie Zou¹; Hao Wang¹; Qiang Shen¹; Lianmeng Zhang¹; ¹Wuhan University of Technology #### 3:40 PM **Ultrahigh Surface Area Meso/Microporous Carbon Formed with Self-template for High-voltage Aqueous Supercapacitors**: *Haibiao Chen*¹; ¹Peking University Shenzhen Graduate School #### 4:00 PM Silica-based Aerogel Membranes Fabricated Using Removable Nitrocellulose Scaffolds: Bonan Wang¹; Krista Carlson¹; Alexander Reifsnyder¹; ¹University of Ultab # MATSCITECH.ORG NATSCITECH.ORG MATERIALS SCIENCE & TECHNOLOGY Production of a Coal Fly Ash-based Coagulant Using Sulphuric Acid Solutions: *Momboyo Clotilde Apua*¹; Geoffrey S. Simate¹; ¹University of the Witwatersrand 4:40 PM Concluding Comments #### Ultra High Performance Metallic Systems for Aerospace, Defense, and Automotive Applications – High Performance Additively Manufactured Alloys Program Organizers: Ali Yousefiani, Boeing Research And Technology; Troy Topping, California State University, Sacramento; Robert Dillon, Jet Propulsion Laboratory; Linruo Zhao, NRC Aerospace Tuesday PM Room: B235 October 16, 2018 Location: Greater Columbus Convention Center Session Chair: Robert Dillon, NASA Jet Propulsion Laboratory #### 2:00 PM Invited **High-performance Magnetic Alloys and Gradients through Additive Manufacturing:** *Robert Dillon*¹; Samad Firdosy¹; Ryan Conversano¹; Bryan McEnerney¹; John Paul Borgonia¹; Dan Goebel¹; Andrew Shapiro-Scharlotta¹; ¹Jet Propulsion Laboratory #### 2:30 PM Invited Mechanical and Wear Properties of Zr-based Bulk Metallic Glasses Produced by Additive Manufacturing: Punnathat Bordeenithikasem¹; Yiyu Shen²; Moritz Stolpe³; Alexander Elsen³; Hai-Lung Tsai²; Douglas Hofmann¹; ¹Jet Propulsion Laboratory, California Institute of Technology; ²Missouri University of Science and Technology; ³Heraeus Additive Manufacturing GmbH #### 3:00 PM **Binder Jetting 3D Printing of Fe77Ni5.5Co5.5Zr7B4Cu1 Magnetic Powders:** Rafaela Vannutelli¹; Matthew Caputo¹; Stephen Isacco¹; Yash Trivedi¹; Matthew Willard²; *C. Virgil Solomon*¹; ¹Youngstown State University; ²Case Western Reserve University #### 3:20 PM Spall Prevention in Additively Manufactured Composites under Hypervelocity Impact Conditions: Lauren Poole¹; Matthew French¹; William Yarberry¹; Zachary
Cordero¹; ¹Rice University #### 3:40 PM Invited **Developing Aluminum-rich Metallic Glasses for Selective Laser Melting:** *Joe Croteau*¹; David Seidman²; David Dunand²; Nhon Vo¹; ¹NanoAl LLC; ²Northwestern University ## 10th International Symposium on Green and Sustainable Technologies for Materials Manufacturing and Processing — Session IV Program Organizers: Yiquan Wu, Alfred University; Hisayuki Suematsu, Nagaoka University of Technololgy; Surojit Gupta, University of North Dakota; Junichi Tatami, Yokohama National University; Enrico Bernardo, University of Padova; Zhengyi Fu, Wuhan University of Technology; Rajiv Asthana, University of Wisconsin-Stout; Allen Apblett, Oklahoma State University; Richard Sisson, Worcester Polytechnic Institute; Tatsuki Ohji, National Institute of Advanced Industrial Science and Technology; Mritunjay Singh, Ohio Aerospace Institute Wednesday AM Room: B233 October 17, 2018 Location: Greater Columbus Convention Center Session Chairs: Shijie Wang, Institute of Materials Research and Engineering (IMRE), A*STAR (Agency for Science); Surojit Gupta, University of North Dakota #### 8:00 AM Invited Importance of Soft (= Green, Solution & Low-Energy) Processing of Advanced Ceramics for Sustainable Society: *Masahiro Yoshimura*¹; ¹National Cheng Kung University #### 8:20 AM Invited Assembling of Graphene Scaffolds by Three-dimensional Printing: Shaoming Dong!; Kai Huang²; Jinshan Yang²; ¹Shanghai Institute of Ceramics; ²Shanghai Institute of Ceramics, Chinese Academy of Sciences #### 8:40 AM Low Emission Production Route for Titanium from Iron-sand Slag Using Ultra-high Temperature Electrolysis: Thomas Hughes¹; Samuel Martin-Treceno¹; Catherine Bishop¹; Aaron Marshall¹; *Matthew Watson*¹; ¹University of Canterbury #### 9.00 AM Improvements in Environmental Impact of Industrial Chrome Stripping Processes: *Holly Garich*¹; Maria Inman¹; Stephen Snyder¹; Tim Hall¹; Brian Skinn¹; E. Jennings Taylor¹; ¹Faraday Technology, Inc. #### 9.20 AM Invited Thermodynamics and Fractals on the Way to New Energy Frontiers: Vojislav Mitic¹; Goran Lazovic²; Vesna Paunovic³; Zoran Vosika³; Sandra Veljkovic³; Branislav Vlahovic⁴; ¹University of Nis; Institute of Technical Sciences of SASA; ²University of Belgrade; ³University of Nis; ⁴North Carolina Central University #### 10:00 AM Break #### 10:20 AM Upgrading Ores or Concentrates which Contain Iron and One or More Metals via Selective Carbothermic Reduction and Smelting: Basak Anameric¹; ¹NRRI Coleraine Labs #### 10:40 AM Sustainability Analysis of Die- casting Part at the Design Stage: Simranjit Sidhul; *Manjot Kaur*²; ¹Mechanical Engineering Department, Punjabi University Patiala; ²Punjabi University Patiala #### 11:00 AM **The Reaction of Molten Iron and CO₂ in Limestone Slagging Process**: *Wenwen Mao*¹; Chenxiao Li²; Menglong Li¹; Mengying Li¹; ¹HBIS Group Tangsteel Company; ² North China University of Science and Technology #### 11:20 AM Production of Ferrosilicon Alloy from the Pudo Iron Ore Using End-oflife Rubber Tyre as Reductant: *James Dankwah*¹; James Dankwah¹; Jessica Dankwah²; Pramod Koshy³; ¹University of Mines and Technology; ²Goldfields Ghana Limited (Damang Mine); ³University of New South Wales #### 11:40 AM Pyrite as a Green Reagent for Remediation of Chromate-containing Wastewater: Allen Apblett¹; Travis Reed¹; Amelia Bergeson²; ¹Oklahoma State Univ; ²Tulane University ## ACerS Robert B. Sosman Award Symposium: Lead-free Piezoceramics: From Local Structure to Application — Session I Program Organizers: Jurij Koruza, Technische Universität Darmstadt; Jürgen Rödel, Technische Universität Darmstadt Wednesday AM Room: A111/112 October 17, 2018 Location: Greater Columbus Convention Center Session Chairs: Jurij Koruza, Technische Universität Darmstadt; Andrew Bell, University of Leeds #### 9:00 AM Invited **Lead Free Piezoelectrics: The Environmental and Regulatory Issues**: *Andrew Bell*¹; Otmar Deubzer²; ¹University of Leeds; ²Fraunhofer Institute for Reliability and Microintegration IZM #### 9:40 AM Invited **Dynamics of Polar Regions and Ferroelectric Domain Walls**: *Dragan Damjanovic*¹; ¹EPFL SCI STI DD #### 10:20 AM Break #### 10:40 AM Invited Rotating a Phase Boundary: Potassium-sodium-niobate Derivates: Ke Wang¹; Barbara Malic²; Jiagang Wu³; Jing-Feng Li¹; ¹Tsinghua University; ²Jožef Stefan Institute; ³Sichuan University ## Additive Manufacturing of Composites and Complex Materials III — Techniques and Applications Program Organizers: Dirk Lenmhus, Fraunhofer - Ifam; Jonathan Spowart, Air Force Research Laboratory; Nikhil Gupta, New York University; Eric Jaegle, Max-Planck-Institut Fuer Eisenforschung Wednesday AM Room: A222 October 17, 2018 Location: Greater Columbus Convention Center Session Chair: To Be Announced #### 8:00 AM Introductory Comments #### 8:10 AM Innovative Component Designs for Electric Motors Enabled by Additive Manufacturing: *Michael Halbigi*; ¹NASA Glenn Research Center #### 8:30 AM **Designing Compositionally and Functionally Graded Steels Using Robotic Path Planning**: *Olga Eliseeva*¹; Tanner Kirk¹; Ji Ma¹; Raymundo Arroyave¹; Richard Malak¹; Alaa Elwany¹; Ibrahim Karaman¹; ¹Texas A&M University #### 8:50 AM In-situ Fabrication of Electro-mechanical Structures Using Multi-material and Multi-process Additive Manufacturing: *Tushar Saint*¹; Kashish Dhal¹; Panos Shiakolas¹; ¹University of Texas at Arlington #### 9:10 AM **Powder Modification to Enhance Alloys for Laser Based Additive Manufacturing**: *John Sharon*¹; Paul Sheedy¹; ¹United Technologies Research Center #### 9:30 AM **High-throughput 3D Metal-matrix Composite Printing**: Michael Sullivan¹; *Deborah Chung*¹; ¹State University of New York Buffalo #### 9:50 AM Invited **Spatial Strain Sensing Using Embedded Fiber Optics**: *Adam Hehr*¹; Mark Norfolk¹; John Sheridan²; Matthew Davis³; Patrick Leser⁴; Paul Leser⁴; John Newman⁴; ¹Fabrisonic LLC; ²Sheridan Solutions LLC; ³Luna Innovations; ⁴NASA Langley Research Center #### 10:20 AM Break #### 10:40 AM **Selective Laser Melting (SLM) of Nitinol Stents**: *Parastoo Jamshidi*¹, Sophie Cox¹; Jiling Feng²; Liguo Zhao³; Moataz Attallah¹; ¹University of Birmingham; ²Manchester Metropolitan University; ³Loughborough University #### 11:00 AM Invited **3D Inkjet Printing of Electrically Induced Metal-polymeric Actuators**: *Ehab Saleh*¹; Asish Malas¹; Ian Ashcroft¹; Christopher Tuck¹; Ruth Goodridge¹; ¹University of Nottingham #### 11:20 AM A Segregation Model Study of Suspension-based Additive Manufacturing: *Chang-Jun Bae*¹; John Halloran²; ¹Korea Institute of Materials Science (KIMS); ²University of Michigan ## Additive Manufacturing of Metals: Microstructure and Material Properties — AM Superalloys - Microstructure and Properties Program Organizers: Andrzej Wojcieszynski, ATI Specialty Materials; Ulf Ackelid, Freemelt AB; Ola Harrysson, North Carolina State University; Sudarsanam Babu, The University of Tennessee, Knoxville Wednesday AM Room: A214 October 17, 2018 Location: Greater Columbus Convention Center Session Chair: Christopher Rock, North Carolina State University #### 8:00 AM Microstructural Evolution in Nickel Alloy 718 Produced by Laser-powder Bed Fusion Additive Manufacturing: Hyeyun Song¹; Alber Sadek¹; Boulware Paul¹; Heimdall Mendoza¹; Rodrigo Enriquez¹; Curt Taylor¹; ¹EWI #### 8:20 AM Scan Strategy Effects on Microstructure and Hardness of SLM IN718: Gregory Cobb¹; Ryan O'Hara¹; David Newell¹; Ben Doane¹; ¹Air Force Institute of Technology #### 8:40 AM The Relationship between Geometry and Microstructure of Inconel 718 during Selective Laser Melting: Lova Chechik¹; Gavin Baxter²; Iain Todd¹; ¹MSE University of Sheffield; ²Rolls Royce plc ## MS&T18 #### MATERIALS SCIENCE & TECHNOLOGY #### 9:00 AM The Effect of Part Size on Additive Manufactured IN718 Parts: Oliver Holzmond¹; Guofeng Wang²; Xiaodong Li¹; ¹University of Virginia; ²University of Pittsburgh #### 9:20 AM The Utility of Laser Powder Bed Parameters and Deposition Strategies in Creating Functionally Graded Microstructures in IN718: Bonnie Attard¹; Sam Cruchley¹; Yu-Lung Chiu¹; Moataz Attallah¹; ¹University Of Birmingham #### 9:40 AM Inconel 718 Powder with Chemistry Variations and Its Impact on L-PBF Printed Samples: Gerrit Kool¹; Marc Smit¹; Ludo Bautmans²; Steve Nardone³; ¹Netherlands Aerospace Centre NLR; ²Oerlikon Eldim BV; ³ENGIE Laborelec #### 10:00 AM Break #### 10:20 AM Benchmarking Environmental Assisted Cracking Resistance of Alloy 718 API Grade Produced with Selective Laser Melting: Madison Burns¹; Helmuth Sarmiento-Klapper¹; Christoph Wangenheim¹; ¹Baker Hughes, a GE Company #### 10:40 AM **Abnormal Transient Creep of EBM Processed Alloy 718 at Intermediate Temperature**: *Yuta Tanaka*¹; Tomomichi Ozaki¹; Keiji Kubushiro¹; ¹IHI Corporation #### 11:00 AM Notched Fatigue Testing of Inconel 718 Prepared by Selective Laser Melting: David Witkin¹; Dhruv Patel¹; Glenn Bean¹; ¹Aerospace Corp #### 11:20 AM Mechanical Properties and Microstructure Control of Alloy718 by Powder Based Processes: Keiji Kubushiro¹; Akihiro Sato¹; Koji Nezaki¹; ¹Ihi Corporation #### 11·40 AM **Material Characterisation of Selectively Laser Melted Haynes 282**: *Alistair Lyle*¹; Alphons Antonysamy²; Iain Todd¹; ¹University of Sheffield; ²GKN Aerospace ## Additive Manufacturing of Metals: Microstructure and Material Properties — Microstructure Control in AM Components Program Organizers: Andrzej Wojcieszynski, ATI Specialty Materials; Ulf Ackelid, Freemelt AB; Ola Harrysson, North Carolina State University; Sudarsanam Babu, The University of Tennessee, Knoxville Wednesday AM Room: A215 October 17, 2018 Location: Greater Columbus Convention Center Session Chair: Ola Harrysson, North Carolina State University #### 8:00 AM Invited Microstructure Control across AM Alloy Systems: Sneha Narra¹; Rahi Patel¹; Jack Beuth¹; ¹Carnegie Mellon University #### 8:40 AM Microstructural and Compositional Optimizations for AM Ni-based Superalloys: $Marc\ Thomas^1,\
^1Onera$ #### 9:00 AM Microstructural and Mechanical Properties Control Using Direct Laser Deposition in IN718 Ni-superalloy: Abdullah Alhuzaim¹; Luke Carter¹; R. Mark Ward¹; Moataz Attallah¹; ¹University of Birmingham #### 9:20 AM Microstructural Evaluation of AM Fabricated Rene 41 Alloy: Sila Ece Atabay¹; Kevin Plucknett²; Mathieu Brochu¹; ¹McGill University; ²Dalhousie University #### 9:40 AM Microstructure and Mechanical Properties Nickle Super Alloys Produced by Renishaw's Laser Powder Bed Fusion Systems: Ravi Aswathanarayanaswamy¹; Laura Howlett¹; Marc Saunders¹; ¹Renishaw Plc #### 10:00 AM Break #### 10:20 AM Microstructures and Mechanical Properties of a 3D Printed Ti Alloy: *Punit Kumar*¹; Upadrasta Ramamurty¹; ¹Department of Materials Engineering, IISc Bangalore #### 10:40 AM Microstructural Studies of the Effect of Process Parameters on Additively Manufactured NiTi: Alejandro Hinojos¹; Narges Shayesteh Moghaddam²; Soheil Saedi³; Natalie Zeleznik¹; Peter Anderson¹; Mohammad Elahinia²; Haluk Karaca³; Michael Mills¹; ¹The Ohio State University; ²University of Toledo; ³University of Kentucky #### 11:00 AM Microstructural and Tensile Behavior of Selective Laser Melting Additive Manufacturing GRCop-84 Start-Stop Build Lines: Ryan Anderson¹; Stephen Cooke¹; Joseph Sims¹; *Judy Schneider*²; ¹ASRC Federal Astronautics; ²University of Alabama at Huntsville ### Additive Manufacturing of Metals: Post Processing — Heat Treatment II Program Organizers: Ola Harrysson, North Carolina State University; Andrzej Wojcieszynski, ATI Specialty Materials; Ulf Ackelid, Freemelt AB; S. Babu, Indian Institute of Technology Madras Wednesday AM Room: A216 October 17, 2018 Location: Greater Columbus Convention Center Session Chair: Carter Keough, NC State University #### 8:00 AM Invited High Pressure Heat Treatment of AM Parts: Combining HIP and Heat treatment: Magnus Ahlfors¹; ¹Quintus Technologies #### 8:40 AM Scan Strategy Effects on SLM IN718, and Mitigating these Effects via Post Process Annealing: David Newell¹; Ryan O'Hara¹; Gregory Cobb¹; Ben Doane¹; ¹Air Force Institute of Technology #### 9:00 AM Evolution of Microstructure During Thermal Post-treatment of EBM Processed Alloy 718: Sneha Goel¹; Fouzi Bahbou²; Anders Eklund³; Uta Klement⁴; Shrikant Joshi¹; ¹University West; ²Arcam AB; ³Qunitus Technologies AB; ⁴Chalmers University of Technology #### 9:20 AM Effects of Hot Isostatic Pressing and Annealing Heat Treatment on the Microstructure Evolution and Mechanical Properties of Selective Laser Melted Co-Cr-Mo Alloy: Kyu-Sik Kim¹; Jae-Won Hwang²; Kee-Ahn Lee¹; ¹Inha University; ²Changsung Corp. #### 9:40 AM Additive Manufacturing and Hot Isostatic Pressing of Niobium-based Refractory Alloys: Calvin Mikler¹; Brian Welk¹; Gopal Viswanathan¹; Benjamin Georgin¹; Zachary Kloenne¹; Kevin Chaput²; John Foltz³; Hamish Fraser¹; ¹Ohio State Univ; ²Air Force Research Laboratory; ³ATI Specialty Alloys and Components #### 10:00 AM Break #### 10:20 AM Effect of Heat Treatment on Microstructure and Mechanical Properties of Laser Deposited Haynes 282 Superalloy: Abhishek Ramakrishnan¹; Guru Dinda¹; Aniket Dighe¹; ¹Wayne State University #### 10:40 AM Influence of Processing and Post-processing Parameters on the Final Properties of Powder-bed Laser Additively Manufactured Parts: Aziz Chniouel¹; Fernando Lomello¹; Pierre-François Giroux²; Pascal Aubry¹; Hicham Maskrot¹; ¹Den–Service d'Etudes Analytiques et de Réactivité des Surfaces (SEARS), CEA, Université Paris-Saclay; ²Den–Service de Recherches Métallurgiques Appliquées (SRMA), CEA, Université Paris-Saclay #### 11:00 AM LBPF Processed Nickel-iron Soft-magnetic Alloy: Influence of Heat Treatments on Density, Microstructure and Magnetic Properties: *Thomas Bauer*¹; Adriaan Spierings¹; Konrad Wegener¹; ¹Inspire AG #### 11:20 AM Elementary Guide to Heat Treating Additive Manufacturing Parts: John Morral¹; Shuanglin Chen²; ¹Ohio State University; ²Computherm ## Additive Manufacturing: Modeling and Simulation of AM Materials, Processes, and Mechanics — AM Modeling - Session IV Program Organizers: Jing Zhang, Indiana University-Purdue University Indianapolis; Li Ma, Johns Hopkins University Applied Physics Laboratory; Xinghua Yu, Oak Ridge National Laboratory; Yeongil Jung, Changwon National University Wednesday AM Room: A223 October 17, 2018 Location: Greater Columbus Convention Center Session Chair: Jing Zhang, Indiana University - Purdue University Indianapolis #### 8:00 AM Towards Studying Process-structure-property Relations by Developing Process-specific Defect-embedded Microstructure Models: Saikumar Reddy Yeratapally¹; Jacob Hochhalter²; Geoffrey Bomarito²; ¹National Institute Of Aerospace; ²NASA Langley Research Center #### 8:20 AM Characterization of Downward Facing Surface Roughness Impacting Performance in Additive Manufacturing: Eric-Paul Tatman¹; Joy Gockel¹; ¹Wright State University #### 8:40 AM Prediction of Mechanical Behavior of Lattice Structures Using Experimentally Driven Finite Element Modeling: Behzad Bahramibabamiri¹; Hesam Askarî²; Kavan Hazeli¹; ¹University of Alabama in Huntsville; ²University of Rochester #### 9:00 AM Uncertainty Quantification in Solidification Modeling of Additive Manufacturing: Supriyo Ghosh¹; E. Chin²; J. Knap²; D. Allaire¹; A. Elwany¹; R. Arroyave¹; ¹Texas A&M Unviersity; ²U.S. Army Research Laboratory #### 9:20 AM Physics-based Process-microstructure Modeling in Powder Bed Metal Additive Manufacturing: Jingfu Liu¹; Behrooz Jalalahmadi¹; ¹Sentient Science #### 9.40 AN Microstructural Evolution Simulation for Property Prediction in Cold Spray Processing: Danielle Cote¹; Victor Champagne, Jr.²; ¹Worcester Polytechnic Institute; ²U.S. Army Research Laboratory #### 10:00 AM Break #### 10:20 AM Modeling of Phase Transformation in the Production of Self-propagating High-temperature Synthesis of Wear-resistant Coatings: Borys Sereda¹; Dmytro Sereda¹; Irina Palehova¹; ¹DDTU #### 10:40 AM Influence of Powder Size Distribution on Porosity and Surface Roughness in Powder Bed Fusion Additive Manufacturing: Alexander Rausch¹; Matthias Markl¹; Carolin Körner¹; ¹Chair of Materials Science and Engineering for Metals ## Advanced Manufacturing, Processing, Characterization, and Modeling of Functional Materials — Shape Memory Alloys Program Organizers: Mohammad Elahinia, University of Toledo; Markus Chmielus, University of Pittsburgh; Reginald Hamilton, The Pennsylvania State University; Hamdy Ibrahim, University of Tennessee at Chattanooga; Haluk Karaca, University of Kentucky; Mohammad Mahtabi, University of Tennessee at Chattanooga; Reza Mehrabi, University of Toledo; Reza Mirzaeifar, Virginia Tech Wednesday AM Room: B230 October 17, 2018 Location: Greater Columbus Convention Center Session Chairs: Mohammadreza Nematollahi, University of Toledo; C. Virgil Solomon, Youngstown State University; Mohammad Mahtabi, University of Tennessee at Chattanooga; Othmane Benafan, NASA Glenn Research Center #### 8:00 AM Invited The Effect of Re-melting on the Surface Condition of the Additively Manufactured NiTi Parts: Ahmadreza Jahadakbar¹; Amir Dehghan¹; Mohammadreza Nematollahi¹; Parisa Bayatimalayeri¹; Mohammad Mahtabi¹; Hamdy Ibrahim¹; Mohammad Elahinia¹; ¹University of Toledo #### 8:40 AN Investigation of the Mechanical Properties of NiMnGa Magnetic Shape Memory Alloys Using Nanoindentation Techniques: Yash Trivedi¹; Matthew Caputo¹; Jae Joong Ryu¹; C. Virgil Solomon¹; ¹Youngstown State University #### 9:00 AM Impact of Building Orientation and Scanning Strategy on the Tensile Properties of SLM Fabricated Ni-rich NiTi: Sayed Ehsan Saghaian¹; Narges Shayesteh Moghaddam²; Peizhen Li¹; Guher Toker¹; Mohammadreza Nematolahi²; Mohammad Elahinia; Haluk E. Karaca¹; ¹University of Kentucky; ²University of Toledo #### 9:20 AM Modeling of Additively Manufactured Shape Memory Alloys: *Natalie Zeleznik*¹; Alejandro Hinojos¹; Narges Moghaddam²; Soheil Saedi³; Haluk Karaca³; Mohammad Elahinia²; Michael Mills¹; Peter Anderson¹; ¹Ohio State University; ²University of Toledo; ³University of Kentucky ## MS&T18 #### MATERIALS SCIENCE & TECHNOLOGY #### 9:40 AM Enhancing the Surface Quality of Additively Manufactured NiTi by Electropolishing: Amir Dehghanghadikolaei¹; Hamdy Ibrahim¹; Mohammad Mahtabi¹; Ahmadreza Jahadakbar¹; Mohammadreza Nematollahi¹; Parisa Bayatimalayeri¹; Mohammad Elahinia¹; ¹The University of Toledo #### 10:00 AM Break #### 10:20 AM Sintering of Binder jet 3D Printed Ni-Mn-Ga Alloys: An Overview of Sintering Conditions and Microstructural Effects: *Matt Caputo*¹; C. Virgil Solomon¹; ¹Younstown State University #### 10:40 AM The Effect of Process Parameters on the Properties of Selective Laser Melted NiTiHf Alloys: *Guher Toker*¹; Mohammadreza Nematollahi²; Ehsan Saghaian¹; Mohammad Elahinia²; Othmane Benefan³; Haluk Karaca¹; ¹University of Kentucky; ²University of Toledo; ³NASA Glenn Research Center #### 11:00 AM The Effects of Size and Geometry on the Microstructure and Transformation Temperatures of Additively Manufactured NiTi: Nazanin Farjam¹; Mohammad Mahtabi¹; Mohammad Reza Nematollahi¹; Mohammad Elahinia¹; ¹The University of Toledo #### 11:20 AM Thermomechanical Characterization of SLM manufactured Porous Structured NiTi Devices: Ankur Majumdar¹; Sayed Saghaian¹; Amirhesam Amerinatanzi²; Narges Moghaddam²; Mohammadreza Nematollahi²; Guher Toker¹; Mohammad Elahinia²; Haluk Karaca¹; ¹University of Kentucky; ²University of Toledo #### 11:40 AM Welding of High Temperature Shape Memory Alloys: A Feasibility Study: *Kaleb Ponder*¹; Antonio Ramirez¹; Othmane Benafan²; Joao Oliveira³; ¹Ohio State University; ²NASA; ³UNIDEMI ## Advanced Steel Metallurgy: Products and Processing — Stainless and High Alloy Steels and Cast Iron Program Organizers: Justin Raines, SSAB Americas; Charles Enloe, General Motors; Emmanuel De Moor, Colorado School of Mines Wednesday AM Room: A226 October 17, 2018 Location: Greater Columbus Convention Center Session Chair: Mingzhi Xu, Georgia
Southern University; Konstantin Redkin, WHEMCO Inc #### 8:00 AM Invited The Effect of Cooling Condition on the δ-to-γ Transformation in Selected Ferritic Stainless Steels: *Suk-Chun Moon*¹; Jong-Chul Kim²; Seong-Yeon Kim²; Rian Dippenaar¹; ¹University of Wollongong; ²POSCO #### 8:20 AM Effect of Starting As-cast Structure on the Microstructure-texture Evolution during Subsequent Processing and Finally Ridging Behavior of Ferritic Stainless Steel (FSS): Pranabananda Modak¹; Sudipta Patra¹; Rahul Mitra¹; Debalay Chakrabarti¹; ¹Indian Institute of Technology Kharagpur #### 8:40 AM Tempering Machine Design and Construction for PC Strand Production Process: Yilmaz Yildirim¹; Mustafa Ozmen¹; ¹Guney Celik R&D Center #### 9:00 AM Comparison of the Mechanical Properties of Different Quality Austenitic Stainless Steels after Wire Drawing: Yilmaz Yildirim¹; 'Guney Celik, R&D Center #### 9:20 AM Influence of Cooling Rate Immediately before Hot Working on Flow Stress of Duplex Stainless Steel: Shunsuke Sasaki¹; Tatsuro Katsumura¹; Hiroki Ota¹; Jun Yanagimoto²; ¹JFE Steel Corporation; ²The University of Tokyo #### 9:40 AM Microstructure and Mechanical Behavior of a TWIP Steel under Quasi-static and Dynamic Loading: *Xiaoxue Chen*¹; Jianguo Li²; Laszlo Kecskes³; Vincent Hammond³; Qiuming Wei⁴; ¹University of North Carolina Charlotte; ²Northwestern Poltechnical University; ³US Army Research Laboratory; ⁴UNCC #### 10:00 AM Break #### 10:20 AM **Deformation Behavior and Mechanism of Ultrahigh-strength Cobalt-free 19Ni3Mo1.5Ti Maraging Steel in Tensile Deformation**: *Kun Li*¹; B. Yu²; R.D.K. Misra²; ¹University of Texas El Paso; ²UTEP #### 10:40 AN Analysis of Mg Yield of Ductile Cast Iron by Neural Network: *Takeaki Kobayashi*¹; Kazuki Akiyama²; Toshitake Kanno²; Nozomu Uchida¹; ¹Nagaoka University of Technology; ²Kimura Chuzosho Co., Ltd. Research & Development Dep. #### 11:00 AM **Developing a Graphitic White Cast Iron**: *Jie Wan*¹; Jingjing Qing¹; Mingzhi Xu¹; ¹MST #### 11:20 AM Carbide Precipitation in Thin Wall Ductile Iron Cast in Silica Sand / Rice Husk Ash Mould: Fidelia Ochulor¹; Samson Adeosun¹; ¹University of Lagos #### 11:40 AM Magnetic Barkhausen Noise (MBN) Analysis of Unknown Pipeline Steels: Clodualdo Aranas¹; Youliang He¹; Maciej Podlesny¹; Muhammad Arafin¹; ¹CanmetMATERIALS, Natural Resources Canada ## Advances in Solid Oxide Fuel Cell Technology — SOFC Durability Program Organizers: Scott Swartz, Nexceris LLC; Matthew Seabaugh, Nexceris LLC; Jeff Stevenson, Pacific Northwest National Laboratory Wednesday AM Room: D281 October 17, 2018 Location: Greater Columbus Convention Center Session Chairs: Matthew Seabaugh, Nexceris LLC; Neil Kidner, Nexceris LLC #### 8:00 AM Evidence of Space Charge Layer Evolution at YSZ Grain Boundaries in Solid Oxide Fuel Cell Anodes Operated Using Humidified Hydrogen: Yun Chen¹; Harry Abernathy²; Gregory Hackett³; Xueyan Song¹; Kirk Gerdes³; ¹West Virginia University; ²US Department of Energy/AECOM; ³US Department of Energy #### 8:20 AM Large-scale, High-performance Computation of Local Electrochemistry in Heterogeneous Solid Oxide Fuel Cell Microstructures: Yu-Ting Hsu¹; William Epting¹; Rubayyat Mahbub¹; Harry Abernathy¹; Gregory Hackett¹; Anthony Rollett²; Shawn Litster²; Paul Salvador¹; ¹U.S. DOE National Energy Technology Laboratory; ²Carnegie Mellon University #### 8:40 AM Improvement in Lifetime of SOFCs, Utilizing Novel, In-situ Methods to Remove Cathodic Chromium Deposits: Michelle Sugimoto¹; Zhikuan Zhu¹; *Uday Pal*¹; Soumendra Basu¹; Srikanth Gopalan¹; ¹Boston University #### 9:00 AM Nanostructure Degradation at LSM/YSZ and YSZ/YSZ Grain Boundaries in Solid Oxide Fuel Cell Cathodes Operated in Humidified Air: Yun Chen¹; Yueying Fan²; Shiwoo Lee²; Gregory Hackett³; Harry Abernathy²; Xueyan Song¹; Kirk Gerdes³; ¹West Virginia Univ; ²US Department of Energy/AECOM; ³US Department of Energy #### 9:20 AM Towards an Understanding of Zero Degradation in a High-performance SOFC: Xiao-Dong Zhou¹; Emir Dogdibegovic²; Yudong Wang¹; ¹University of Louisiana at Lafayette; ²University of South Carolina #### 9:40 AM Study of La1-xSrxCo0.2Fe0.8 as Cr Gettering Materials for Solid Oxide Fuel Cells: *Yeong-Shyung Chou*¹; Jung-Pyung Choi¹; Nathan Canfield¹; Jeffry Stevenson¹; ¹PNNL #### 10:00 AM Break #### 10.20 AV Impacts of Accelerated Vapor Phase Nickel Transport within Ni-YSZ Cermet Anodes: Paul Gasper¹; Yanchen Lu¹; Soumendra Basu¹; Srikanth Gopalan¹; Uday Pal¹; ¹Boston University #### 10:40 AM Novel LSCo-Mullite Composite Cathode Contact Material for Solid Oxide Fuel Cells: Yeong-Shyung Chou¹; Nathan Canfield¹; Jeff Bonnett¹; Jeffry Stevenson¹; ¹PNNL #### 11:00 AM Effects of Manganese Excess on the Microstructure and Performance of LSM-Based SOFC Cathodes Operated under Aggressive Conditions: Andrew Cai¹; Chenxin Deng¹; Naima Hilli¹; Mark De Guire¹; Arthur Heuer¹; ¹Case Western Reserve University #### 11:20 AM Evaluation of Spinel-based Contact Layer Synthesized with Alloy Powder Precursors for SOFC Cathode-side Contact Application: *Jiahong Zhu*¹; Yutian Yu¹; ¹Tennessee Tech University #### 11:40 AM Improving Ni-YSZ Cermet Anode Performance by Liquid Infiltration of Nickel Catalyst Particles with LSCM: Yanchen Lu¹; Paul Gasper¹; Boshan Mo¹; Srikanth Gopalan¹; Uday Pal¹; Soumendra Basu¹; ¹Boston University #### Advances in Surface Engineering — Carburization/ Nitridation/Boronization and Engineering of Surface Geometry/Structure/Roughness Program Organizers: Brian Skinn, Faraday Technology, Inc.; Timothy Hall, Faraday Technology, Inc.; Sandip Harimkar, Oklahoma State University; Michael Roach, University of Mississippi Medical Center; Rajeev Gupta, The University of Akron Wednesday AM Room: B144/145 October 17, 2018 Location: Greater Columbus Convention Center Session Chairs: Virendra Singh, Schlumberger; Brian Skinn, Faraday Technology, Inc.; Tim Hall, Faraday Technology, Inc. #### 8:00 AM **ToF-SIMS Studies of Surface Activation for Low-temperature Carburization or Nitridation**: *Cyprian Illing*¹; Kevin Abbasi²; Frank Ernst¹; ¹Case Western Reserve University; ²Swagelok Center for Surface Analysis of Materials #### 8:40 AM Surface Engineering of Co–Cr-based Alloys by Low-temperature Nitrocarburization: *Zhe Ren*¹; Steven Eppell¹; Clare Rimnac¹; Sunniva Collins¹; Frank Ernst¹; ¹Case Western Reserve University #### 9:00 AM **Boron-induced Surface Modification of Nickel-based Alloys**: Virendra Singh¹; Tatiana Ayers¹; Manuel Marya¹; ¹Schlumberger #### 9:20 AM **Isolated Properties of AISI 316 Stainless Steel Infused with Concentrated Interstitial Carbon**: *Zhe Ren*¹; Arthur Heuer¹; Frank Ernst¹; ¹Case Western Reserve University #### 9:40 AM A Novel TiN Formation Method on the Ti-added Ferritic Stainless Steel: JungHyun Kong¹; SangSeok Kim¹; ¹POSCO/Stainless Steel Research Group #### 10:00 AM Break #### 10:20 AM Electrofinishing of Passivating Biomedical Materials (like Nitinol, Ti, Ta, CoCr, and Mo) in HF-Free Low Viscosity Water Based Electrolytes: *Timothy Hall*¹; Holly Garich¹; EJ Taylor¹; Maria Inman¹; ¹Faraday Technology Inc #### 10:40 AM Wetting Behavior of Al 2024 Alloy Surfaces after Spot-by-spot Laser-interference Processing: *Adrian Sabau*¹; Jianlin Li¹; Sheng Yangping¹; Harry Meyer¹; Jian Chen¹; 'Oak Ridge National Laboratory #### 11:00 AM Passive and Active Biomimetic Micro-patterned Surfaces and Actuators for Flow Manipulation and Aerodynamic Drag Reduction: Allison Arnold¹; Justin Schrout¹; Kavin Sivaneri Varadharajan Idhaiam¹; Zach Fahey¹; Kevin Tennant¹; Wade Huebsch¹; Patrick Browning¹; Edward Sabolsky¹; ¹West Virginia University #### 11:20 AN Forming of Passive and Poorly-machinable Materials by Pulse-reverse Electrochemical Processing: *Brian Skinn*¹; Timothy Hall¹; Stephen Snyder¹; Maria Inman¹; E Jennings Taylor¹; ¹Faraday Technology, Inc. ## Art and Cultural Heritage: Reverse Engineering — Art and Cultural Heritage: Reverse Engineering I Program Organizers: Glenn Gates, Walters Art Museum; John McCloy, Washington State University Wednesday AM Room: B232 October 17, 2018 Location: Greater Columbus Convention Center Session Chairs: Jamie Weaver, NIST; Marie Jackson, University of Utah #### 8:00 AM Invited Conservation of Historical Coin from 1853 Rescued in the Fortin Villa 25 de Mayo-Mendoza: Patricia Carrizo¹; ¹Universidad Tecnológica Nacional Regional Mendoza(UTNFRM) #### 8:20 AM **Degradation Makers of Cellulose Acetate during Aging**: *Liu Liul*; Lukasz Bratasz²; 'Northwestern Polytechnical University; ²Yale Institute for the Preservation of Cultural Heritage #### 8:40 AM Natural fibers from the Colombian Amazonia as Cultural Materials: *Henry Colorado*¹, ¹Universidad De Antioquia ## MS&T18 #### MATERIALS SCIENCE & TECHNOLOGY #### 9:00 AM Invited Archeometallurgy, Heritage and Preservation of Iron Bridge over Mendoza River: Patricia Carrizo¹; ¹Universidad Tecnológica Nacional Regional Mendoza(UTNFRM) #### 9:20 AM **Moisture Expansion of Porcelain**: *William Carty*¹; Duncan Martin¹; ¹Alfred University #### 9:40 AM Keynote **Numbered Jun Ware: Colors and Origins**: *Lucy Cooper*¹; Katherine Eremin¹; Susan Costello¹; Jules Gardener²; Stephan Kraemer²; Marc Walton³; Emeline Pouyet³; Laure Dussubieux⁴; Andrew Shortland⁵; ¹Harvard Art Museums; ²Harvard Center for Nanoscale Systems; ³Northwestern University Art Institute of Chicago Center for Scientific Studies in the Arts; ⁴Field Museum; ⁵Cranfield Forensic Institute #### 10:20 AM Break #### 10:40 AM Invited **Viscous Flow of Medieval Cathedral Glass**: *John Mauro*¹; Ozgur Gulbiten²; Xiaoju Guo²; Olus Boratav²; ¹The Pennsylvania State University; ²Corning Incorporated #### 11:20 AM The Lost Craftsmanship of the Cheapside Hoard: Ann-Marie Carey¹; Keith Adcock¹; ¹School of Jewellery ## Bulk Metallic Glass Matrix Composites - Challenges and Triumphs — Alloy Design and Theoretical Modeling Program Organizers: Muhammad Rafique, RMIT University; Weidong Li, The University of Tennessee; Junwei Qiao, Taiyuan University
of Technology; Gang Wang, Shanghai University Wednesday AM Room: B244/245 October 17, 2018 Location: Greater Columbus Convention Center Session Chairs: Takeshi Egami, The University of Tennesse; Jan Schroers, Yale University #### 8:00 AM Invited Structure and Dynamics of BMG Forming Liquid: Takeshi Egami¹; ¹University of Tennessee #### 8·30 AM Slip Statistics for a Bulk Metallic Glass Composite Reflect Its Ductility: Wendelin Wright¹; Alan Long²; Xiaojun Gu¹; Xin Liu²; Todd Hufnagel³; Karin Dahmen²; ¹Bucknell University; ²University of Illinois at Urbana Champaign; ³Johns Hopkins University #### 8:50 AM Invited Iron-based Bulk Metallic Glass Larger than the Critical Casting Thickness Fabricated via Laser-based Additive Manufacturing: Ola Harrysson¹; Zaynab Mahbooba¹; Lena Thorsson²; Mattias Unosson²; Peter Skoglund²; ¹Sindre Metals; North Carolina State University; ²Sindre Metals #### 9:10 AM Invited Confinement of Helium Precipitates Growth within Metal Nanolayers and Implications to Helium Irradiation Damage in Fusion: Yongqiang Wang¹; Di Chen¹; Nan Li¹; Dina Yuryev²; K. Baldwin¹; Michael Demkowicz³; ¹Los Alamos National Laboratory; ²Massachusetts Institute of Technology; ³Texas A&M University #### 9:30 AM Invited Rare Events and Uncertainty Quantification in Crystal and Amorphous Plasticity: Stefanos Papanikolaou¹; ¹West Virginia University #### 9.50 AM Panorama of Patent Activity in Amorphous Metallic Glasses: Alloys, Usages and Assignees: Douglas Milanez¹; *Braulio Oliveira*¹; Daniel Leiva¹; Walter Botta¹; Claudio Kiminami¹; ¹Federal University of São Carlos #### 10:10 AM Break #### 10:30 AM Invited Shear Banding in Bulk Metallic Glass Matrix Composites with Dendrite Reinforcements: Stephen Niezgoda¹; Michael Gibbons¹; Wolfgang Windl¹; Katharine Flores²; ¹The Ohio State University; ²Washington University in St. Louis #### 10:50 AM **High Throughput Design of Mg-based Metallic Glasses**: *Janine Erickson*¹; John Perepezko¹; Dan Thoma¹; ¹University of Wisconsin Madison #### 11:10 AM **Mechanical Properties and Atomic Bonding Character in Metallic Glasses**: *Tanguy Rouxel*¹; ¹University of Rennes 1 #### Ceramics and Glasses Simulations and Informatics — Machine Learning and Materials Design Program Organizers: Mathieu Bauchy, University of California, Los Angeles; Peter Kroll, University of Texas at Arlington; Efrain Hernandez-Rivera, U.S. Army Research Laboratory Wednesday AM Room: A113 October 17, 2018 Location: Greater Columbus Convention Center Session Chairs: Peter Kroll, University of Texas at Arlington; Ye Cao, University of Texas at Arlington #### 8:00 AM Keynote Informatics Driven Discovery of Chemical Signatures for Designing Complex Oxides: Krishna Rajan¹; ¹University At Buffalo- State University of New York #### 8:40 AM Invited **Grand Challenges for Machine Learning in Glass Science**: *John Mauro*¹; ¹The Pennsylvania State University #### 9:10 AM Development of Empirical Force-fields for Glass Simulations Using Machine Learning: Mathieu Bauchy¹; ¹University of California, Los Angeles #### 9:30 AM Optimizing Elastic Moduli of the Silicate Glasses through High-throughput Atomistic Modeling and Machine Learning Techniques: *Yong-Jie Hu*¹; Ge Zhao²; Tyler Del Rose¹; Liang Qi¹; ¹University of Michigan; ²The Pennsylvania State University #### 9:50 AM Parametric Sensitivity and Exploratory Data Analysis of the ReaxFF Potential as Applied to Boron Carbide: *Efrain Hernandez-Rivera*¹; Souma Chowdhury²; Shawn Coleman¹; Payam Ghassemi²; Mark Tschopp¹; ¹US ARL; ²University at Buffalo #### 10:10 AM Break #### 10:30 AM Keynote Machine Learning in Materials Science: Recent Progress and Critical Next Steps: Rampi Ramprasad¹; ¹Georgia Institute of Technology #### 11:10 AM Invited Atomistic Computer Simulations and Design of Lithium Ion Solid State Electrolytes: *Jincheng Du*¹; ¹University of North Texas ### Characterization & Methods in Failure Analysis — Fatigue & Fracture II Program Organizers: Andrew Havics, PH2 LLC; Burak Akyuz, ATS, Inc.; Pierre Dupont, UMONS Faculté polytechnique de MONS (FPMs) Wednesday AM Room: A211 October 17, 2018 Location: Greater Columbus Convention Center Session Chairs: Guiru Liu, Progress Rail; Nicholas Cherolis, Baker Risk; Wesley Pridemore, General Electric-Aviation; Pierre Dupont, Schaeffler Belgium Sprl/bvba; Conrad Park, Case Western Reserve University #### 8:00 AM Invited Failure Analysis of Rolling Elements and Plain Bearings: Methodologies for Its Systematic Approach: Pierre Dupont¹; 'Schaeffler Belgium Sprl/Bvba #### 8:20 AM The Failure Analysis & Prevention of a Large and Critical Extrusion Gearbox Part 1/2: The Case Study an International FAS Network Analysis: Pierre Dupont¹; Donato Firrao²; Véronique Vitry³; Fabienne Delaunois³; ¹Schaeffler Belgium Sprl/Bvba; ²Politecnico di TORINO, Italy; ³UMONS - Faculté polytechnique de MONS (FPMs) #### 8:40 AM The Failure Analysis & Prevention of a Large and Critical Extrusion Gearbox Part 2/2: From Failure Analysis to Prevention, an International FAS Network Answer: Pierre Dupont¹; Donato Firrao²; Véronique Vitry³; Fabienne Delaunois³; ¹Schaeffler Belgium Sprl/Bvba; ²Politecnico di TORINO, Italy; ³UMONS - Faculté polytechnique de MONS (FPMs) #### 9:00 AM On the Gear Failure Modes Prevention & Their Estimations in Industrial Designs: Pierre Dupont¹; ¹UMONS Faculté polytechnique de MONS (FPMs) #### 9:20 AM **Fatigue Behavior of 2124/25%SiCp/3μm Al Composites**: *Ji Xia*¹; Conrad Park¹; Matthew Willard¹; John Lewandowski¹; Don Hashiguchi²; Kyung Chung³; ¹Case Western Reserve University; ²Materion Brush Incorporated; ³Materion Brush Incorporated #### 9:40 AM Electrical Arc Induced Fatigue Crack Initiation on Commercial Aircraft Engine Components: Wesley Pridemore¹; ¹GE Aviation #### 10:00 AM Break #### 10:20 AM Fuel Nozzle Intergranular Cracking: Robert Ware¹; ¹AFRL/RXSA #### 10:40 AM Metallurgical Evaluation of a Fractured Gas Turbine HPT Disk Post Tang: William Rossey¹; ¹General Electric Aviation #### 11:00 AM Metallurgical Evaluation of Fractured Gas Turbine HPT Shroud C-clips and Associated Data Generated to Support Root Cause: William Rossey¹; ¹General Electric Aviation #### Composition-Processing-Microstructure-Property Relationships of Titanium Alloys — Deformation, Fatique, & Fracture Program Organizers: Benjamin Morrow, Los Alamos National Laboratory; Carl Boehlert, Michigan State University; Kayla Calvert, TIMET - HTL; Yufeng Zheng, The Ohio State University Wednesday AM Room: C150 October 17, 2018 Location: Greater Columbus Convention Center Session Chairs: Carl Boehlert, Michigan State University; Rongpei Shi, LLNL #### 8:00 AM Invited **Ambient Temperature Hydride Formation in Ti Alloys** **Investigated by In-situ SEM Hydrogen Permeation Tests**: Jinwoo Kim¹; *C. Tasan*¹; ¹Massachusetts Institute of Technology #### 8:30 AM Effects of Hydrogen on Fatigue and Dwell Fatigue Behavior of Near-alpha Titanium Alloys: *V. Sinha*¹; R.B. Schwarz²; M.J. Mills³; J.C. Williams³; ¹UES, Inc.; The Ohio State University; ²Los Alamos National Laboratory; ³The Ohio State University #### 8:50 AM **Titanium Oxidation in Low Oxygen Environment**: *Mayela Aldaz-Cervantes*¹; Paul Rottmann¹; N.S. Harsha Gunda¹; Anton Van der Ven¹; Carlos Levi¹; ¹University of California, Santa Barbara #### 9:10 AN Enhancing the Mechanical Properties of Fe and Al Modified Ti-Cr Alloys: *JoAnn Ballor*¹; Vahid Khademi¹; Harish Chakravarty¹; Masahiko Ikeda²; Carl Boehlert¹; ¹Michigan State University; ²Kansai University #### 9:30 AM **B Phase Stability Control in a Near-a TRIP Titanium Alloy**: Fan Meng¹; Gregory Olson¹; ¹Northwestern University #### 9:50 AM **Mechanisms of Dwell Fatigue Fracture in Ti-6Al-4V**: *V. Sinha*¹; W.J. Porter²; S.K. Jha³; A.L. Pilchak⁴; ¹Air Force Research Laboratory/UES, Inc.; ²Air Force Research Laboratory/University of Dayton Research Institute; ³University of Dayton Research Institute; ⁴Air Force Research Laboratory #### 10:10 AM Break #### 10:30 AM Structure-property Relationships for Fatigue of Bimodal Duplex Ti-6Al-4V: *Adrienne Muth*¹; Reji John²; Adam Pilchak²; Surya Kalidindi¹; David McDowell²; ¹Georgia Institute of Technology; ²Air Force Research Laboratory #### 10:50 AM Mechanical Behaviour of Additively Manufactured (Repaired) Titanium Alloy: Sulochana Shrestha¹; Manigndan Kanan¹; Michael Presby¹; Gregory Morscher¹; Andrew L. Gyekenyesi¹; ¹University of Akron #### 11:10 AN Computational Statistics of Formation and Cyclic Stress-strain Redistribution of Microstructurally Small Cracks in Alpha-Ti and Ti-6Al-4V: Krzysztof Stopka¹; David McDowell¹; ¹Georgia Institute of Technology #### 11:30 AM Invited **High Superelasticity in Compression Observed in the Biomedical Ti-Nb-Ta-Zr Alloys**: Kudakwashe Nyamuchiwa¹; *Mohamed Gepreel*¹; ¹Egypt-Japan University of Science and Technology # MATSCITECH.ORG NATSCITECH.ORG MATERIALS SCIENCE & TECHNOLOGY ### Controlled Synthesis, Processing, and Applications of Structural and Functional Nanomaterials — Session III Program Organizers: Haitao Zhang, University of North Carolina at Charlotte; Kathy Lu, Virginia Tech; Edward Gorzkowski, Naval Research Laboratory; Gurpreet Singh, Kansas State University; Kejie Zhao, Purdue University; Jian Shi, Rensselaer Polytechnic Institute Wednesday AM Room: D180 October 17, 2018 Location: Greater Columbus Convention Center Funding Support provided by: MilliporeSigma Session Chairs: Edward Gorzkowski, Naval Research Laboratory; Haitao Zhang, UNC Charlotte #### 8:00 AM Effects of Precursors on Preparation of SiOC Bulk Ceramics: Kathy Lu¹; Lixia Wang¹; ¹Virginia Tech #### 8:20 AM Invited Single-source-precursor Synthesis of Si-based Ceramic Nanocomposites for Environmental Applications: Zhaoju Yu¹; ¹Xiamen University #### 8:50 AM **Programming Nanoparticle Assembly for Silica-based Ionogels**: *Ruel McKenzie*¹; Sainath Jadhav¹; Marisa Tukpah¹; Daria Lazarenko¹; ¹The University of Akron #### 9:10 AM Influence of Bond Characteristics of Polymer Precursors on
the Pore Structure of Polymer Derived Ceramics: Kathy Lu¹; Donald Erb¹; ¹Virginia Tech #### 9:30 AM Invited Synthesis and Functionality of Lead Halide Perovskites Studied by Timeresolved Laser Spectroscopy: Clemens Burda¹; ¹Case Western Reserve University #### 10:00 AM Solution Combustion Synthesis of Nanosized Ferroelectric (1-x)KNbO<3>x(BaNb<1/2>Ni<1/2>O<3-d>): Characterization, Mechanism and Photocatalytic Properties: Ranabrata Mazumder¹; S. Abhinay¹; National Institute of Technology Rourkela #### 10:20 AM Break #### 10:40 AM Synthesis of Silicon Nano Particles from Cassava Periderm by Reduction Method: *Suleiman Hassan*¹; Johnson Agunsoye¹; Joseph Agboola¹; Adebisi Jeleel²; Sefiu Bello³; ¹University of Lagos, Nigeria; ²University of Ilorin, Nigeria; ³Kwara State University, Malete #### 11:00 AM Fabrication of 3D Phononic Crystals Using Polystyrene Spheres and Nano-Si Particles: Shan-Ju Chiang¹; Leon Shaw¹; ¹Illinois Institute of Technology #### 11:20 AM Synthesis of Nanostructured Li₂La₃Zr₂O₁₂ Solid Electrolyte Powders in Molten Salt Eutectics: Jon Weller¹; Justin Whetten¹; Candace Chan¹; ¹Arizona State University #### Corrosion of Additively Manufactured Metals — Corrosion of Additively Manufactured Metals Program Organizers: Eric Schindelholz, Sandia National Laboratories; Rajeev Gupta, The University of Akron; Ajit Mishra, Haynes International Wednesday AM Room: A220 October 17, 2018 Location: Greater Columbus Convention Center Session Chairs: Eric Schindelholz, Sandia National Laboratories; Rajeev Gupta, The University of Akron; Ajit Mishra, Haynes International #### 8:00 AM Invited Corrosion of Additively Manufactured Metallic Materials: Pin Lu¹; Dana Frankel¹; Thomas Kozmel¹; Chris Kantner¹; James Saal¹; ¹QuesTek Innovations #### 8.20 AV Corrosion Characteristics of Additively Manufactured Stainless Steel: *Jamie Stull*¹; Mary Ann Hill¹; Daniel Hooks¹; Thomas Lienert¹; Justin Tokash²; Kevin Bohn¹; ¹Los Alamos National Lab; ²Oak Ridge National Laboratory #### 8:40 AM Accelerated Sensitization in Laser Additively Manufactured 316L: Duane Armell Macatangay¹; ¹University of Virginia #### 9:00 AM Correlating the Microstructure and Surface Morphology of Laser Engineered Net Shape (LENS) 304L Series Stainless Steel to Its Corrosion Response: Michael Melia¹; Rebecca Schaller²; Hai-Duy Nguyen¹; Jason Taylor¹; Jeffrey Rodelas¹; Eric Schindelholz¹; ¹Sandia National Laboratory; ²University of British Columbia #### 9:20 AM Invited On the Corrosion Characteristics of 316L Manufactured by Selective Laser Melting: Sebastian Thomas¹; Guilherme Sander¹; Victor Cruz¹; Cristian Costa¹; Derui Jiang¹; Xiang Gao¹; Wenwen Sun¹; Michael Brameld²; Christopher Hutchinson¹; Nick Birbilis¹; ¹Monash University; ²Woodside Energy #### 9:40 AM Invited Effect of Immersion Time on Electrochemical Characteristics of Additively Manufactured 316L Stainless Steel Exposed to Artificial Seawater: *Barbara Shaw*¹; Elizabeth Sikora¹; Dailin Wang¹; ¹Pennsylvania State University #### 10:00 AM Break #### 10:20 AM **Environmental Degradation of Stainless Alloys Made by Additive Manufacturing:** Xiaoyuan Lou¹; Miao Song²; *Raul Rebak*³; ¹Auburn University; ²University of Michigan; ³GE Global Research #### 10:40 AM Hydrogen Uptake and Diffusivity in Additively Manufactured Stainless Steels: *Rebecca Schaller*¹; Jason Taylor²; Jeffrey Rodelas²; Eric Schindelholz²; ¹University of British Columbia; ²Sandia National Laboratories #### 11:00 AM Hydrogen Embrittlement of Additively Manufactured Inconel 718 in Seawater: Liu Cao¹; Ramgopal Thodla¹; ¹DNV GL #### 11:20 AN **High Temperature Oxidation Behavior of Additively Manufactured Alloys**: *Sedigheh Rashidi*¹, Amit Pandey²; Rajeev Kumar Gupta¹; ¹University of Akron; ²Rolls Royce LG Fuel Cell Systems Inc. ### Covetic Nanomaterials for Energy Applications — Covetic Materials I Program Organizers: David Forrest, US Department of Energy; Uthamalingam Balachandran, Argonne National Laboratory Wednesday AM Room: D282 October 17, 2018 Location: Greater Columbus Convention Center Session Chair: U (Balu) Balachandran, Argonne National Laboratory #### 8:20 AM Invited Covetic Nanomaterials 101: David Forrest¹; ¹US Department of Energy #### 9:00 AM Invited Melt Processing of Covetic Materials for Energy Applications: Paul Jablonski¹; Martin Detrois²; David Alman¹; U. Balachandran³; David Forrest⁴; ¹DOE/NETL; ²NETL and AECOM; ³ANL; ⁴DOE #### 9:40 AM Mechanism Studies and Fabrication of Carbon Nanostructures Incorporated into Al Alloys by Electrocharging Assisted Process: *Xiaoxiao Ge*¹; Christopher Klingshirn¹; Manfred Wuttig¹; Karen Gaskell¹; Peter Y Zavalij¹; Balu Balachandran²; Daniel, P Cole³; Lourdes Salamanca-Riba¹; ¹University of Maryland; ²Argonne National Laboratory; ³U.S Army Research Laboratory #### 10:00 AM Break #### 10:20 AM Manufacture and Characterization of Aluminum Covetics: *Iwona Jasiuk*¹; Siyuan Pang¹; Ivan Shchelkanov¹; Mete Bakir¹; David Ruzic¹; ¹University of Illinois #### 10:40 AM Characterization of Metal-carbon Interfaces in Covetic Materials: Christopher Shumeyko¹; Daniel Cole¹; Xiaoxiao Ge²; Lourdes Salamanca-Riba²; ¹US Army Research Lab; ²University of Maryland #### 11:00 AM Conductive Carbon-metal Composite Materials by Covetic Process: Shenjia Zhang¹; Cornelius Muojekwu¹; Harry Couch²; Michael Braydich²; ¹General Cable; ²GDC Industries #### 11:20 AM Invited Networks of Graphene Nanoribbons and Nanosheets Formed in Metals by the Electrocharging Assisted Process: Lourdes Salamanca-riba¹; Xiaoxiao Ge¹; Manfred Wuttig¹; Daniel Cole²; Chritopher Shumeyko²; Karen Gaskell¹; Oded Rabin¹; Balu Balachandran³; ¹University of Maryland; ²Army Research Laboratory; ³Argonne National Laboratory ### Deformation and Transitions at Grain Boundaries VI — Dislocation-Grain Boundary interactions Program Organizers: Thomas Bieler, Michigan State University; Shen Dillon, University of Illinois; Saryu Fensin, Los Alamos National Laboratory; Jian Luo, University of California San Diego; Douglas Spearot, University of Florida Wednesday AM Room: A123 October 17, 2018 Location: Greater Columbus Convention Center Session Chairs: Samuel Hemery, Institute Prime - ENSMA; Eric Homer, Brigham Young University #### 8:00 AM Fatigue Crack Initiation at Grain Boundaries Due to Grain Boundary Resistance against Crack Transfer and Local Stresses: Philipp Weiler¹; Florian Schaefer¹; Michael Marx¹; ¹Saarland University #### 8:20 AM Role of Slip Transfer in Heterogeneous Deformation between a Soft and a Hard Grain in Grade 1 Titanium: *Harsha Phukan*¹; Thomas Bieler¹; Chen Zhang¹; Ruqing Xu¹; Philip Eisenlohr¹; Martin Crimp¹; Carl Boehlert¹; ¹Michigan State University #### 8:40 AM Phase Transformation Strengthening in Metastable fcc Materials: Carlyn LaRosa¹; Changning Niu¹; Jiashi Miao¹; Michael Mills¹; Maryam Ghazisaeidi¹; ¹The Ohio State University #### 9:00 AM Invited **Atomistic Survey of Grain Boundary-dislocation Interactions in FCC Nickel**: Devin Adams¹; *Eric Homer*¹; David Fullwood¹; Robert Wagoner¹; ¹Brigham Young University #### 9:30 AM Invited Slip Activity in Ti Alloys: Interactions with Grain Boundaries: Samuel Hemery¹; Cyril Lavogiez¹; Patrick Villechaise¹; ¹Institute Prime - ENSMA #### 10:00 AM Break #### 10:20 AM Simulation of Slip Transfer in Tensile Deformed Bicrystals Using a Dislocation Density Based Crystal Plasticity Model: Sarra Haouala¹; *Thomas Bieler*²; Javier Seguardo³; Javier Llorca³; ¹IMDEA Materiales; ²Michigan State University; Polytechnic University of Madrid; ³IMDEA Materiales; Polytechnic University of Madrid #### 10:40 AM TEM Characterization of Dislocations Generated by Nanoindentation around Grain Boundary with Fe-3% Si Bicrystals: *Seiichiro Ii*¹; Ya-Ling Chang¹; Toru Hara¹; Takahito Ohmura¹; ¹National Institute for Materials Science #### 11:00 AM Exploring Grain Boundary Dependent Deformation Mechanisms in Nanocrystalline Materials Through In-situ TEM High Cycle Fatigue: Christopher Barr¹; Khalid Hattar¹; ¹Sandia National Laboratories #### 11:20 AM An Atomistic Method of Predicting Thermodynamic Force for Deformation: *Mulaine Shih*¹; Michael Mills¹; Maryam Ghazisaeidi¹; Peter Anderson¹; ¹Ohio State University ## MS&T18 #### MATERIALS SCIENCE & TECHNOLOGY #### 11:40 AM Role of Hierarchical Martensitic Boundaries on Localized Deformation and Fracture of Lath Martensitic Steel under Impact Loading at Different Temperatures: Arya Chatterjee¹; Abhijit Ghosh²; Rahul Mitra¹; Debalay Chakrabarti¹; ¹Indian Institute of Technology Kharagpur; ²Indian Institute of Technology Indore ### Eco-Friendly and Sustainable Ceramics — Innovative Binders and Cement Blends Program Organizers: Enrico Bernardo, University of Padova; Henry Colorado, Universidad De Antioquia; Ivo Dlouhy, Institute of Physics of Materials, Academy of Sciences of the Czech Republic; Aldo Boccaccini, University of Erlangen-Nuremberg, Antonio Pedro Oliveira, Federal University of Santa Catarina; Isabella Lancellotti, Universita' di Modena e Reggio Emilia; Alexander Karamanov, Bulgarian Academy of Sciences Institute of Physical Chemistry "Rostislaw Kaischew"; Vilma Ducman, Slovenian National Building and Civil Engineering Institute Wednesday AM Room: A114 October 17, 2018 Location: Greater Columbus Convention Center Session Chairs: Enrico Bernardo, University of Padova; Henry Colorado, Universidad de Antioquia #### 8:00 AM Introductory Comments #### 8:10 AM Invited Carbonate Ceramics for the Reduction of Global Carbon Footprint: Richard Riman¹; Daniel Kopp¹; ¹Rutgers University #### 8:50 AM **Phosphate Cements Made from Battery Waste**: *Henry Colorado*¹; ¹Universidad De Antioquia #### 9:10 AM Invited Fe-silicate Binders as an Alternative to Cement: a Comparison in Performance and Environmental Footprint: Yiannis Pontikes¹; ¹KU Leuven #### 9:40 AM Waste Tire Rubber in Calcium Phosphate Cement Blends: Carlos Revelo¹; Henry Colorado¹; ¹Universidad De Antioquia #### 10:00 AM Break #### 10:20 AM Invited Uncommon Aluminosilicates as
Sustainable Precursors for Geopolymers: *Isabella Lancellotti*¹; Luisa Barbieri¹; Cristina Leonelli¹; ¹University of Modena and Reggio Emilia #### 10:50 AM Inorganic Polymers from FeO_x-CaO-SiO₂ Slags: Influence of CaO on Reactivity and Strength Development: *Christina Siakati*¹; Arne Peys¹; Yiannis Pontikes¹; ¹KU Leuven #### 11:10 AM Geopolymers to Inertize Chromium Liquid Waste from Inks for Digital Decoration of Ceramic Tiles: Isabella Lancellotti¹; Luisa Barbieri¹; Eugenio Caponetti²; Cristina Leonelli¹; ¹University of Modena and Reggio Emilia; ²University of Palermo #### From Diversity to Inclusion — Session I Program Organizers: Elvi Dalgaard, Pratt & Whitney Canada; Lynnette Madsen, Svedberg Science, Inc. Wednesday AM Room: B231 October 17, 2018 Location: Greater Columbus Convention Center #### 10:30 AM Keynote Rising to the Challenge: Personal Reflections on My Leadership Journey: Priti Wanjara¹; ¹NRC Aerospace #### 11:00 AM Invited Wells: How Gender Diversity Can Drive Innovation in the STEM Fields: Mary Wells¹; ¹University of Guelph #### 11:30 AM Multi-layered Mentorship Approaches in Summer Engineering Programs: Kimberly Cook-Chennault¹; ¹Rutgers, the State University of New Jersey ## Glass, Amorphous, and Optical Materials: Common Issues within Science & Technology — Optical, Photonic, and Electronic Properties of Glasses/Glass Structure Program Organizers: John Kieffer, University of Michigan; Liping Huang, Rensselaer Polytechnic Institute Wednesday AM Room: A115 October 17, 2018 Location: Greater Columbus Convention Center Session Chair: To Be Announced #### 8:00 AM Invited Optical Ceramic Materials in Solid State Lasers: Historical Evolution and Current Perspectives: Yiquan Wu¹; ¹Alfred University #### 8:30 AM Invited **Photo-induced Property Changes in Chalcogenide Glasses**: *Pierre Lucas*¹; Amey Khanolkar²; Pierre Deymier¹; Nicholas Boechler³; William Warfel¹; Neil Jenkins¹; Lizhu Li¹; ¹University of Arizona; ²University of Washington; ³UC San Diego #### 9:00 AM Invited Thin Film Storage Phosphors for Medical Imaging: *Jacqueline Johnson*¹; Charles Bond²; Anthony Lubinsky³; Yu Jin⁴; Amanda Petford-Long⁵; ¹University of Tennessee Space Institute; ²Utsi; ³SUNY Stony Brook; ⁴Northwestern University; ⁵Argonne National Laboratory #### 9:30 AM Invited Science of Chalcogenide-based Conductive-bridging Random Access Memory: Gang Chen¹; Kirtankumar Dixit¹; Sunday Agbo¹; Mayur Sundararajan¹; ¹Ohio University #### 10:00 AM Break #### 10:20 AM Invited Atomic Resolution Imaging of Structure and Dynamics in a 2D Silica Glass: *Pinshane Huang*¹; ¹University of Illinois, Urbana-Champaign #### 10:50 AM Invited Nearly Defect-free Dynamical Models of Disordered Solids: The Case of Amorphous Silicon: *Parthapratim Biswas*¹; Dil Limbu¹; Raymond Atta-Fynn²; ¹The University of Southern Mississippi; ²The University of Texas at Arlington #### 11:20 AM **In-situ Raman Spectroscopy of the Indentation-induced Deformation of Glasses**: *Yvonne Gerbig*¹; Chris Michaels¹; ¹National Institute of Standards and Technology ## IMS Symposium on Metallography and Microstructural Characterization of Materials and the Correlation of Microstructure to Mechanical Properties — Optical and Electron Characterization of Microstructures Program Organizers: Daniel Dennies, DMS, Inc.; James Martinez, NASA Johnson Space Center; Michael Keeble, Buehler, A Division of ITW; Jaret Frafjord, IMR Test Labs - Portland Wednesday AM Room: A212 October 17, 2018 Location: Greater Columbus Convention Center Session Chairs: James Martinez, NASA Johnson Space Center; Mary O'brien, Colorado School of Mines; Eric Cole, Carpenter Technology Corp #### 8:00 AM Invited Quantifying Microstructural Morphologies through Automated Image Analysis of Optical and Electron Micrographs: Matthew Hecht¹; Anna Weiss¹; Txai Sibley¹; Brian DeCost¹; Elizabeth Holm¹; Bryan Webler¹; Yoosuf Picard¹; Carnegie Mellon University #### 8:20 AM Invited **Process-microstructure-property Relationships in Fe-Co-2V**: *Donald Susan*¹; Andrew Kustas¹; Zahra Ghanbari¹; Jeff Rodelas¹; Joseph Michael¹; ¹Sandia National Lab #### 8:40 AM Development of Transfer Functions for Estimating 3D Particle Distributions from 2D Cross Sections via Computational Modeling: A. Gerlt¹; A. Criner²; S. Semiatin²; E. Payton²; ¹Air Force Research Lab Materials and Manufacturing Directorate UES, Inc.; ²Air Force Research Lab Materials and Manufacturing Directorate #### 9:00 AM Invited Analysis of Defects in Tungsten Heavy Alloy. Zahra Ghanbari¹; Donald Susan¹; Alice Kilgo¹; Christina Profazi¹; ¹Sandia National Laboratories #### 9:20 AM Extending Grain Mapping into the Third Dimension Using Lab-based Diffraction Contrast Tomography: William Harris¹; Hrishikesh Bale¹; Steve Kelly¹; Nicolas Gueninchault²; Jun Sun²; Erik Lauridsen²; ¹Carl Zeiss X-ray Microscopy Inc; ²Xnovo Technology ApS #### 9:40 AM Invited **Analysis of Defect Structures in Deformed Metals Using EBSD**: *David Field*¹; ¹Washington State University #### 10:00 AM Break #### 10:20 AM Bendability Study on High-strength Strip Steel with Bainitic-martensitic Structure: Abhisek Mandal¹; Debalay Chakrabarti¹; ¹IIT Kharagpur #### 10:40 AM Mapping of Sigma Phase in Creep Tested Super304H Advanced Austenitic Steels: *Tapasvi Lolla*¹; John Siefert¹; Michael Gagliano¹; ¹EPRI #### 11:00 AM Invited Effect of Microstructure on Hydrogen Induced Cracking in X52 and X70 Pipeline Steels: Mary O'Brien¹; Kip Findley¹; ¹Colorado School of Mines #### 11:20 AM Numerical Modelling of Laser Metal Deposited Coatings on Ti-6Al-4V Alloy: Olawale Fatoba¹; Rezvan Gharehbaghi¹; Stephen Akinlabi¹; Esther Akinlabi¹; ¹University of Johannesburg ### Interfaces, Grain Boundaries and Surfaces from Atomistic and Macroscopic Approaches — Kinetics Program Organizers: John Blendell, Purdue University; Ming Tang, Rice University; Shen Dillon, University of Illinois; Wayne Kaplan, Technion - Israel Institute of Technology; Dominique Chatain, CNRS, Aix-Marseille University Wednesday AM Room: A122 October 17, 2018 Location: Greater Columbus Convention Center Session Chair: Lauren Hughes, University of California, Davis #### 8:00 AM Invited Interpreting Faceted Grain Boundary Migration as an Optimal Transport Problem: Ian Chesser¹; Brandon Runnels²; *Elizabeth Holm*¹; ¹Carnegie Mellon University; ²University of Colorado Colorado Springs #### 8:30 AM Invited **Dynamic Simulation of Oxygen Transport through Oxide Films**: Markus Tautschnig¹; Nicholas Harrison²; *Michael Finnis*²; ¹Max-Planck-Institut für Eisenforschung GmbH; ²Imperial College London #### 9:00 AM Invited **Disconnections and Grain Growth in SrTiO3**: *Hadas Sternlicht*¹; Wolfgang Rheinheimer²; Alex Mehlmann³; Avner Rothchild³; Michael Hoffmann⁴; Wayne Kaplan³; ¹School of Engineering, Brown University; ²School of Materials Engineering, Purdue University; ³Department of Materials Science and Engineering, Technion; ⁴Institute of Applied Materials, Karlsruhe Institute of Technology #### 9:30 AM Invited Unravelling Complex Nanoscale Deformation Mechanisms and Interfacial-mediated Behavior In Nanocrystalline Materials through Atomistic Modeling: Ankit Gupta¹; Jacob Gruber¹; Garritt Tucker¹; ¹Colorado School of Mines #### 10:00 AM Break #### 10:20 AM Is the Grain Growth Transition of Strontium Titanate a Space Charge Transition?: *Wolfgang Rheinheimer*¹, Jana Parras²; Roger de Souza²; Michael Hoffmann³; ¹Purdue University; ²RWTH Aachen University; ³Karlsruhe Institute of Technology #### 10:40 AM Simulation of Grain Boundary Migration and Phase Transformation in Metals with Overdamped Langevin Dynamics: Carolina Baruffi¹; Alphonse Finel¹; Brigitte Bacroix²; Oguz Umut Salman²; Yann Le Bouar²; ¹ONERA; ²Université Paris 13 #### 11:00 AM **Slip-induced Twinning in Titanium**: *Mohammad Shahriar Hooshmand*¹; Maryam Ghazisaeidi¹; ¹Ohio State University #### 11:20 AM Transition from Source- to Stress-controlled Plasticity in Nanotwinned Materials Below a Softening Temperature: Seyedeh Mohadeseh Taheri Mousavi¹; Guijin Zou²; Haofei Zhou²; Huajian Gao²; ¹MIT; ²Brown University # MATSCITECH.ORG STATEMENT OF THE STATEME ## International Symposium on Defects, Transport and Related Phenomena — Bulk and Grain Boundary Transport Program Organizers: Tatsuya Kawada, Tohoku University; Manfred Martin, RWTH Aachen University; Sangtae Kim, University of California, Davis; William Chueh, Stanford University Wednesday AM Room: B242/243 October 17, 2018 Location: Greater Columbus Convention Center Session Chairs: WooChul Jung, KAIST; Igor Lubomirsky, Weizmann Institute of Science #### 8:00 AM Invited Linear Diffusion Model for Determination of the Height of the Potential Barrier at Grain Boundaries of Ion-conducting Oxides: Chih-Yuan Chang¹; Sergey Khodorov²; *Igor Lubomirsky*²; Sangtae Kim¹; ¹University of California, Davis; ²Weizmann Institute of Science #### 8:40 AM Invited Application of Kelvin Probe Force Microscopy to Measure Room Temperature Transport Characteristics of Oxygen Ion Conductors: Kerstin Neuhaus¹; Hans-Dieter Wiemhöfer¹; ¹University of Münster #### 9:20 AM Electron Localization Enhances Cation Diffusion in Doped Zirconia and Ceria: Yanhao Dong¹; I-Wei Chen²; ¹Massachusetts Institute of Technology; ²University of Pennsylvania #### 9:40 AM Invited Diffusion of Cation Impurities through Ceria Grain Boundaries: WooChul $Jung^1$; NoWoo Kwak 1 ; 1 KAIST #### 10:20 AM Break #### 10:40 AM Density Functional Theory Modeling of the Cation Diffusion in Bulk Zirconia and in $La_{l-x}Sr_xMnO_{3*d}$ (x=0.0-0.25) for Solid Oxide Fuel Cells: Yueh-Lin Lee¹; Yuhua Duan¹; Dane Morgan²; Dan Sorescu¹; Harry Abernathy¹; Gregory Hackett¹; ¹National Energy Technology Laboratory; ²University of Wisconsin-Madison #### 11:00 AM Invited Grain Boundary Hydrogen Transports in Nanocrystalline Metal Nitride Thin Films: Yoshitaka Aoki 1 ; 1 Hokkaido University ### Joining of Advanced and Specialty Materials (JASM XX) — Nano- and Micro-Joining Program Organizers: Mathieu
Brochu, Mcgill University; Anming Hu, University of Tennessee Knoxville; Boian Alexandrov, Ohio State University; Darren Barborak, WeldQC, Inc; Akio Hirose, Osaka University; Peng He, Harbin Institute of Technology; Zhiyong Gu, University of Massachusetts Lowell Wednesday AM Room: C171 October 17, 2018 Location: Greater Columbus Convention Center Session Chairs: Zhiyong Gu, University of Massachusetts Lowell; Anming Hu, University of Tennessee Knoxville; Tomokazu Sano, Osaka University; Peng Peng, Beihang University #### 8:00 AM Invited Molecular Simulations of Transient Liquid Phase Bonding of Ni-based Superalloy with Ni Nanoparticles: Jiaqi Wang¹; Seungha Shin¹; Anming Hu¹; Jackson Wilt¹; ¹University of Tennessee #### 8:20 AM Invited Chemically Induced Joining of Silver Nanomaterials for Flexible Electrodes: Peng Peng¹; ¹Beihang University #### 8:40 AM Laser Nanojoining of Copper Nanowires: Anming Hu¹; Yangbao Deng¹; Yongchao Yu¹; Yanfeng Bai¹; ¹University of Tennessee Knoxville #### 9:00 AM Site-selective Solder Deposition on Multi-segment Nanowires for Nanowire Joining: Edward Fratto¹; Jirui Wang¹; Hongwei Sun¹; Zhiyong Gu¹; ¹University of Massachusetts Lowell #### 9:20 AM Invited Photonic Controlled Structuring and Joining of Graphene and Metalnanostructures for Flexible Electronics: $Ruozhou\ Lt^1$; Jing Yan¹; Ying Yu¹; Anming Hu²; ¹Nanjing University of Posts and Telecommunications; ²University of Tennessee - Knoxville #### 9-40 AM Metal-to-Silicon Bonding Using Silver Oxide Reduction Reaction and Its Mechanism: Kota Inami¹; Tomoki Matsuda¹; Tomokazu Sano¹; Akio Hirose¹; ¹Osaka University #### 10:00 AM Break #### 10:20 AM Fabrication and Performance of MnCoCuNiFe High Entropy Alloy Nanopastes for Brazing Inconel 718: Denzel Bridges¹; Samantha Lang¹; Suhong Zhang¹; Raymond Xu²; Anming Hu¹; ¹University of Tennessee; ²Rolls-Royce Corporation #### 10:40 AM Nanosolder Additions to Solder Pastes and their Effect on IMC Formation and Growth on Cu Substrate: Evan Wernicki¹; Zhiyong Gu¹; ¹University of Massachusetts Lowell #### 11:00 AM Transit Liquid Phase Bonding of Inconel 718 Superalloy Using Ni Nanoparticle Based Filler: Suhong Zhang¹; Denzel Bridges¹; Zhili Feng²; Anming Hu¹; ¹University of Tennessee; ²Oak Ridge National Laboratory ### Joining of Advanced and Specialty Materials (JASM XX) — Welding Processes Program Organizers: Mathieu Brochu, Mcgill University; Anming Hu, University of Tennessee Knoxville; Boian Alexandrov, Ohio State University; Darren Barborak, WeldQC, Inc; Akio Hirose, Osaka University; Peng He, Harbin Institute of Technology; Zhiyong Gu, University of Massachusetts Lowell Wednesday AM Room: C172 October 17, 2018 Location: Greater Columbus Convention Center Session Chair: Vikas Patel, ArcelorMittal USA #### 8:00 AM Effect of Electron Beam Weld Bead Geometry on the Mechanical Properties of Ti6Al4V Alloy: Sandeep Thakare #### 8-20 AM Effects of Process Parameters and Interface Gap on Laser Welding Quality of Ti6Al4V Alloy: Kyung-Min Hong¹; Yung Shin¹; ¹Purdue University #### 8:40 AM Three-dimensiona Numerical Simulation of Keyhole Dynamics based on Calculation of Coupled Multiphase Transfer during Laser Welding for Aluminum: *Qiaofeng Zhou*¹; Fumikazu Miyasaka¹; Hiroaki Mori¹; ¹Osaka University #### 9:00 AM Effects on Hardness and Cooling Rates of 3-D Printed 4047 Aluminum for Electromagnetic Focusing Plasma: Comparison of MIG and SLS: *Adam Pringle*¹; Paul Sanders¹; Joshua Pearce¹; ¹Michigan Technological University #### 9:20 AM Effect of Mass Deposition on Fatigue Properties of Newly Developed Ultranarrow Gap Multipass PC-GMA Weld for Thick Section: Ramkishor Anant¹; P.K. Ghosh¹; ¹Indian Institute of Technology Roorkee #### 9:40 AM Modeling of Severe Plastic Deformation in Mash Seam Welding Using Improved Electro-thermo-mechanical Simulation: Alexey Kuprienko¹; Wei Zhang¹; Bruce Krakauer²; Menachem Kimchi¹; ¹The Ohio State University; ²A. O. Smith #### 10:00 AM Break #### 10:20 AM Invited Microstructure Characterization and Evaluation of Mechanical Properties for Friction Welded EN-24 Alloy Steel: Vijay Gaikwad¹; ¹Bharat Forge Ltd. #### 10:40 AM Modeling and Advanced Characterization of Nickel Base Alloys for Nuclear Propulsion Applications: Allison Fraser¹; John DuPont¹; ¹Lehigh University #### Journal of the American Ceramic Society Awards Symposium — JACerS Awards Symposium Session I Program Organizer: William Fahrenholtz, Missouri University of Science and Technology Wednesday AM Room: A125 October 17, 2018 Location: Greater Columbus Convention Center Session Chair: William Fahrenholtz, Missouri University of Science and Technology #### 8:00 AM Introductory Comments #### 8:20 AM Invited Scaling Effects in Ferroelectrics: An Old Problem Surpassed by New Materials: Jon Ihlefeld¹; ¹University of Virginia #### 8:50 AM Invited **Defect Mechanisms in BaTiO₃-BiMO₃ Ceramics**: *Nitish Kumar*¹; Eric Patterson²; Till Frömling³; Edward Gorzkowski²; Peter Eschbach⁴; Ian Love⁴; Michael Müller⁵; Roger De Souza⁵; Julie Tucker⁴; Steven Reese⁴; David Cann⁴; ¹The University of New South Wales,; ²US Naval Research Laboratory; ³Technische Universität Darmstadt; ⁴Oregon State University; ⁵RWTH Aachen #### 9:20 AM Invited Toward Tunable and Bright Deep-red Persistent Luminescence of Cr³⁺ in Garnets: *Jian Xu*¹; Jumpei Ueda¹; Setsuhisa Tanabe¹; ¹Kyoto University #### 9:50 AM Break #### 10:20 AM Invited Cements in the 21st Century: Challenges, Perspectives, and Opportunities: *Joseph Biernacki*¹; Jeffrey Bullard²; Gaurav Sant³; Kevin Brown⁴; Fredrik Glasser⁵; Scott Jones²; Tyler Ley⁶; Richard Livingston⁷; Luc Nicoleau⁸; Jan Olek⁹; Florence Sanchez⁴; Rouzbeh Shahsavari¹⁰; Paul Stutzman²; Konstantine Sobolev¹¹; Tracie Prater¹²; ¹Tennessee Technolgoical University; ²NIST; ³UCLA; ⁴Vanderbilt University; ⁵University of Aberdeen; ⁶Oklahoma State University; ⁷University of Maryland; ⁸BASF; ⁹Purdue University; ¹⁰Rice University; ¹¹University of Wisconsin Milwaukee; ¹²NASA #### 10:50 AM Invited Rate Controls on Silicate Dissolution in Aqueous Environments: Gaurav Sant¹; Mathieu Bauchy¹; ¹University of California Los Angeles #### 11:20 AM Invited Ceramic Waste Form Performance and Degradation: Mechanistic Understandings: *Jie Lian*¹; ¹Rensselaer Polytechnic Institute # MATSCITECH.ORG MATERIALS SCIENCE & TECHNOLOGY #### Light Metal Technology – Applications for the Transportation Industry — Modeling and Formability/ Magnesium Alloys Program Organizers: Julie Levesque, Quebec Metallurgy Center; Mihaiela Isac, McGill Metals Processing Centre; Xiaoming Wang, Purdue University; Roderick Guthrie, McGill University; Sa Ge, Hatch Ltd.; Kaan Inal, University of Waterloo; Frederic Laroche, Rio Tinto Wednesday AM Room: B130 October 17, 2018 Location: Greater Columbus Convention Center Session Chairs: Julie Levesque, Quebec Metallurgy Center; Keerti Kappagantula, Ohio University; Stefan Walzer, IFU Stuttgart #### 8:00 AM Keynote Integrated Computational Materials Engineering (ICME) for Vehicle Lightweighting: Kaan Inal¹; ¹University of Waterloo #### 8:40 AM Numerical Investigation of Significant Process Parameters in a Tempered Deep Drawing Process of Magnesium Sheet Metal: Stefan Walzer¹; Mathias Liewald¹; ¹IFU Stuttgart #### 9:00 AM Unveiling Low Current Electroplasticity in Aluminum Alloys: Clifton Bumgardner¹; Brendan Croom¹; Ningning Song¹; Xiaodong Li¹; ¹University of Virginia #### 9:20 AM Improving Formability of Magnesium Alloy Sheet at Room Temperature by Texture Control: Se Jong Kim¹; Jinwoo Lee¹; Young-Seon Lee¹; Daeyong Kim¹; ¹Korea Institute of Materials Science #### 9:40 AM The Influence of Recrystallization Temperature on Textural Evolution during Grain Growth in Mg Alloy AZ31B: *Matthew Steiner*¹; Jishnu Bhattacharyya²; Sean Agnew²; ¹University of Cincinnati; ²University of Virginia #### 10:00 AM Break #### 10:20 AM LPSO Containing Mg-Alloys for Automotive and Aerospace Applications: *Joshua Caris*¹; Nick Farkas¹; Andrew Sherman¹; ¹Terves, LLC. #### 10:40 AM **Lightweight Road Wheels Manufactured by High Temperature Shear Forming of Mg Alloys Sheets**: *Yoon Oh*¹; Woo Jin Park¹; Ki Hyuk Kwon¹; ¹Research Institute of Science and Technology #### 11:00 AM A Ceria Based Conversion Coating on Squeeze Cast Mg- 4wt. %Y Alloy for Improved Corrosion Resistance in 0.1 M NaCl Solution: Meeta Kamde¹; Yogendra Mahton¹; *Partha Saha*¹; ¹NIT Rourkela #### 11:20 AM The Effect of Sn and Ca Addition on Mechanical Properties and Ignition Behavior of Magnesium Alloys Subjected to Direct Extrusion Process: *Yohan Go*¹; Jae Ok Choi²; Joung Sik Suh³; Su Mi Jo¹; Bong Sun You³; Young Min Kim³; ¹Korea University of Science and Technology; ²Kyungpook National University; ³Korea Institute of Materials Science #### Manufacturing-Related Failures — Casting Failures Program Organizers: Andrew Havics, PH2 LLC; Burak Akyuz, ATS, Inc.; Pierre Dupont, UMONS Faculté polytechnique de MONS (FPMs) Wednesday AM Room: A210 October 17, 2018 Location: Greater Columbus Convention Center Session Chairs: Aaron Slager, Bell Helicopter Textron; Charles White, IME Dept,Kettering University; Mark Hood, Hood Engineering; Erik Mueller, National Transportation Safety Board; Ryan Haase, Materials Evaluation And Engineering; Adam Boesenberg, Iowa State University #### 8:00 AM A Brief History of Time: From Sand Castings to Investment Castings (Diverse Failures of Assorted Hydrostatic Transmission Components): Jacob Auliff¹; #### 8:20 AM Invited Understanding Steel Casting Failures: David Poweleit¹; ¹SFSA #### 8-40 AM Factor Effecting the Prevention of a Failure: Charles White¹; ¹Kettering University #### 9:00 AM Invited Failure Analysis of Casting Failure in the Field: Michael Gathogo¹; ¹John Deere #### 9:20 AM Invited Examination of Two Developmental Gearbox Castings for Aircraft that Cracked Due to Internal Stresses: Aaron Slager¹; ¹Bell #### 9:40 AM Welding Complications Caused By Steel Casting Defects: Why Process Control and Product Quality Are Critical For
Customers: Alex Kinsey¹; Joseph Lemberg¹; Myra Dyer¹; Eric Guyer¹; ¹Exponent #### 10:00 AM Break #### 10:20 AM Cracking Failures of Copper Alloy Hot Rolled Plates: Phenomenological Approach and Root Cause Analysis: George Pantazopoulos¹; Athanasios Vazdirvanidis¹; Ioannis Contopoulos¹; ¹ELKEME - Hellenic Research Centre for Metals S.A. #### 10:40 AM Pusher Furnace Ingot Chair Failure Analysis: Ifeanyichukwu Nweke¹; ¹Skyvalue Aluminium Limited #### Materials Degradation in CO, Environments — Session I Program Organizers: Richard Oleksák, National Energy Technology Laboratory; Julie Tucker, Oregon State University; Matthew Walker, Sandia National Laboratories Wednesday AM Room: C162A/162B October 17, 2018 Location: Greater Columbus Convention Center Session Chairs: Julie Tucker, Oregon State University; Richard Oleksak, National Energy Technology Laboratory #### 8:30 AM Invited **Dynamic Corrosion Tests in CO₂ Rich Environment**: *Xijia Lu*¹; Mike McGroddy¹; Brock Forrest¹; David Freed¹; Kay John²; Jason Laumb²; Joshua Stanislowski²; John Hurley²; ¹8 Rivers Capital, LLC; ²Energy & Environmental Research Center #### 9:00 AM The Effect of Surface Finish during High-temperature Oxidation of Fe Alloys in CO₂: *Gordon Holcomb*¹; Richard Oleksak¹; Casey Carney¹; Ömer Dogan¹; ¹National Energy Technology Laboratory #### 9:20 AM Investigating the Electrical Resistance (ER) Technique for In-situ Structural Alloy Corrosion Monitoring within Supercritical CO₂ Power Cycles: *Matthew Walker*¹; ¹Sandia National Laboratories #### 9:40 AM Corrosion and Carburization Behavior of Fe- and Ni-base Alloys in S-CO₂ Environment at Two Temperatures: Sung Hwan Kim¹; Gokul Obulan Subramanian¹; Changheui Jang¹; ¹Korea Advanced Institute of Science & Technology #### 10:00 AM Break #### 10:20 AM Invited The Effect of Pressure and Impurities on Oxidation in Supercritical CO₂: Bruce Pint¹; James Keiser¹; ¹Oak Ridge National Laboratory #### 10:50 AM **High-temperature Oxidation of Steels and Nickel Alloys in CO₂ Containing Impurities**: *Richard Oleksak*¹; Joseph Tylczak¹; Gordon Holcomb¹; Ömer Dogan¹; ¹National Energy Technology Laboratory #### 11:10 AM The Effect of CO₂ Pressure on Chromia Scale Microstructure at 750°C: Kinga Unocic¹; Bruce Pint¹; ¹Oak Ridge National Laboratory ## Materials for Nuclear Applications and Extreme Environments — Processing and Behavior of Novel Fuels I Program Organizers: Cory Trivelpiece, Savannah River National Laboratory; Dev Chidambaram, University of Nevada, Reno; Raul Rebak, GE Global Research; Yutai Katoh, Oak Ridge National Laboratory; Jake Amoroso, Savannah River National Laboratory; Kevin Fox, Savannah River National Laboratory Wednesday AM Room: D183 October 17, 2018 Location: Greater Columbus Convention Center Session Chair: Jake Amoroso, Savannah River National Laboratory #### 8:00 AM Optimising Processing of Thorium Dioxide-silicon Carbides Composite Pellets Using Spark Plasma Sintering: Anil Prasad¹; Linu Malakkal²; Lukas Bichler³; Jerzy Szpunar²; ¹University of British Columbia; ²University of Saskatchewan; ³UBC #### 8:20 AM Invited Microstructure Evolution and Response Behavior of U3Si2 by Extensive Ion Beam Irradiation: Tiankai Yao¹; Bowen Gong¹; Lingfeng He²; Jason Harp²; Michael Tonks³; *Jie Lian*¹; ¹Rensselaer Polytechnic Institute; ²Idaho National Laboratory; ³University of Florida #### 9:00 AM The High-temperature Deformation Behavior of Depleted Uranium + 10 wt% Molybdenum: Cody Miller¹; Rodney McCabe¹; Daniel Coughlin¹; David Dombrowski¹; ¹Los Alamos National Laboratory #### 9:20 AM Invited New Insights Into the Fabrication and Properties of Enhanced UO₂ Fuel: Sarah Finkeldei¹; Jim Kiggans¹; Rodney Hunt¹; Kurt Terrani¹; ¹Oak Ridge National Laboratory #### 10:00 AM Break #### 10:20 AM Uranium Nitride Corrosion and High-temperature Irradiation Resistant Thermocouples: Lan Li¹; Ember Sikorski¹; Richard Skifton²; Pattrick Calderoni²; Boise State University; Idaho National Laboratory #### 10:40 AM Microstructure and Mechanical Properties of Silicon Carbide Layer in TRISOcoated Fuel Particle Coated by Fluidized Bed Chemical Vapor Deposition at Various Temperatures: Yeonku Kim¹; InJin Sah²; Eung-Seon Kim²; ¹Korea Atomic Energy Research Institute; ²KAERI #### 11:00 AM **Pulse Electric Current Joining of Oxide-dispersion-strengthened Alloys**: *Bai Cui*¹; Xueliang Yan¹; Fei Wang¹; Qin Zhou¹; Michael Nastasi¹; ¹University of Nebraska–Lincoln # MATSCITECH.ORG NATSCITECH.ORG MATERIALS SCIENCE & TECHNOLOGY #### Materials Property Understanding through Characterization — Metals II Program Organizers: Indrajit Dutta, Corning Incorporated; Nicholas Smith, Corning Incorporated Wednesday AM Room: B240/241 October 17, 2018 Location: Greater Columbus Convention Center Session Chairs: Indrajit Dutta, Corning Incorporated; Nicholas Smith, Corning Incorporated; Bryan Wheaton, Corning Incorporated #### 8:00 AM Invited Three-dimensional Statistical Analysis of Deformation Twinning in HCP Titanium: M Arul Kumar¹; Laurent Capolungo¹; Rodney McCabe¹; Carlos Tome¹; ¹Los Alamos National Laboratory #### 8:40 AM Bainite Transformation Kinetics of a Cr-Mo Medium Carbon Alloyed Steel: Jian Zhu¹; Xichen Sun¹; Gary Barber²; Xue Han²; Hao Qin¹; ¹FiatChrysler; ²Oakland University #### 9:00 AM Thermo-mechanical Processing of Carbon-doped FeNiMnAlCr High Entropy Alloys: Margaret Wu¹; Ian Baker¹; Zhiming Li²; ¹Dartmouth College; ²Max Planck Institute #### 9:20 AM #### Structure and Property Changes Occurring In **3rd Generation AHSS during Stamping**: *Daniel Branagan*¹; Craig Parsons¹; Tad Machrowicz¹; Jonathan Cischke¹; Andrew Frerichs¹; Brian Meacham¹; Sheng Cheng¹; Alla Sergueeva¹; ¹NanoSteel Company Inc #### 9:40 AM Effect of Time on Formation of Phases in the Slag during Tin Production: *Michel Kalenga Wa Kalenga*¹; David Mutombo¹; Willy Nheta¹; ¹University of Johannesburg #### 10:00 AM Break #### 10:20 AM Development and Characterisation of High Temperature Thermally Stable TiNi-based Shape Memory Alloys Using the Suspended Droplet Alloying Process: Sheng Li¹; Nicholas Adkins¹; Moataz Attallah¹; ¹University of Birmingham #### 10:40 AM Microstructural Behavior of Ti6Al4V during Room Temperature Deformation: Gajanan Kulkarni¹; ¹Bharat Forge Ltd. #### 11:00 AM Structure and Magnetic Properties Correlation in Nanocrystalline Permendur Alloy Powders: Vamsi Meka¹; Anuj Rathi¹; Kathem Bazzi¹; Chirantana Kuchimanchi¹; *Tanjore Jayaraman*¹; ¹University of Michigan-Dearborn #### 11:20 AM The Use of Nanoidentation for Low Carbon Steel Wire Characterization: Alexis Gallegos Perez¹; Octavio Vazquez-Gomez²; Hector Vergara-Hernandez¹; Bernardo Campillo¹; Juan Salgado-Lopez³; *Allan Arenas-Serrano*⁴; ¹Morelia Institute of Technology; ²National Council For Science and Technology; ³Centro de Ingenieria y Desarrollo Industrial; ⁴Bilstein Cold Rolled Steel lp ### Mechanochemical Synthesis and Reactions in Materials Science III — Session I Program Organizers: Antonio Fuentes, Cinvestav Unidad Saltillo; Laszlo Takacs, University of Maryland Baltimore County; Challapalli Suryanarayana, University of Central Florida; Huot Jacques, University Du Quebec A Trois Rivieres Wednesday AM Room: B131 October 17, 2018 Location: Greater Columbus Convention Center Session Chair: Challapalli Suryanarayana, University of Central Florida #### 8:00 AM Invited Mechanochemical Reactions of Oxides Followed by Multi-nuclear Magnetic Resonance Spectroscopy: Vladimir Sepelak¹; ¹Karlsruhe Institute of Technology #### 8:30 AM Mechanochemical Synthesis of Highly Fluorescent Carbon Quantum Dots: Richard Blair¹; ¹University of Central Florida #### 9:00 AN Mechanically Driven Phase Transformation in Sn Reinforced Al-Cu- Fe Quasicrystalline Matrix Nanocomposite: Nilay Mukhopadhyay¹; Yagnesh Shadangi¹; Joysurya Basu¹; Kausik Chattopadhyay¹; ¹Department of Metallurgical Engineering #### 9:30 AM Formation, Structure and Reactivity of Mechanically Activated Composites Based on Transition Metal Oxides: Andrey Streletskii¹; Igor Kolbanev¹; Olga Morozova¹; ¹Institute of Chemical Physics RAS #### 10:00 AM Break #### 10:20 AM **Mechanochemically Induced C-transformation**: *Olena Vozniuk*¹; Michael Felderhoff¹; Ferdi Schüth¹; ¹Max-Planck-Institut für Kohlenforschung #### 10:40 AM Ordering Processes in Oxides Obtained by Mechanical Milling: Revisiting the Existing Criteria to Predict the Formation and Stability of the Pyrochlore Structure: Antonio Fuentes¹; Sagrario Montemayor²; Miroslaw Maczka³; Ulises Amador⁴; ¹Cinvestav Unidad Saltillo; ²Centro de Investigación en Química Aplicada; ³Institute of Low Temperature and Structure Research; ⁴Universidad San Pablo CEU #### Microalloyed Steels — Microalloyed Steels II Program Organizers: Emmanuel De Moor, Colorado School of Mines; Steven Jansto, CBMM-North America Inc; Robert Glodowski, RJG Metallurgical LLC Wednesday AM Room: A225 October 17, 2018 Location: Greater Columbus Convention Center Session Chair: Pello Uranga, CEIT #### 8:00 AM Invited Canadian HSLA Steel Pipelines: History and Technology Developments: *Mohsen Mohammadijoo*¹; Laurie Collins²; Hani Henein¹; Douglas Ivey¹; ¹Univ of Alberta; ²EVRAZ Inc. NA #### 8:30 AM Microstructure and Toughness of Electric Resistance Welded API X70 Line Pipe: Neil Anderson¹; Yiyu Wang¹; Rangasayee Kannan¹; Atish Ray²; Muhammad Rashid²; Laurie Collins²; Leijun Li¹; ¹University of Alberta; ²Evraz Inc NA #### 8:50AM Modeling of the Effect of Run-out Table Cooling on the Microstructure of a Thick Walled X70 Skelp: *Hani Henein*¹; Antoine Van der Laan¹; Barry Wiskel¹; Doug Ivey¹; ¹University of Alberta #### 9:10 AM **Austenite Grain Growth in the HAZ of Line Pipe Steels**: *Nicolas Romualdi*¹; Matthias Militzer¹; Warren Poole¹; Laurie Collins²; Robert Lazor³; ¹The University of British Columbia; ²Evraz, Inc.; ³Transcanada PipeLines Ltd. #### 9:30 AM **Development of Hot Rolled Ultra High Strength Steel with Enhanced Mechanical Properties**: *Tihe Zhou*¹; David Overby¹; Peter Badgley¹; Chris
Martin-Root¹; Xiang Wang²; Shenglong Liang²; Hatem Zurob²; ¹Stelco Inc; ²McMaster University #### 9:50 AM Invited Niobium-containing Steel Metallurgy, Product Segments and Applications: Steven Jansto¹; ¹CBMM-North America Inc #### 10:10 AM Break #### 10:30 AM A Case Study on Niobium Substituting Vanadium in Long Products: Rafael Mesquita¹; Yan Wang²; Bryan Williams²; John Heerema³; Steve Jansto¹; Bhaskar Yalamanchili⁴; ¹CBMM North America; ²Gerdau Long Steel North America, Cartersville Mill; ³Gerdau Long Steel North America, Saint Paul Mill; ⁴Gerdau Long Steel North America, Tampa Office #### 10:50AM Effect of Mo And Ti Addition on the Recrystallization Kinetics during Subcritical Annealing and Tensile Property of HSLA Steel: Pranabananda Modak¹; Anish Karmakar²; Richa Gupta³; Debalay Chakrabarti¹; ¹Indian Institute of Technology Kharagpur; ²IISC Bangalore; ³Indian Institute of Technology Bombay #### 11:10 AM **Grain Size Distribution on a Forged Ni-Cr-Mo Low-alloy Steel**: *Maria Jose Quintana*¹; Matt Kenney²; Thomas Ales²; Peter Collins²; Roberto Gonzalez¹; ¹Panamerican Univ; ²Iowa State University ## Multiscale Modeling of Microstructure Deformation in Material Processing — Multiscale Modeling of Microstructure Deformation in Material Processing - Part I Program Organizers: Lukasz Madej, AGH University of Science and Technology; Krzysztof Muszka, AGH University of Science and Technology; Danuta Szeliga, AGH University of Science and Technology; Jaimie Tiley, Air Force Office of Scientific Research Wednesday AM Room: C170 October 17, 2018 Location: Greater Columbus Convention Center Session Chair: Jaimie Tiley, Air Force Office of Scientific Research (AFOSR/RTA) #### 8:00 AM Invited Intermetallic Precipitates Enhance Twinability and Strain-hardenability of fcc-based High Entropy Alloys: Deep Choudhuri¹; Bharat Gwalani¹; Stephane Gorsse²; Mageshwari Komarasamy¹; Srinivas Mantri¹; Srivilliputhur Srinivasan¹; Rajiv Mishra¹; Rajarshi Banerjee¹; ¹University of North Texas; ²ICMCB-CNRS; Bordeaux INP #### 8:40 AM **Development of Multi-component EAM Potential for Ni-based Superalloys**: *Muztoba Rabbani*¹; Sabila Kader Pinky¹; Ridwan Sakidja¹; ¹Missouri State University #### 9:00 AM Evolution of Twin Boundary–dislocation Structures in Chemical Vapor Deposited Nickel upon Annealing: *Hao Sun*¹; Zhirui Wang¹; Chandra Veer Singh¹; ¹University of Toronto #### 9:20 AM **Molecular Dynamics Study of Creep Deformation in Nickel-based Superalloys**: Sabila Kader Pinky¹; Muztoba Rabbani¹; Ridwan Sakidja¹; ¹Missouri State University #### 9:40 AM Texture Evolution in Materials with Layered Crystal Structures: Vamsi Krishna Vempati¹; Raghavan Srinivasan¹; ¹Wright State University #### 10:00 AM Break #### 10:20 AM Thermodynamics and Kinetics of Segregation in Ni-based Superalloys: *You Rao*¹; Maryam Ghazisaeidi¹; ¹Ohio State University #### 10:40 AM **Atomic Disordering during the Deformation of Ag Nanoparticles**: Tushar Chitrakar¹; Michael Becker¹; John Keto¹; *Desiderio Kovar*¹; ¹University of Texas at Austin #### 11:00 AM Developing Novel Microstructures Balancing between Strength and Ductility without Restoration Process in Commercial Al Alloys: *Khaled Adam*¹; David Field¹; ¹Washington State University #### 11:20 AM Molecular Dynamics Simulation of the Influence of Voids and Vacancies to the Mechanical Properties of Single Crystal Aluminum: Maosheng Li¹; ¹Institute of Applied Physics and Computational Mathematics ## MATERIALS SCIENCE & TECHNOLOGY Multiscale Simulation and Experimental Validation of Additive Manufacturing Technologies: A Status Update by Academia, Solution Providers and Industry on Its Intake, Market Opportunities Now and Going Forward — Multiscale Simulation in Additive Manufacturing and 3DSIM-ANSYS AM Capabilities Demonstration Program Organizers: Deepankar Pal, 3DSIM; Ankit Saharan, EOS; Anthony Rollett, Carnegie Mellon University; Adrian Sabau, Oak Ridge National Laboratory Wednesday AM Room: A221 October 17, 2018 Location: Greater Columbus Convention Center Session Chairs: Kyle Johnson, Sandia National Laboratories; Javed Akram, ANSYS #### 8:00 AM Invited Multiscale Modeling of Microstructure and Damage Evolution in the Performance of Additively Manufactured Parts: *Kyle Johnson*¹; Theron Rodgers¹; Joseph Bishop¹; Bradley Jared¹; Olivia Underwood¹; John Emery¹; Jonathan Madison¹; ¹Sandia National Laboratories #### 8:40 AM A Modeling Tool for Mechanical Performance Prediction of Additive Manufacturing Parts: Behrooz Jalalahmadi¹; ¹Sentient Science #### 9:00 AM Demonstration #### 9:20 AM Development of a Simulation Tool that Predicts the Structural Evolution of Parts Produced by Metal Additive Manufacturing: Pradeep Chalavadi¹; Deepankar Pal¹; Javed Akram¹; Brent Stucker¹; Dave Conover¹; ¹Ansys Inc #### 9:50 AM Effect of Processing Parameters on Melt Pool Size, Porosity, and Microstructure in Inconel 718 Fabricated by Laser Powder Bed Fusion: Huan Zhang¹; Jano Farah¹; Olivia Pratt¹; Pankaj Kumar¹; Javed Akram¹; Chong Teng¹; Deepankar Pal¹; Manoranjan Misra¹; Z. Fang¹; ¹University of Utah #### 10:10 AM Break 10:30 AM Demonstration ANSYS AM Software Capabilities ## Nanotechnology for Energy, Environment, Electronics, Healthcare and Industry — Nanotechnology for Energy, Environment, Electronics, Healthcare and Industry - Session II Program Organizers: Gary Pickrell, Virginia Tech; Navin Manjooran, Siemens AG Wednesday AM Room: D181 October 17, 2018 Location: Greater Columbus Convention Center Session Chairs: Gary Pickrell, Virginia Tech; Navin Manjooran, Siemens AG #### 8:00 AM Introductory Comments #### 8:40 AM Fast Electrochemical Sensing of Phosphorus in Environmental Water with RuO₂-Ta₂O₅ Nanocomposite Film: Yukari Shigeta¹; Kenji Kawaguchi¹; *Masatsugu Morimitsu*¹; ¹Doshisha University #### 9:00 AM Inhibition of Microbes Inducing Microbiologically-influenced Corrosion by Dialium Guineense Mediated Ag-nanoparticle Material: Joshua Okeniyi¹; Elizabeth Okeniyi¹; ¹Covenant University #### 9.20 AM Freestanding 2D Bismuth for in Vivo Bioimaging and Cancer Therapy: Yixiu Wang!; Jinghui Liu¹; Qian Zhang¹; Xiaoqi Liu¹; Wenzhuo Wu¹; ¹Purdue University #### 9.40 AM LiCoNiFeO Nanocrystalline Cathode Particles for Lithium Ion Batteries-Prepared by Ultrasonic Spray Pyrolysis (USP) Method: Cigdem Toparlii¹; Burcak Ebin²; Sebahattin Gurmen³; ¹Massachusetts Institute of Technology; ²Chalmers University of Technology; ³Istanbul Technical University #### 10:00 AM Break #### 10:20 AM **Liquid-solid Heterostructured Triboelectric Nanogenerator for Self-powered Wearable Smart Skin**: *Shengjie Gao*¹; Wenzhuo Wu²; ¹Purdue University; ²School of Industrial Engineering, Purdue University #### 10:40 AN Intrinsic Electrostatics of Platinum Nanoparticles in Solvated Environments: James Goff¹; ¹Pennsylvania State University 11:00 AM Concluding Comments #### New Advances and Innovations in Corrosion of Refractory Ceramics — International Symposium on New Advances and Innovation in Corrosion of Refractory Ceramics I Program Organizers: James Hemrick, Reno Refractories, Inc.; William Headrick, Jr, Missouri Refractories; Michel Rigaud, École Polytechnique Wednesday AM Room: A120 October 17, 2018 Location: Greater Columbus Convention Center Session Chairs: James Hemrick, RENO Refractories Inc; William Headrick, Missouri Refractories; Michel Rigaud, École Polytechnique de Montréal 8:00 AM Introductory Comments: Dr. James Hemrick #### 8:05 AM Invited The Glass Formation Boundary in Silicate Systems: Potential to Predict Corrosion Products: William Carty¹; Hyojin Lee²; ¹Alfred University; ²Alfred Univ #### 8:45 AM Corrosion of ZrO₂-C Refractories for Submerged Entry Nozzle on the Interface between Molten Slag and Molten Iron Containing Different Amount of Carbon: Goto Kiyoshi; *Shigefumi Matsumoto*¹; Tamotsu Wakita¹; Katsumi Morikawa¹; Hatsuo Taira¹; Jouki Yoshitomi¹; ¹Krosaki Harima Corporation #### 9:05 AM **Protection Mechanism of CMA-additive in MgO-C Ladle Bricks**: *Scot Graddick*¹; Christoph Wöhrmeyer¹; Chris Parr¹; Josh Pelletier¹; Christos Aneziris²; Patrick Gehre²; ¹Imerys Aluminates; ²TU Bergakademie Freiberg #### 9:25 AM Phosphates: Changes Occurring in Refractories Caused by Sintering and Use: *James Bennett*¹; Kyei-Sing Kwong¹; Anna Nakano²; Jinichiro Nakano²; Hugh Thomas¹; ¹National Energy Technology Laboratory; ²AECOM #### 9:45 AM Introductory Comments Dr. William Headrick 10:05 AM Break 10:25 AM Corrosion of Refractories in Gaseous Environments: Role of Binders and Additives: Manoj Mahapatra¹; ¹University of Alabama at Birmingham 10:45 AM Effect of Clays Minerals Contained into Copper Sulphide Concentrates on Refractory Brick Wear during the Smelting Stage: *Julio Ossandón*¹; Leandro Voisin¹; Camila Pizarro¹; ¹Universidad de Chile 11:05 AM Concluding Comments: Dr. Michel Rigaud #### Next Generation Biomaterials — Biomaterials IV *Program Organizers:* Roger Narayan, University of North Carolina; Vipul Davé, Johnson & Johnson; Mohan Edirisinghe, University College of London; Sanjiv Lalwani, Lynntech, Inc. Wednesday AM Room: D182 October 17, 2018 Location: Greater Columbus Convention Center Session Chairs: Biqiong Chen, Queen's University Belfast; Akiyoshi Osaka, Henan University of Science & Technology #### 8:00 AM Invited Bioactive Polymer Nanocomposite Hydrogels for Healthcare Applications: Bigiong Chen¹; Sungkwon Yoon¹; Queen's University Belfast #### 8:20 AM Investigation of Nanomechanical Properties of Dentin-bioceramic Interface: Satish Alapati¹; William Brantley²; Masahiro Iijima³; Shuichi Ito³; Takeshi Muguruma³; Takashi Saito³; Itaru Mizoguchi³; ¹University of Illinois at Chicago; ²Ohio State University; ³Health Sciences University of Hokkaido #### 8:40 AM Design, fabrication and characterization of thin film biodegradable batteries with prospective applications for transient bioelectronics: *M.Mudasser Khan*¹; Waseem Haider¹; ¹Central Michigan University #### 9:00 AM Invited Honeycomb Models for Cancellous Bone:
FEM Simulation: Akiyoshi Osaka¹; Xuewen Chen¹; Guangxin Wang¹; Mitsugu Todo²; Jiaqi Liu¹; Jiye Wang¹; ¹Henan University Science & Technology; ²Kyushu University #### 9:20 AM In-vivo and Ex –vivo Studies of Biosynthesized Magnetic Nanoparticles for Specific Targeting of Triple Negative Breast Cancer: *John Obayemi*¹; Jingjie Hu²; Vanessa Uzonwanne³; Ali Salifu³; Karen Malatesta²; Derek Adler⁴; Edward Yurkow⁴; Winston Soboyejo³; ¹Worcester Polytechnic Institute; ²Princeton University; ³Wpi; ⁴Rutgers University #### 9:40 AM **Discovery of Biomaterials by Simulation and Experiment: Molecular Recognition, Assembly, Applications**: *Hendrik Heinz*¹; ¹University of Colorado Boulder #### 10:00 AM Break #### 10:20 AM Manufacturing Of Nanostructured Mg-Zn-Zr Wrought Sheets for Potential Application as a Biomaterial: Peter Morcos¹; Nancy Hassanein¹; Asma Amleha¹; Hanadi Salem¹; ¹American University in Cairo #### 10:40 AM Micro-XRD Investigation of Bioactive Precipitates in Dental Bioceramics: Satish Alapati¹; Masahiro Iijima²; William Brantley³; Shuichi Ito²; Takeshi Muguruma²; Takashi Saito²; Itaru Mizoguchi²; ¹University of Illinois at Chicago; ²Health Sciences University of Hokkaido; ³Ohio State University #### 11.00 AM Nanopatterned Bulk Metallic Glass Biosensors: Emily Kinser¹; ¹IBM #### 11:20 AM Effect of Catalysts Used in Synthesis of Biodegradable Poly(p-dioxanone) on Its Thermal Degradation Behaviors: *Xiaoyang Li*¹; Peng Yang¹; ¹Institute of Electronic Engineering, China Academy of Engineering Physics #### 11:40 AM Active Multi-particle Microrheology and the Importance of Bead Separation Distance: David Gutschick¹; Tyler Heisler-Taylor¹; David Yeung¹; Gunjan Agarwal¹; Heather Powell¹; Peter Anderson¹; Gregory Lafyatis¹; ¹The Ohio State University ## Phase Transformations in Ceramics: Science and Applications — Phase Transformations in Ceramics: Science and Applications - Crystallography Program Organizers: Waltraud Kriven, University of Illinois at Urbana-Champaign; Pankaj Sarin, Oklahoma State University; Yu Zhong, Worcester Polytechnic Institute Wednesday AM Room: A124 October 17, 2018 Location: Greater Columbus Convention Center Session Chair: Pankaj Sarin, Oklahoma State University #### 8:00 AM Invited In-situ Characterization of Solid-state Materials Using Synchrotron X-ray Diffraction Methods: Sanjit Ghose¹; Eric Dooryhee¹; ¹Brookhaven National Laboratory #### 8:30 AM Invited In-situ Phase Diagram Determination of the HfO2-Ta2O5 Binary Up to 3000 °C: Scott Mccormack¹; Richard Weber²; Denys Kapush³; Alexandra Navrotsky³; Waltraud Kriven⁴; ¹University of Illinois Urbana-Champaign, ²Materials Development Inc; ³University of California Davis; ⁴University of Illinois Urbana-Champaign #### 9:00 AM Invited Rare Earth Disilicate Phase Transformations: Randall Hay¹; Emmanuel Boakye¹; Pavel Mogilevsky¹; Thomas Key¹; ¹USAF #### 9:30 AM Invited Topotactic Motif and Orientation Relation Extraction for Phase Transformations from In-situ X-ray Powder Diffraction: Scott Mccormack¹; Waltraud Kriven¹; ¹University of Illinois Urbana-Champaign #### $10:00\,AM\ Break$ #### 10:20 AM The Effect of Mg²⁺ Doping on the Phase Transformation and Thermal Expansion Properties of DyNbO₄: Dan Lowry¹; Pankaj Sarin¹; ¹Oklahoma State University #### 10:40 AM Tailoring the RENbO₄ Phase Transformation through Zr⁴⁺ Co-Substitution: Dan Lowry¹; Pankaj Sarin¹; ¹Oklahoma State University ## MS&T18 #### MATERIALS SCIENCE & TECHNOLOGY #### 11:00 AM Thermal Expansion and Phase Transformation Kinetics in the Lanthanide Dititanate System: Benjamin Hulbert¹; ¹Materials Science Dept. at the University of Illinois #### 11:20 AM Ferroelectric e-WO3: Synthesis and Application: Owen Abe¹; Gagan Jodhani¹; Perena Gouma¹; ¹The Ohio State University #### 11:40 AM **Structurally Stable, High-entropy, Lanthanide Sesquioxides**: *Kuo-Pin Tseng*¹; Waltraud Kriven¹; ¹University of Illinois Urbana Champaign ### PSDK XIII: Phase Stability and Diffusion Kinetics – Computational Tools and Diffusion Program Organizers: Zi-Kui Liu, Pennsylvania State University; Michael Gao, National Energy Technology Laboratory; Hans Seifert, Karlsruhe Institute of Technology; Wei Xiong, University of Pittsburgh; Raymundo Arroyave, Texas A & M University Wednesday AM Room: A213 October 17, 2018 Location: Greater Columbus Convention Center Session Chairs: Raymundo Arroyave, Texas A & M University; James Saal #### 8:00 AM Invited **Developing the Next Generation of Tools for Materials by Design**®: *James Saal*¹; Jeff Doak¹; Abhinav Saboo¹; Ricardo Komai¹; Greg Olson¹; ¹QuesTek Innovations LLC #### 8:30 AM **Towards the Automated Development of a Cr-Fe-Ni-Ti-V CALPHAD Database**: *Brandon Bocklund*¹; Richard Otis²; Zi-Kui Liu¹; ¹Pennsylvania State University; ²NASA Jet Propulsion Lab #### 8:50 AM Diffusion Kerf Couples for Synthesis and Screening of Non-equimolar High Entropy Alloys: $Nagraj\ Kulkarni;$ $^{-1}$ #### 9:10 AM Simultaneous Measurement of Tracer and Interdiffusion Coefficients via Isotope Free Diffusion Couple Experiments for Cu-Ni and Co-Cr-Fe-Ni Alloys: *Abhishek Mehta*¹; Esin Schulz¹; Irina Belova²; Graeme Murch²; Yongho Sohn³; ¹Univ of Central Florida; ²The University of Newcastle; ³University of Central Florida #### 9:30 AM A First-principles Investigation of Various Vibrational Entropy Contribution Methods on Self-diffusion Coefficient Calculations in FCC Metals: John O'Connell¹; Chelsey Hargather¹; Harrison Lee¹; New Mexio Institute of Mining & Technology #### 9:50 AM **Self-diffusion of Ti Interstitial Based Point Defects and Complexes in TiC**: *Weiwei Sun*¹; Hossein Ehteshami²; Paul Kent³; Pavel Korzhavyi²; ¹Oak Ridge National Laboratory; ²KTH-Royal Institute of Technology; ³Oak Ridge National Laboratory #### 10:10 AM Break #### 10:30 AM **Diffusion of Co-Cr, Co-Ta, and Co-Cr-Ta**: *Kil-Won Moon*¹; Maureen Williams¹; Greta Lindwall²; Carelyn Campbell¹; ¹National Institute of Standards & Tech; ²KTH #### 10:50 AM First Principles Calculation of Self-diffusion in Unstable bcc Titanium: Zhangqi Chen¹; Yaxian Wang¹; Wolfgang Windl¹; Ji-Cheng Zhao¹; Ohio State University #### 11:10 AV Atomic Mobility Assessment of the Mg-Al-Li System: Wei Zhong¹; Ji-Cheng Zhao¹; ¹Ohio State University #### Rare Earth Metals and Critical Materials: Synthesis, Processing, Production, Recent Advances — Critical Materials Resources and Regulatory Issues Program Organizers: Yellapu Murty, MC Technologies LLC; Jack Lifton, Jack Lifton, LLC; Eric Klier, U. S. Army Research Laboratory; Michael McKittrick, U.S. Department of Energy; Ian London, Avalon Rare Metals Inc Wednesday AM Room: A224 October 17, 2018 Location: Greater Columbus Convention Center Session Chairs: Mary Anne Alvin, National Energy Tech Lab; Yellapu Murty, MC Technologies #### 8:00 AM Invited **DOE's Critical Materials Institute Investment**: David Hardy¹; ¹DOE EERE AMO #### 8:40 AM Invited Alternative Scenario for Rare Earth Self Sufficiency: James Kennedy¹, ¹Three Consulting #### 9:20 AM Agent-based Modeling of Supply Disruptions in the Global Rare Earths Market: *Matthew Riddle*¹; Anna Jacobson²; Elisa Alonso³; Diane Graziano¹; ¹Argonne National Laboratory; ²Defense Logistics Agency, Strategic Materials; ³Oak Ridge National Laboratory #### 9:50 AM Break #### 10:10 AM Invited **Building and Utilizing a Thermochemical Databank of Rare Earth Solids**: *Paul Kim*¹; Daniel Kopp¹; Zhichao Hu¹; Gaurav Das²; Lili Wu³; Paul Antonick¹; Ali Eslamimanesh²; Andrzej Anderko²; Alexandra Navrotsky³; Richard Riman¹; ¹Rutgers University; ²OLI Systems, Inc.; ³University of California Davis #### 10:50 AM Creating a Circular Economy for Hard Disk Drives: A Shared Vision: Carol Handwerker¹; William Olson; Mark Schaefer²; ¹Purdue University; ²iNEMI ## Semiconductor Heterostructures: Theory, Growth, Characterization, and Device Applications — Semiconductor Heterostructures I Program Organizers: John Ayers, University of Connecticut; Ganesh Balakrishnan, University of New Mexico; Phil Ahrenkiel, South Dakota School of Mines & Technology Wednesday AM Room: B132 October 17, 2018 Location: Greater Columbus Convention Center Session Chair: Phil Ahrenkiel, South Dakota School of Mines and Technology #### 8:00 AM Introductory Comments #### 8.10 AM **Atomic-scale Digital Alloying for III-Sb Metamorphic Buffers**: *Tyler Grassman*¹; Vinita Dahiya²; Julia Deitz²; Sanjay Krishna²; ¹Ohio State University; ²Ohio State Univ #### 8:30 AM Heterostructures to Limit Dislocation Propagation in GaAs on Flexible-Ge/metal Substrates: *Phil Ahrenkiel*¹; Xavier Pasala¹; Nathan Smaglik¹; Nikhil Pokharel¹; Monika Rathi¹; Pavel Dutta¹; Venkat Selvaminickam¹; ¹South Dakota School of Mines & Technology #### 8:50 AM Modeling Charge Transport through Metal/Oxide Heterostructures: Maytal Caspary Toroker¹; ¹Technion - Israel Institute of Technology #### 9:10 AM TEM and EDS Based Investigation of Failure Mechanism in III-Sb Semiconductor Diodes: Sadhvikas Addamane¹; Emma Renteria¹; Ahmad Mansoori¹; Kevin Reilly¹; Ganesh Balakrishnan¹; ¹University Of New Mexico #### 9:30 AM Persistent Photoconductivity and Defect Characterization in GaN/AlGaN Heterostructures Using Transient Hall Effect Measurements: David Daughton¹; BoKuai Lai¹; Jeffery Lindemuth¹; ¹Lake Shore Cryotronics #### 9:50 AM Strain Effect on Electrical and Thermal Transport Properties of 2D Transition Metal Dichalcogenide Heterostructures: Lan Li¹; ¹Boise State University #### 10:10 AM Break #### 10:30 AM The Properties of Sputter-deposited Gallium Oxide Thin Films: *Tom Oder*¹; Sundar Isukapati¹; ¹Youngstown State University #### 10:50 AM **Theoretical Optimization of Graded Semiconductor Buffer Layers**: *Tedi Kujofsa*¹; Minglei Cai¹; Xinkan Chen¹; Md Tanvirul Islam¹; John Ayers; ¹University Of Connecticut ## Sintering and Related Powder Processing Science and Technologies — Field Assisted Sintering II: Applications Program Organizers: Ricardo Castro, University of California, Davis; Zachary Cordero, Rice University;
Eugene Olevsky, San Diego State University; Wolfgang Rheinheimer, Purdue University Wednesday AM Room: B142/143 October 17, 2018 Location: Greater Columbus Convention Center Session Chair: Wolfgang Rheinheimer, Purdue University #### 8:00 AN Investigation the Effects of Mo-Si-B and Mo-Si-Al Coatings on Oxidation Behavior of TZM Alloy Prepared by Spark Plasma Sintering: Baris Yavas¹; Gultekin Goller¹; ¹Istanbul Technical University #### 8:20 AN Preparation and Characterization of B4C- ZrB2 Composites by Reactive Spark Plasma Sintering: Leyla Yanmaz¹; Gultekin Goller¹; Onuralp Yucel¹; Filiz Sahin¹; ¹Istanbul Technical University #### 8:40 AN Production and Characterization of Spark Plasma Sintered Hybrid GNT Reinforced ZrC-TiC composites: *Burak Cagri Ocak*¹; Baris Yavas¹; Ipek Akin¹; Onuralp Yucel¹; Filiz Sahin¹; Gultekin Goller¹; ¹Istanbul Technical University #### 9:00 AM Production and Characterization of TZM Based TiC or ZrC Reinforced Composites Prepared by Spark Plasma Sintering: Cansinem Tüzemen¹; Baris Yavas¹; Ipek Akin¹; Sebahattin Gurmen¹; Onuralp Yucel¹; Filiz Sahin¹; Gultekin Goller¹; ¹Istanbul Technical University #### 9:20 AM Spark Plasma Sintering of High-energy Ball Milled Mg-Al Alloys: Mohammad Umar Farooq Khan¹; Taban Larimian²; Tushar Borkar²; Rajeev Gupta¹; ¹University of Akron; ²Cleveland State University #### 9:40 AM **Spark Plasma Sintering of Pure Cadmium**: *Somi Doja*¹; Anil Prasad¹; Lukas Bichler¹; ¹University of British Columbia #### 10:00 AM Break #### 10-20 AM **Spark Plasma Sintering of Soft Magnetic Materials**: *Taban Larimian*¹; Tushar Borkar¹; ¹Cleveland State University #### 10:40 AM Spark Plasma Sintering Behaviour of BaTiO3 Ceramics under Different Atmospheres: Demet Aydogmus¹; Gultekin Goller¹; Onuralp Yucel¹; Filiz Sahin¹; ¹Istanbul Technical University #### 11:00 AM Densification and Microstructure of Fe-Cr-Mo-B-C Alloy Fabricated by Spark Plasma Sintering: Ahmad Sorour¹; Adedayo Adeniyi¹; Mohamed Hussein¹; Choongnyun Kim²; Nasser Al-Aqeeli¹; ¹King Fahd University of Petroleum & Minerals; ²LiquidMetal Coating # MATSCITECH.ORG MATERIALS SCIENCE & TECHNOLOGY ### Small-scale Properties of Materials and Length-scale Phenomena — Stress/Strain Behavior Program Organizers: Meysam Haghshenas, University of North Dakota; Charles Lu, University of Kentucky; Finn Giuliani, Imperial College London Wednesday AM Room: A121 October 17, 2018 Location: Greater Columbus Convention Center Session Chairs: David Bahr, Purdue University; Charles Lu, University of Kentucky 8:00 AM Invited Critical Film Thicknesses of Ductile-brittle Multilayers for Optimized Electromechanical Behavior; Megan Cordill¹; ¹Erich Schmid Institute 8:20 AM Invited The Mechanical Properties of Small-scale 122 Compounds: Christopher Weinberger¹; Ian Bakst¹; John Sypek²; Keith Dusoe²; Keara Frawley²; Seok-Woo Lee²; Paul Canfield³; ¹Colorado State University; ²University of Connecticut; ³Iowa State University #### 8:40 AM Invited Small-scale Testing in Harsh Environments: A New Insight into Hydrogen Embrittlement: *Afrooz Barnoush*¹; Yun Deng²; Tarlan Hajilou²; Bjørn Rune Rogne²; Dong Wang²; Xu Lu²; ¹Norwegian University of Science and Technology; ²Ntnu #### 9:00 AM Invited Nanomechanical Mapping for Measuring Individual Phases: *Douglas Stauffer*¹; Eric Hintsala¹; Ude Hangen¹; ¹Bruker Nano Surfaces #### 9:20 AM Invited **Novel Mechanical Properties of Core-shell Nanostructures**: Robert Fleming¹; Jason Steck¹; *Min Zou*¹; ¹University of Arkansas #### 9:40 AM Mechanical Characterization and Determining Flow Behavior of Dual Phase Steels Using Nanoindentation: Raheleh Mohammad Rahimi¹; David Bahr¹; ¹Purdue University #### 10:00 AM Break #### 10:20 AM Invited **Nickel Nanoparticles Set a New Record of Strength**: Amit Sharma¹; James Hickman²; Nimrod Gazit¹; *Eugen Rabkin*¹; Yuri Mishin²; ¹Technion; ²George Mason University #### 10:40 AM Invited Understanding the Mechanical Behavior of Electrode Materials for Improving the Performance and Durability of Lithium ion batteries: Yang-Tse Cheng¹; ¹University of Kentucky #### 11:00 AM Invited Small-scale Mechanics of Super-strong Silver Nanostructures: Frederic Sansoz¹; ¹The University of Vermont #### 11:20 AM Invited Insights from Continuum Dislocation Dynamics on the Micro-mechanics of Polycrystals from Yielding to Large Deformation: Hesam Askari¹; ¹University of Rochester #### 11:40 AM The Design of Core-shell Structure Carbides in Ultrahigh Strength Steels: Wei Sheng¹; Zurui Zhang²; Ye Tian²; Wei Xiong³; Gregory Olson¹; ¹Northwestern University; ²Beijing Institute of Aeronautical Materials; ³University of Pittsburgh #### Solid State Processing — Solid State Processing Program Organizers: Richard Fonda, Naval Research Laboratory; Simon Larose, National Research Council Canada Wednesday AM Room: B140/141 October 17, 2018 Location: Greater Columbus Convention Center Session Chair: Simon Larose, National Research Council Canada #### 8:00 AM Solid State Processing of Ultra-high Conductivity Alloys via Hot Extrusion Alloying: Keerti Kappagantula¹; Frank Kraft¹; ¹Ohio University #### 8:20 AN Effect of Spark-plasma Sintering Parameters on the Hardness and Porosity of High-energy Ball Milled Al-20 at.% V alloys: Javier Esquivel¹; Taban Larimian²; Tushar Borkar²; Rajeev Gupta¹; ¹The University of Akron; ²Cleveland State University #### 8:40 AM Analysis of Aluminum Alloy Feedstock Powder used in Solid State Processes: Caitlin Walde¹; Danielle Cote¹; Richard Sisson¹; Victor Champagne²; ¹Worcester Polytechnic Institute; ²US Army Research Laboratory #### 9:00 AM Microstructure Evolution during Solid-state Ambient Condition Metal Additive Manufacturing: Anagh Deshpande¹; Keng Hsu¹; ¹University of Louisville #### 9:20 AM Evaluation of Ultrasonic Additive Manufacturing Part Tolerances via X-ray Computed Tomography: *Jennifer Sietins*¹; Adam Hehr²; Justin Wenning²; Mark Norfolk²; ¹Army Research Laboratory; ²Fabrisonic #### 9:40 AM Effects of Squeeze Factor on the Microstructure and Surface Finish of Incrementally Formed Parts: Maya Nath¹; Ankush Bansal¹; Jaekwang Shin¹; Randy Cheng¹; Mihaela Banu¹; Alan Taub¹; ¹University of Michigan #### 10:00 AM Break #### 10:20 AM Introducing Gradient Structure for Improving Mechanical Properties of TRC-AZ31: Maryam Jamalian¹; David Field¹; ¹Washington State University #### 10:40 AM Surface Roughness Study of Al6061 Alloy by Burnishing: Mohammed Tashkandi¹; ¹Northern Border University ## Surface Protection and Spray Technology for Enhanced Materials Performance: Science, Technology, and Application — Environmental and Thermal Barrier Coatings Program Organizers: Kang Lee, NASA Glenn Research Center; Jun Song, McGill University; Yutaka Kagawa, The University of Tokyo; Dongming Zhu, NASA Glenn Research Center; Rodney Trice, Purdue University; Daniel Mumm, University of California, Irvine; Mitchell Dorfman, Oerlikon Metco (US) Inc.; Christian Moreau, Concordia University; Emmanuel Boakye, UES Inc.; Edward Gorzkowski, Naval Research Laboratory; Scooter Johnson, Naval Research Laboratory; Richard Chromik, McGill University; Stephen Yue, McGill University Wednesday AM Room: B234 October 17, 2018 Location: Greater Columbus Convention Center Session Chairs: Kang Lee, NASA Glenn Research Center; Dongming Zhu, NASA Glenn Research Center #### 8:00 AM Invited Environmental Durability of Plasma Spray-Physical Vapor Deposition (PS-PVD) Coatings on Si-based Ceramics: *Bryan Harder*¹; Kang Lee¹; Sreeramesh Kalluri²; ¹NASA Glenn Research Center; ²Ohio Aerospace Institute #### 8:40 AM **EB-PVD T/EBCs for Oxide Fiber Ceramic Composites**: *Thomas Drtina*¹; Sarah Miller¹; Stefan Lampenscherf²; Frank Zok¹; Carlos Levi¹; ¹Uiversity of California, Santa Barbara; ²Siemens Corporate Technology #### 9:00 AM High-Temperature Interactions between Environmental Barrier Coating (EBC) Ceramics and Calcium-magnesium-alumino-silicate (CMAS) Glass: Laura Turcer¹; Amanda Krause¹; Lin Zhang¹; Hector Garces¹; Nitin Padture¹; ¹Brown University #### 9:20 AM Compositional and Microstructural Effects in the Protection of SiC Components under Water Vapor Conditions: Benjamin Kowalski¹; Bryan Harder¹; Kang Lee¹; Nathan Jacobson¹; ¹NASA Glenn Research Center #### 9:40 AM A Predictive Computational Route to Quantitatively Evaluate the Effect of Doping on Reducing Thermal Conductivity of Ceramic Oxides: *Jun Song*¹; Guoqiang Lan¹; ¹McGill University #### 10:00 AM A Custom Built Framework for Thermal Modeling of Plasma Spray: *Tom Stockman*¹; Kendall Hollis²; John Carpenter²; Judith Schneider¹; ¹University of Alabama in Huntsville; ²Los Alamos National Laboratory ## Synergy in Multiscale Modeling and Experiments to Resolve Complex Disordered Solids — Session II: Experimentally-driven Synergy Program Organizers: Ridwan Sakidja, Missouri State University; Jinwoo Hwang, Ohio State University; Jincheng Du, University of North Texas; Matthew Kramer, Iowa State University; David Drabold, Ohio University Wednesday AM Room: B246 October 17, 2018 Location: Greater Columbus Convention Center Session Chairs: Jinwoo Hwang, The Ohio State University; Matthew Kramer, Ames National Laboratory #### 8:00 AM Invited Local Structure Evolution of Amorphous Chalcogel Electrodes: Vicky Doan-Nguyen¹; ¹The Ohio State University #### 8:40 AN Quantification of Correlated Disorder in Alloy Systems Through Complex PDF Modelling: Robert Koch¹; Shubham Pandey²; Guangfang Li³; Hui Wang³; Simon Phillpot²; Scott Misture¹; ¹Alfred University; ²University of Florida; ³University of South Carolina #### 9:10 AM Atomistic Modelling of Amorphous Boron Carbide Materials (B4C): Rajan Khadka¹; Nirmal Baishnab¹; Ridwan Sakidja¹; ¹Missouri State University #### 9:30 AM Multiscale Modeling of the Elasto-plastic Behavior of Architectured and Nanostructured Cu-Nb Composite Wires and Comparison with Neutron Diffraction Experiments: Tang Gu¹; David McDowell²; ¹Georgia Tech; ²Georgia tech #### 10:00 AM Break #### 10:20 AM Invited Nanoscale Origins of
Structure-property Correlation in Metallic Glasses: Combining Kinetic Monte Carlo with 4D STEM: *Pengyang Zhao*¹; Ju Li²; Jinwoo Hwang¹; Yunzhi Wang¹; 'The Ohio State University; ²MIT #### 11:00 AM Direct Mapping of Structural Heterogeneity in Amorphous Hydrogenated Boron Carbide Thin Films Using Four-dimensional Scanning Transmission Electron Microscopy: Soohyun Im¹; Menglin Zhu¹; Ridwan Sakidja²; Nathan Oyler³; Michelle Paquette³; Paul Rulis³; *Jinwoo Hwang*¹; ¹Ohio State University; ²Missouri State University; ³University of Missouri Kansas City #### 11:30 AM On the Connection between the Electronic Structure and the Thermomechanical Properties of Zr-based Bulk Metallic Glass: Ridwan Sakidja¹, Batu Hunca²; Chamila Dharmawardhana³, Wai-Yim Ching⁴; ¹Missouri State Univ; ²Trakya University; ³Georgetown University; ⁴University of Missouri- Kansas City # MATSCITECH.ORG STATEMENT OF THE STATEME ### Thermal Protection Materials and Systems — TPS Design and Materials Characterizations Program Organizers: Jeff DeMange, University of Toledo; Sylvia Johnson, NASA Ames Research Center; Thomas Reimer, DLR; Wolfgang P.P. Fischer, AIRBUS D&S Wednesday AM Room: C161A/161B October 17, 2018 Location: Greater Columbus Convention Center Session Chairs: Jeff DeMange, University of Toledo; Thomas Reimer, German Aerospace Center DLR; Arturs Jasjukevics, ArianeGroup; Frances Hurwitz, NASA Glenn Research Center #### 8:00 AM Invited Investigation of Spray-on Layers of Cork and Aerogels as External Thermal Protection Systems: *Thomas Reimer*¹; Christian Zuber¹; Barbara Milow¹; ¹DLR #### 8.30 AM Ariane 6 Upper Liquid Propulsion Module Thermal Protection Hardware Development: Arturs Jasjukevics¹; ¹ArianeGroup #### 8:50 AM **Intumescent Passive Fire Protection Coatings**: *Hong Li*¹; Jeffrey Davis¹; Arif Mubarok¹; ¹PPG Industries #### 9:10 AM Composite Materials Development and Testing Utilizing Ultrasonic NDE Techniques for High Temperature Applications: *Ming Chen*¹; Derek King²; Lingchuan Li³; Ray Ko³; ¹Air Force Research Laboratory; ²UES; ³UDRI #### 9:30 AM Microstructure-sensitive Crack Formation in Continuous Fiber Reinforced Ceramic Matrix Composites: Reece Hunt¹; Dipen Patel²; Jennifer Pierce³; Daniel Rapking³; Michael Braginsky³; Triplicane Parthasarathy²; Craig Przybyla⁴; ¹Wright State University; ²UES, Inc.; ³University of Dayton Research Institute; ⁴Air Force Research Laboratory #### 9:50 AM Anisotropic Heat Conduction in Flexible 2-D Woven Ceramic Fibers for Extreme Atmospheric Entry Environments: Rodrigo Penide-Fernandez¹; Frederic Sansoz¹; ¹The University of Vermont #### 10:10 AM Break #### 10:30 AM Oxidation Kinetics of High Entropy Carbide and Boride UHTCs: Lavina Backman¹; Elizabeth Opila¹; ¹University of Virginia #### 10:50 AM Sensible Heat Capacity of Phenolic Resin: Sacha Wason¹; Tom Ashbee¹; Stephen Till¹; David Payne¹; ¹Dstl #### 11:10 AM **Heat of Pyrolysis of Phenolic Resin**: Sacha Wason¹; Matthew Parry¹; David Payne¹; ¹Dstl #### Ultra High Performance Metallic Systems for Aerospace, Defense, and Automotive Applications — High Entropy Alloys Program Organizers: Ali Yousefiani, Boeing Research And Technology; Troy Topping, California State University, Sacramento; Robert Dillon, Jet Propulsion Laboratory; Linruo Zhao, NRC Aerospace Wednesday AM Room: B235 October 17, 2018 Location: Greater Columbus Convention Center Session Chair: Ali Yousefiani, Boeing Research & Technology #### 8:00 AM Keynote **Development and Exploration of Refractory High Entropy Alloys: A Review**: Oleg Senkov¹; *Daniel Miracle*¹; Jean-Phillipe Couzinie²; Kevin Chaput¹; ¹Air Force Research Laboratory; ²Universite Paris Est ICMPE #### 8:40 AN An Integrated Computational Materials Engineering (ICME) Design and Scale-up of High-entropy Alloys (HEAs) for Turbine Alloy Replacement: *Ricardo Komai*¹; David Smathers²; Marie Thomas¹; James Saal¹; François Dary²; ¹Ques Tek Innovations LLC; ²H.C. Starck #### 9:00 AM The Microstructure and Mechanical Properties of High Strength, Ductile, Eutectic FeNiMnAl(Cr,Ti) High-entropy Alloys: Ian Baker¹; Zhangwei Wang¹; Margaret Wu¹; Fanling Meng¹; ¹Dartmouth College #### 9:20 AM **First-principles Methods of Calculating Stacking Fault Energies in Refractory BCC High-entropy Alloys**: *Joshua Strother*¹; Alexandra Scheer¹; Chelsey Hargather¹; ¹New Mexico Institute of Mining & Technology #### 9:40 AM Invited Processing, Microstructure and Mechanical Characterization of MgAlLiZnCaCu High Entropy Alloy: Khin Tun¹; Angad Yadav²; Abhishek Sharma³; Manoj Gupta¹; *Tirumalai Srivatsan*⁴; ¹National University of Singapore; ²National Institute of Technology Agartala; ³IIT(ISM) Dhanbad, Jharkhand; ⁴The University of Akron #### 10:10 AM Break #### 10:30 AM Mechanical and Thermal Stability of Nanocrystalline High-entropy Alloys: $Yu Zou^1$; ¹University of Toronto #### 10:50 AM Hydrogen-induced Intergranular Failure of Compositionally Complex Equimolar FeNiCoCr Alloy: Kelly Nygren¹; Shuai Wang²; *Kaila Bertsch*²; Hongbin Bei³; Akihide Nagao⁴; Ian Robertson²; ¹Cornell University; ²University of Wisconsin-Madison; ³Oak Ridge National Laboratory; ⁴International Institute for Carbon-Neutral Energy Research (WPI-I2CNER) #### 11:10 AN Long-term Annealing of Mechanically-alloyed Refractory High Entropy Alloy: Joshua Smeltzer¹; B. Chad Hornbuckle²; Anit Giri²; Christopher Marvel¹; Kristopher Darling²; Jeffrey Rickman¹; Helen Chan¹; Martin Harmer¹; ¹Lehigh University; ²Army Research Laboratory ## ACerS Robert B. Sosman Award Symposium: Lead-free Piezoceramics: From Local Structure to Application — ACerS Basic Science Division Robert B. Sosman Lecture Program Organizers: Jurij Koruza, Technische Universität Darmstadt; Jürgen Rödel, Technische Universität Darmstadt Wednesday PM Room: A111/112 October 17, 2018 Location: Greater Columbus Convention Center #### 1:00 PM Invited **Lead-free Piezoceramics: From Local Structure to Application**: *Jürgen Rödel*[†]; ¹Technische Universität Darmstadt ## ACerS Robert B. Sosman Award Symposium: Lead-free Piezoceramics: From Local Structure to Application — Session II Program Organizers: Jurij Koruza, Technische Universität Darmstadt; Jürgen Rödel, Technische Universität Darmstadt Wednesday PM Room: A111/112 October 17, 2018 Location: Greater Columbus Convention Center Session Chair: Rajendra Bordia, Clemson University #### 2:00 PM Invited Relaxor-ferroelectric Transitions: Sodium-bismuth-titanate Derivatives: Jacob Jones¹; ¹North Carolina State University #### 2:40 PM Invited High Piezoelectricity in BaTiO3-based Pb-free Materials: The Role of Multiphase Coexisting Point: Ren Xiaobing¹; ¹National Institute For Materials Science #### 3:20 PM Break #### 3:40 PM Invited Industrial Development of Lead-free Piezoelectric Materials and Devices: *Ruiping Wang*¹; Kenji Shibata²; Tonshaku Tou³; Jurij Koruza⁴; ¹National Institute of Advanced Industrial Science and Technology; ²SCIOCS Co.Ltd; ³Honda Electronics Co. Ltd; ⁴Technische Universitat Darmstadt ## Additive Manufacturing of Composites and Complex Materials III — Polymer Additive Manufacturing Program Organizers: Dirk Lehmhus, Fraunhofer - Ifam; Jonathan Spowart, Air Force Research Laboratory; Nikhil Gupta, New York University; Eric Jaegle, Max-Planck-Institut Fuer Eisenforschung Wednesday PM Room: A222 October 17, 2018 Location: Greater Columbus Convention Center Session Chair: To Be Announced #### 2:00 PM Morphology-performance-processing Relationships in Additively Manufactured Epoxy Composites for Thin-walled Cellular Structures: Andrew Abbott¹; Kyle Johnson²; Harry Pierson³; Emrah Celik⁴; Gyaneshwar Tandon¹; Hilmar Koerner⁵; Jeffery Baur⁵; Katie Thorp⁵; ¹UDRI; ²UES; ³University of Arkansas; ⁴University of Miami; ⁵Air Force Research Laboratory #### 2:30 PM Effect of Lattice Density on the Mechanical Behavior of FDMed Composites: Ozgur Keles¹; Eric Anderson¹; Jimmy Huynh¹; Jeff Gelb²; Jouni Freund³; Alk Karakoc³; ¹San Jose State University; ²Sigray, Inc.; ³Aalto University #### 2:50 PM Large Scale Additive Manufacturing of Tunable Reactive Polymers: William Carter¹; Orlando Rios¹; Cynthia Kutchko²; ¹Oak Ridge National Laboratory; ²PPG Industries #### 3:20 PM Thermo-mechano-rheological Principles of Filament Manufacturing for Additive Manufacturing: Ashish Singh¹; Rakesh Behera¹; Mrityunjay Doddamani²; Nikhil Gupta¹; ¹New York University; ²National Institute of Technology, Surathkal #### 3:40 PM Break #### 4:00 PM Additive Manufacturing of Structural Energetic Nanocomposites: Keerti Kappagantula¹; ¹Ohio University #### 4:20 PM Applications Mixture Design Statistical Method with Special Focus on Simplex Centroid Design: Betiglu Jimma¹; ¹Saint-Gobain #### 4:40 PN **Polymer Derived Ceramics with High Geometric Accuracy**: *Xuehui Yang*¹; Jing Zhang¹; Hye-Young Park²; Yeon-Gil Jung²; ¹Indiana University - Purdue University Indianapolis; ²Changwon National University 5:00 PM Question and Answer Period 5:20 PM Concluding Comments ## Additive Manufacturing of Metals: Microstructure and Material Properties — Microstructure and Properties of AM Ti-64 Alloy Program Organizers: Andrzej Wojcieszynski, ATI Specialty Materials; Ulf Ackelid, Freemelt AB; Ola Harrysson, North Carolina State University; Sudarsanam Babu, The University of Tennessee, Knoxville Wednesday PM Room: A214 October 17, 2018 Location: Greater Columbus Convention Center Session Chair: Andrzej Wojcieszynski, ATI Specialty Materials #### 2:00 PM **Microstructure and Properties of Additively Manufactured Ti-6Al-4V**: *V. Sinha*¹; K.J. Chaput²; E.J. Schwalbach²; T.M. Butler²; N. Schehl³; R. John²; ¹Air Force Research Laboratory/UES, Inc.; ²Air Force Research Laboratory; ³University of Dayton Research Institute #### 2:20 PN Microstructure Control and Mechanical Testing of Electron Beam Additively Manufactured Ti-6Al-4V: Rahi Patel¹; Sneha Narra¹; Jack Beuth¹; ¹Carnegie Mellon University #### 2:40 PM Novel Ti-6Al-4V Microstructure Design Pathways via Cyclic Heat Treatments during Selective Laser
Melting: Atieh Moridi¹; Ali Gökhan Demir²; Leonardo Caprio²; Barbara Privitali²; Bianca Colosimo²; John Hart¹; Cem Tasan¹; ¹Massachussetts Institute of Technology; ²Politecnico di Milano #### 3:00 PM Elevated Temperature Deposition of Ti-6Al-4V in the Laser Powder Bed Fusion Process: Brian Fisher¹; Jack Beuth¹; ¹Carnegie Mellon University ## MSaT18 #### MATERIALS SCIENCE & TECHNOLOGY #### 3:20 PM Break #### 3:40 PM In-situ Synchrotron X-ray Diffraction Line-profile Analysis during Tensile Deformation in Additively Manufactured Ti-6Al-4V Alloy: Kenta Yamanaka¹; Asumi Kuroda²; Miyu Itoh²; Manami Mori³; Takahisa Shobu⁴; Shigeo Sato²; Akihiko Chiba¹; ¹Tohoku University; ²Ibaraki University; ³National Institute of Technology, Sendai College; ⁴Japan Atomic Energy Agency #### 4:00 PM Processing-microstructure-property Relationship in Additive Manufactured (Laser Engineered Net Shaping, LENS) Ti-6Al-4V Alloy: Shibayan Roy¹; Souvik Sahoo¹; Anuja Joshi¹; Anoop Maurya¹; Vamsi Balla²; Mitun Das²; ¹Materials Science Center, Indian Institute of Technology Kharagpur; ²Bioceramics & Coating Division, CSIR-Central Glass and Ceramics Research Institute, Kolkata, #### 4:20 PM Influence of Microstructure and Porosity on the Mechanical Properties of L-PBF Ti-6Al-4V: *Thomas Voisin*¹; Nicholas Calta¹; Joseph McKeown¹; Ross Cunningham²; Anthony Rollett²; Yinmin Wang¹; ¹Lawrence Livermore National Laboratory; ²Carnegie Melon University #### 4:40 PM The Influence of Processing Parameters on Strut Diameter and Internal Porosity in Ti6Al4V Cellular Structure: *Hala Salem*¹; L.N. Carter²; M.M. Atallah²; H.G. Salem¹; ¹AUC; ²University of Birmingham #### 5:00 PM The Non-uniform Mechanical Properties and Microstructure of Ti6Al4V Components Fabricated Using DED Additive Manufacturing Process: Chang Keun Chun¹; Sung-wook Kim¹; Dae-jung Kim²; Yeong-do Park³; ¹RIST; ²Insstek; ³Dong-Eui University/Department of Advanced Materials Engineering ## Additive Manufacturing of Metals: Microstructure and Material Properties — Modeling and Alloy Development for AM Program Organizers: Andrzej Wojcieszynski, ATI Specialty Materials; Ulf Ackelid, Freemelt AB; Ola Harrysson, North Carolina State University; Sudarsanam Babu, The University of Tennessee, Knoxville Wednesday PM Room: A215 October 17, 2018 Location: Greater Columbus Convention Center Session Chair: Jack Beuth, Carnegie Mellon University #### 2:00 PM High-throughput Screening for Metal Additive Manufacturing Processes: Simulation and Experiment: Yu Zou¹; ¹University of Toronto #### 2:20 PM Experiment and Modeling of the Two-peak Dynamic Behaviour of Additively Manufactured AlSi10Mg_200C: Edward Cyr¹; Amir Hadadzadeh¹; Babak Amirkhiz²; Mohsen Mohammadi¹; ¹University of New Brunswick; ²CanmetMATERIALS, Natural Resources Canada #### 2:40 PM A Combinatorial Approach for Ni-base Superalloy Design via Direct Laser Metal Deposition: *Guru Dinda*¹; Abhishek Ramakrishnan¹; Husam Alrehaili¹; Ajay Bhagavatam¹; Aniket Dighe¹; Ajol Shah¹; Chaitanya Amilkanthwar¹; ¹Wayne State University #### 3:00 PM **Development of Titanium and Steel Alloys Optimized for AM**: *Yining He*¹; Bryan Webler¹; Jack Beuth¹; ¹Carnegie Mellon University #### 3:20 PM Break #### 3:40 PM Multimaterial AM Structures with Controlled Thermal Expansion: Nicholas Jones¹; Maarten De Boer¹; Jack Beuth¹; Sneha Narra¹; ¹Carnegie Mellon University #### 4:00 PV New Routes to Alloys and Research Parts Using Additive Manufacturing: Daniel Hooks¹; Thomas Lienert¹; Terry Holesinger¹; ¹Los Alamos National Lab #### 4:20 PM Investigating the Effect of Surface Active Elements on the Microstructure of Laser Re-melted Steel: *Debomita Basu*¹; Jack Beuth¹; Bryan Webler¹; ¹Carnegie Mellon University #### 4.40 PM Improving the Printability of Nickel Superalloys for Selective Laser Melting: Yevgeni Brif¹; Iain Todd¹; ¹University of Sheffield #### 5:00 PM Isotropic Microstructure and Defect Tolerant Behavior by Microstructural Design of Additively Manufactured TRIP-steel: *Julia Richter*¹; Johannes Guenther¹; Florian Brenne¹; Matthias Droste²; Marco Wendler²; Olena Volkova²; Horst Biermann²; Thomas Niendorf¹; ¹University of Kassel; ²Freiberg University of Mining and Technology ## Additive Manufacturing of Metals: Post Processing — Surface Post Processing I/ Heat Treatment III Program Organizers: Ola Harrysson, North Carolina State University; Andrzej Wojcieszynski, ATI Specialty Materials; Ulf Ackelid, Freemelt AB; S. Babu, Indian Institute of Technology Madras Wednesday PM Room: A216 October 17, 2018 Location: Greater Columbus Convention Center Session Chair: Christopher Rock, NC State University #### 2:00 PM Invited **Electrochemical Surface Finishing of Additively Manufactured Parts**: *Timothy Hall*¹; Holly Garich¹; Stephen Snyder¹; EJ Taylor¹; ¹Faraday Technology Inc #### 2:40 PM Static and Fatigue Strength of Laser Powder Bed Fused Ti-6Al-4V Treated with Different Post Processing Methods: *Thomas Toeppel*¹; Markus Oettel¹; Florian Bittner¹; Juliane Thielsch¹; ¹Fraunhofer IWU #### 3:00 PM Surface Texture Anatomy of Additive Manufacturing Components and How to Improve Them: Towards the Perfect SurfaceFinishing Process: Agustin Diaz¹; ¹REM Surface Engineering #### 3:20 PM Break #### 3:40 PM Optimizing Hot-isostatic Pressing of Additively Manufactured Ti-6Al-4V for Fatigue Performance: Kelvin Leung¹; Anahita Imanian¹; Nicole Apetre¹; Peipei Li²; Derek Warner²; ¹Technical Data Analysis, Inc; ²Cornell University #### 4:00 PM The Effect of Heat Treatment on the Microstructure of a LENS Titanium Aluminum Vanadium Alloy that is Functionally Graded with Boron: Denver Seely¹; Mark Horstemeyer¹; Hongjoo Rhee¹; ¹Mississippi State University #### 4:20 PM The Effects of Post Processing in Additively Manufactured 316L: Richard Fonda¹; David Rowenhorst¹; Scott Olig¹; Jerry Feng¹; Lily Nguyen²; Adelina Beckwith¹; Beth Stiles¹; ¹Naval Research Laboratory; ²National Research Council ## Advanced Manufacturing, Processing, Characterization, and Modeling of Functional Materials — Advanced Functional Materials Program Organizers: Mohammad Elahinia, University of Toledo; Markus Chmielus, University of Pittsburgh; Reginald Hamilton, The Pennsylvania State University; Hamdy Ibrahim, University of Tennessee at Chattanooga; Haluk Karaca, University of Kentucky; Mohammad Mahtabi, University of Tennessee at Chattanooga; Reza Mehrabi, University of Toledo; Reza Mirzaeifar, Virginia Tech Wednesday PM Room: B230 October 17, 2018 Location: Greater Columbus Convention Center Session Chairs: Markus Chmielus, University of Pittsburgh; Hamdy Ibrahim, University of Tennessee at Chattanooga; Ahmadreza Jahadakbar, The University of Toledo #### 2:00 PM Epitaxial Growth of Magnetic Shape-memory Alloys: Re-melting and Directed Energy Deposition of Ni-Mn-Ga: *Jakub Toman*¹; Peter Müllner²; Markus Chmielus¹; ¹University of Pittsburgh; ²Boise State University #### 2:20 PM Improving the Mechanical Properties of FeGa through NbC Additions: Nicholas Jones¹; Suok-Min Na¹; Paul Lambert¹; ¹Naval Surface Warfare Center - Carderock #### 2:40 PM **Magnetostriction Measurements on Large-grained FeCo Samples**: *Nicholas Jones*¹; Paul Lambert¹; Deborah Schlagel¹; Thomas Lograsso¹; ¹Naval Surface Warfare Center, Carderock Division #### 3:00 PM Rapid Intense Pulsed Light Sintering of Silver Nanowire Networks as Transparent Conducting Electrodes on Polycarbonate: Experiments and Modeling: Michael Dexter¹; Zhongwei Gao²; Rajiv Malhotra¹; Chih-hung Chang²; HyunJun Hwang¹; ¹Rutgers University; ²Oregon State University #### 3:20 PM Break #### 3:40 PM Synthesis of High Sn Concentration GeSn by Recrystallization of Amorphous Phase: Masashi Higashiyama¹; Manabu Ishimaru¹; Masayuki Okugawa²; Ryusuke Nakamura²; ¹Kyushu Institute of Technology; ²Osaka Prefecture University #### 4:00 PM Microstructural Analysis of Oligocrystalline HIPed FeGa Rods: Nicholas Jones¹; Paul Lambert¹; ¹Naval Surface Warfare Center, Carderock Division #### 4:20 PM Invited Achieving Favorable Microstructure and Properties in Additively Manufactured Ni-Mn-based Functional Magnetic Materials: Markus Chmielus¹; Erica Stevens¹; Katerina Kimes¹; Pierangeli Rodriguez¹; Amir Mostafaei¹; Jakub Toman¹; ¹University of Pittsburgh ## Advanced Materials for Oil and Gas Applications - Performance and Degradation — Advanced Materials for Oil and Gas Applications - Performance and Degradation Program Organizers: Yellapu Murty, MC Technologies LLC; Andrzej Wojcieszynski, ATI Specialty Materials; Riad Asphahani, US Steel Wednesday PM Room: B140/141 October 17, 2018 Location: Greater Columbus Convention Center Session Chairs: Ronald Radzilowski, AK Steel; Riad Asfahani, US Steel #### 2.00 PM Considerations and Guideline on Materials Selection and Qualification for HPHT Oil and Gas Applications: Fei Tang¹, ¹Dnv Gl #### 2:30 PM Inconel Alloy 725 and Variants for Use in High-temperature Environments: *Martin Detrois*¹; Kyle Rozman¹; Paul Jablonski¹; Jeffrey Hawk¹; ¹National Energy Technology Laboratory #### 3:00 PM Study on the Interfacial Reaction of Secondary Reaction Zone during Cyclic Thermal Fatigue in Single Crystal Ni-base Superalloy: *Joong Eun Jung*¹; In Soo Kim¹; Baig Gyu Choi¹; Jeonghyeon Do¹; In-Yong Jung¹; Chang-Yong Jo¹; ¹Korea Institute of Materials Science (KIMS) #### 3:20 PM Break #### 3:40 PM A Microstructural Approach to Understanding the Corrosion Behavior of Cu-Ni-Sn Alloys in Chlorine Environments.: Carole Trybus¹; Sam Imanieh²; Robert Kusner³; Fritz Grensing¹; ¹Materion, Alloy Technology; ²Center for Materials and Sensor Characterization, University of Toledo; ³Materion, Technical Services #### 4:10 PM A Cu-bearing Pipeline Steel for Microbial Corrosion Control: Yiyin Shan¹; Xianbo Shi¹; Wei Yan¹; ¹Institute of Metals Research #### 4:30 PM Mitigation of Carbonaceous Deposit Formation on Structural Alloys via Surface Modification: Pralav Shetty¹; Runyu Zhang¹; Velu Subramani²; Paul Braun¹; Jessica Krogstad¹; ¹University of Illinois
Urbana-Champaign; ²BP #### 5:00 PM Development of a Standardized Test for Stress Relief Cracking Susceptibility in Low Alloy Steels: Conner Sarich¹; ¹The Ohio State University ## Advanced Steel Metallurgy: Products and Processing — Dual Phase and Q&P Steels Program Organizers: Justin Raines, SSAB Americas; Charles Enloe, General Motors; Emmanuel De Moor, Colorado School of Mines Wednesday PM Room: A226 October 17, 2018 Location: Greater Columbus Convention Center Session Chairs: Charles Enloe, General Motors; Keith Taylor, SSAB #### 2:00 PM Invited Processing Challenges of Dual Phase Steels: Hot Band Property Variation Caused by Rewetting on the Runout Table: Erika Bellhouse¹; Adam Silvestri¹; Eugen Ianos¹; ¹ArcelorMittal Dofasco ## MS&T18 #### MATERIALS SCIENCE & TECHNOLOGY #### 2:30 PM Production of Cold Rolled and Annealed DP-590 (Dual-phase) Steel through Continuous Galvanizing Line (CGL) of a Flex Mill at Big River Steel, USA: Shobhit Bhartiya¹; Amar De¹; Denis Hennessy¹; Matt Hill¹; Bilin Chen¹; Ricky Averion¹; ¹Big River Steel LLC #### 2:50 PM Processing, Microstructures and Properties of Ultra-high Strength, Low Carbon and V-bearing Dual-phase Steels Produced on Continuous Galvanizing Lines: Yingjie Wu¹; Anthony Deardo¹; ¹University of Pittsburgh #### 3:10 PM Advanced Characterization of Microstructures in Ultra High Strength Dual Phase Steel: Jason Andring¹; ¹University of Pittsburgh #### 3:30 PM Break #### 3:50 PM The Influence of Chemistry on the Microstructure and Mechanical Property of DP980: Mingsheng Xia¹; ChunYu Liu¹; Yunge Wang¹; Binquan Ai¹; ¹HBIS Tangsteel #### 4:10 PM Role of Processing Parameters in Q&P Steels: Experimental Analysis and Thermodynamic Modeling: Amit Behera¹; Gregory Olson¹; ¹Northwestern University #### 4:30 PM **Quenching, Partitioning and Tempering of Experimental Steel**: Aqil Inam¹; *Muhammad Hassan*¹; Muhammad Ishtiaq¹; Tariq Hussain¹; ¹University of the Punjab ## Advances in Solid Oxide Fuel Cell Technology — SOFCs for Military Applications Program Organizers: Scott Swartz, Nexceris LLC; Matthew Seabaugh, Nexceris LLC; Jeff Stevenson, Pacific Northwest National Laboratory Wednesday PM Room: D281 October 17, 2018 Location: Greater Columbus Convention Center Session Chairs: Scott Swartz, Nexceris LLC; Gene Arkenberg, Nexceris, LLC #### 2:00 PM Invited Solid Oxide Fuel Cells for Long Endurance Unmanned Aerial Systems, an Air Force Perspective: Michael Rottmayer¹; Thomas Howell¹; ¹AFRL/RQQE #### 2:20 PM Invited Solid Oxide Fuel Cell System Applications and Requirements from the Army's Perspective: *Theodore Burye*¹; Kevin Centeck¹; ¹Tank Automotive Research Development and Engineering Center (TARDEC) #### 2:40 PM Invited Portable Solid Oxide Fuel Cell Systems for Military and Aerospace Applications: $Tom\ Westrich^1;\ ^1USSI$ #### 3:00 PM Invited Paradigm Shifts in Materials to Enable Breakthrough Fuel Cell Systems: Comas Haynes¹; ¹GTRI #### 3:20 PM Break #### 3:40 PM Invited Considerations for Standalone Diesel/Jet-fueled Fuel Cell Generators: Subir Roychoudhury¹; Christian Junaedi¹; Saurabh Vilekar¹; Tim LaBreche¹; ¹Precision Combustion, Inc. #### 4:00 PM Invited Power and Energy Solutions for Remote Off-grid Applications: Praveen Cheekatamarla¹; ¹Atrex Energy Inc #### 4:20 PM Invited **Update on Nexceris' SOFC stack technology**: *Gene Arkenberg*¹; Scott Swartz¹; David Kopechek¹; Chad Sellers¹; ¹Nexceris, LLC #### 4:40 PM Invited Novel Titanate-based Electrodes for Solid Oxide Fuel Cells with Improved Performance and Stability: Scott Barnett¹; Shan-Lin Zhang¹; Liliana Mogni²; ¹Northwestern University; ²Centro Atomico Bariloche #### Advances in Surface Engineering — Tribology/ Tribocorrosion, Surface Stresses, and Surface Microstructure Program Organizers: Brian Skinn, Faraday Technology, Inc.; Timothy Hall, Faraday Technology, Inc.; Sandip Harimkar, Oklahoma State University; Michael Roach, University of Mississippi Medical Center; Rajeev Gupta, The University of Akron Wednesday PM Room: B144/145 October 17, 2018 Location: Greater Columbus Convention Center Session Chair: Jing Xu, Faraday Technology, Inc. #### 2:00 PM Invited **Development of Functional Multi-layered Coatings Using Cathodic Arc Physical Vapor Deposition (CAPVD) Technique**: *G Sundararajan*¹; Krishna Valleti¹; D Srinivasa Rao¹; ¹International Advanced Research Centre for New Materials (ARCI), Hyderabad #### 2:40 PM Invited Synergistic Role of Carbonaceous Reinforcements on Multi Length Scale Tribology of Electrophoretically Deposited Nickel-boron Nitride Coatings: Shikha Awasthi¹; Chandra Pandey²; Kantesh Balant³; ¹Indian Institute of Technology Kanpur; ²Babu Banarasi Das University; ³Indian Institute of Technology Kanpur #### 3:20 PM Break #### 3:40 PM Laser Assisted Synthesis of High Entropy Alloy Coating on Aluminum: Tribocorrosion Behavior: Sameehan Joshi¹; Gaurav Argade¹; Aditya Ayyagari¹; Sundeep Mukherjee¹; Narendra Dahotre¹; ¹University of North Texas #### 4:00 PM Use of Advanced Regression Techniques to Explain Variance in Stress Concentrations Due to Rough Surfaces: Christopher Kantzos¹; Anthony Rollett¹; ¹Carnegie Mellon University #### 4:20 PM Microstructural Evolution during Laser Surface Treatment of Biocompatible AZ31B Mg Alloy: Mangesh Pantawane¹; Sameehan Joshi¹; Yee-Hsien Ho¹; Tso-Chang Wu¹; Narendra Dahotre¹; ¹University of North Texas #### 4:40 PN Investigation on Multiple Parametric Optimization of Cold Sprayed Coatings Process: *Tarun Goyal*¹; ¹IKG Punjab Technical University #### 5:00 PM The Methodological Principles of the Engineering of Tribocoupling Details Surface under Multicomponent Loading: Volodymyr Tsyganov¹; Leonid Ivschenko¹; ¹Zaporizhy National Technical University #### 5:20 PM A Novel Laser Shock Surface Patterning Process Towards Tribology Applications: Bo Mao¹; Arpith Siddaiah¹; Pradeep Menezes¹; Yiliang Liao¹; ¹University of Nevada, Reno ## Art and Cultural Heritage: Reverse Engineering — Art and Cultural Heritage: Reverse Engineering II Program Organizers: Glenn Gates, Walters Art Museum; John McCloy, Washington State University Wednesday PM Room: B232 October 17, 2018 Location: Greater Columbus Convention Center Session Chair: Glenn Gates, Walters Art Museum #### 2:00 PM Invited Experimental Confirmation of Rock Melting in Iron Age Swedish Vitrified Hillfort: John McCloy¹; Jose Marcial¹; Mahmood Abusamha¹; Carolyn Pearce²; Michael Schweiger²; Jarrod Crum²; Connor Appel²; Jack Clara³; Jamie Weaver⁴; Rolf Sjöblom⁵; Erik Ogenhall⁶; Eva Hjärthner-Holdar⁶; Mia Englund⁶; Albert Kruger¹; ¹Washington State University; ²Pacific Northwest National Laboratory; ³University of Sheffield; ⁴National Institute of Standards & Technology; ⁵Luleå University of Technology; ⁶Arkeologerna; ¬Department of Energy - Office of River Protection #### 2:40 PM Invited Sifting the Past From Over a 1000 Years of Alteration: *Jamie Weaver*¹; Rolf Sjöblom²; Carolyn Pearce³; Joseph Ryan³; Edgar Buck³; John McCloy⁴; David Peeler³; ¹National Institute of Standards and Technology; ²Luleå University of Technology; ³Pacific Northwest National Laboratory; ⁴Washington State University #### 3:20 PM Break #### 3:40 PM Invited **Principles of Roman Cementitious Systems in Architectural and Marine Concretes**: *Marie Jackson*¹; Juhyuk Moon²; Heng Chen³; Yi Zhang⁴; ¹University of Utah; ²Seoul National University; ³Southeast University; ⁴National University of Singapore #### 4:20 PM Using Trace Element Ratios to Establish Provenance of Brick and Terra Cotta: *Emily Steiner*¹; Pippa Merrick²; Susan Tunick³; Kathryn Tierney⁴; Hyojin Lee¹; William Carty¹; ¹New York State College of Ceramics at Alfred University; ²Historical Hillsborough Research Group; ³Friends of Terra Cotta; ⁴Boston Valley Terra Cotta #### 4:40 PM Invited **Deriving History from Isolated Late Classic Maya Ceramic Vessels**: *Ronald Bishop*¹; ¹NMNH-Smithsonian Institution #### 5:20 PM Invited Analysis of Inorganic Pigments in Unknown Paintings by Painter Fernando Fader through X-ray Fluorescence (XRF): Patricia Carrizo¹; Cristian Aguilera¹; Julio Ortigala¹; ¹Universidad Tecnológica Nacional Regional Mendoza(UTNFRM) ## Bulk Metallic Glass Matrix Composites - Challenges and Triumphs — Mechanical Properties and Structure-property Relation Program Organizers: Muhammad Rafique, RMIT University; Weidong Li, The University of Tennessee; Junwei Qiao, Taiyuan University of Technology; Gang Wang, Shanghai University Wednesday PM Room: B244/245 October 17, 2018 Location: Greater Columbus Convention Center Session Chairs: Peter Liaw, The University of Tennesse; Christopher Schuh, Massachusetts Institute of Technology #### 2:00 PM Invited Broadband Nanoindentation Creep of Plastic Deformation in in Zr50Cu45Al5 Metallic Glass: Donald Stone¹; Joseph Jakes²; Zenon Melgarejo¹; ¹University of Wisconsin-Madison; ²USDA Forest Products Laboratory #### 2:30 PM Invited Enhanced Shear Stability of a Metallic Glass at Cryogenic Temperature: Gang Wang¹; ¹Shanghai University #### 3.00 PM Quantifying the Mechanisms of Strain Delocalization in Metallic Glass Matrix Composites through Nanoindentation: *Jonathan Gentile*¹; Douglas Stauffer²; Jason Trelewicz¹; ¹Stony Brook University; ²Bruker Nano, Inc. #### 3:20 PM Break #### 3:40 PM Invited Strain Delocalization and Fracture Behaviors of Laminated Metallic Glass Composites: *Xinghang Zhang*¹; Zhe Fan²; Jian Wang³; ¹Purdue University; ²Oak Ridge National Lab; ³University of Nebraska, Lincoln #### 4:10 PM Correlating Nanoscale Structure to Properties of Metallic Glasses and Composites: Soohyun Im¹; Pengyang Zhao¹; Geun Hee Yoo²; Eun Soo Park²; Yunzhi Wang¹; Jinwoo Hwang¹; Ohio State University; ²Seoul National University #### 4:30 PM Universally Scaling Hall-petch-like Relationship in Metallic Glass Matrix Composites: *Jiaojiao Li*¹; Yuyang Liu¹; Peter Liaw²; Jürgen Eckert³; Junwei Qiao¹; ¹Taiyuan University of Technology; ²The University of Tennessee; ³Montanuniversität Leoben #### 4:50 PM The Effects of Cryogenic
Treatment on Metallic Glasses: Nizhen Zhang¹; Qing Wang¹; ¹Shanghai University #### 5:10 PM **Defects Evolution in an Irradiated Metallic Glass**: *Kang Sun*¹; Gang Wang¹; ¹Shanghai University # MATSCITECH.ORG STATEMENT OF THE STATEME ### Ceramics and Glasses Simulations and Informatics – Multiscale Modeling of Materials Program Organizers: Mathieu Bauchy, University of California, Los Angeles; Peter Kroll, University of Texas at Arlington; Efrain Hernandez-Rivera, U.S. Army Research Laboratory Wednesday PM Room: A113 October 17, 2018 Location: Greater Columbus Convention Center Session Chairs: Rampi Ramprasad, Georgia Institute of Technology; Jincheng Du, University of North Texas #### 2:00 PM Invited Using Advanced Simulation Techniques to Understand Vapor Deposited Glass Formation and Melting: Elijah Flenner¹; Patrick Charbonneau²; Ludovic Berthier³; Francesco Zamponi⁴; ¹Colorado State University; ²Duke University; ³Laboratoire Charles Coulomb, University de Montpellier and CNRS; ⁴Laboratoire de Physique Theorique, Ecole Normale Superieure, PSL Research University, Sorbonne Universites, UPMC Universites Paris 06, CNRS #### 2:30 PM Invited Phase-field Simulation of Pressure-induced and Light-controlled Ferroelectric Switching in Nanoscale Thin Film: Ye Cao¹; ¹University of Texas at Arlington #### 3:00 PM **Ab-initio Estimation and Experimental Measurement of the Fracture Surface Energy and Toughness of Glass**: Theany To¹; Fabrice Célarié¹; *Tanguy Rouxel*¹; ¹University of Rennes 1 #### 3:20 PM Break #### 3:40 PM Invited Modeling Anisotropic Grain Growth with the SPPARKS Framework: *Efrain Hernandez-Rivera*¹; Philip Goins¹; ¹US Army Research Laboratory #### 4:10 PM Invited **Fracture Mechanics of Phase-separated Glasses by Peridynamics Simulations:** Longwen Tang¹; N. M. Anoop Krishnan²; *Mathieu Bauchy*¹; ¹University of California, Los Angeles; ²IIT Delhi #### 4:40 PM **Molecular Dynamics Study on SiO2 Interfaces as Non-fire Solids**: *Tomohiro Sato*¹; Ken-ichi Saitoh¹; Masayoshi Fuji²; Chika Takai²; Hadi Razavi²; Masanori Takuma¹; Yoshimasa Takahashi¹; ¹Kansai University; ²Nagoya Institute of Technology #### 5:00 PM Computational Studies of ²⁹Si NMR in Crystalline and Amorphous Silicon Nitrides: *Ilia Ponomarev*¹; Peter Kroll¹; ¹The University of Texas at Arlington ## Characterization & Methods in Failure Analysis — Corrosion Program Organizers: Andrew Havics, PH2 LLC; Burak Akyuz, ATS, Inc.; Pierre Dupont, UMONS Faculté polytechnique de MONS (FPMs) Wednesday PM Room: A211 October 17, 2018 Location: Greater Columbus Convention Center Session Chairs: Veronique Vitry, UMONS; Courtney Pape, DNV GL; Thomas Traubert, EDT Engineering; Aaron Tanzer, Element Materials Technology; Jake Auliff, DANFOSS #### 2:00 PM Case Histories of Some Failures of Fittings and Tanks in the Petroleum Industry: Barry Hindin¹; ¹Kiefner & Assoc #### 2:20 PM Invited **Characterization of Copper Tubing and Pipe Ruptures**: *G. Maltry*¹, ¹Engineering Design & Testing #### 2.40 PM Case Study of Internal Corrosion Mechanisms in Pipelines: Courtney Pape¹; ¹DNV GL #### 3:00 PM Corrosion of 304 Stainless Steel Pneumatic Pressure Tubes: Dana Medlin¹; Donald Johnson²; ¹SEAL Laboratories (EAG Inc.); ²University of Nebraska-Lincoln #### 3:20 PM Break #### 3:40 PM External Stress Corrosion Cracking Under Mineral Wool Insulation on a Carbon Steel Pipeline: Dave Norfleet¹; Barbara Padgett¹; Kevin Ralston¹; John Beavers¹; Liu Cao¹; Burke Delanty¹; ¹DNV GL #### 4:00 PM Failure of Galvanized Steel Water Pipes: It's Not Always What You Think: Véronique Vitry¹; Fabienne Delaunois¹; ¹UMONS #### 4·20 PM **Grooving Corrosion: Differentiating Weld Defects from Corrosion Failure**: *Vir Nirankari*¹; Brad James¹; Ockert Van Der Schijff¹; ¹Exponent, Inc #### 4:40 PM Failure Analysis of Corroded Cooling Deck Pan: Adam Boesenberg¹; ¹Iowa State University #### 5:00 PM Effect of Ni to Cu Ratio on Formation of Oxide Scale at High Temperature: Shrikant Jadhav¹; ¹Kalyani Center for Technology and Innovation ### Controlled Synthesis, Processing, and Applications of Structural and Functional Nanomaterials — Session IV Program Organizers: Haitao Zhang, University of North Carolina at Charlotte; Kathy Lu, Virginia Tech; Edward Gorzkowski, Naval Research Laboratory; Gurpreet Singh, Kansas State University; Kejie Zhao, Purdue University; Jian Shi, Rensselaer Polytechnic Institute Wednesday PM Room: D180 October 17, 2018 Location: Greater Columbus Convention Center Funding Support provided by: MilliporeSigma Session Chairs: Kathy Lu, Virginia Tech; Jian Shi, Rensselaer Polytechnic Institute #### 2:00 PM Invited Particle ALD for Sintering Yttria-stabilized Cubic Zirconia (YSZ): Rebecca O'Toole¹; Christopher Bartel¹; Maila Kodas¹; Alexa Horrell¹; Sandrine Ricote²; Neal Sullivan²; Robert Hall³; Charles Musgrave¹; *Alan Weimer*¹; ¹University of Colorado; ²Colorado School of Mines; ³ALD NanoSolutions #### 2:30 PM Reduced Thermal Conductivity in 7 wt% Yttria Doped Zirconia Nanocrystalline Ceramics: John Drazin¹; Edward Gorzkowski²; ¹ASEE; ²Naval Research Laboratory #### 2:50 PM Particle Size Dependence of Growth and Growth Mode of Atomic Layer Deposition in a Rotary Reactor: *James Wollmershauser*¹; Kedar Manandhar²; Boris Feigelson¹; ¹U.S. Naval Research Laboratory; ²American Society for Engineering Education Postdoctoral Research Fellow sited at U.S. Naval Research Laboratory #### 3:10 PM Invited Synthesis of Nanostructured Ferroic Materials for Energy Conversion: *Todd Monson*¹; Baolong Zheng²; Tyler Stevens¹; Renee Van Ginhoven³; David Vargas¹; Yizhang Zhou²; Enrique Lavernia²; ¹Sandia National Labs; ²University of California, Irvine; ³Air Force Research Lab #### 3:40 PM Break #### 4:00 PM Invited Engineering Iron Oxide Nanoparticles for Optimal Magnetic Hyperthermia Performance: Anna Cristina Samia¹; ¹Case Western Reserve University #### 4:30 PM Optically Transparent (Fully Dense) Nanocrystalline Ceramics Manufactured via CIP-sinter-HIP Processing: John Drazin¹; Edward Gorzkowski²; James Wollmershauser²; ¹ASEE; ²Naval Research Laboratory #### 4:50 PM Negative Hall-Petch Relationship and Plateau in Nanocrystalline Ceramics: *Heonjune Ryou*¹; John Drazin¹; Kathryn Wahl²; Syed Qadri²; Edward Gorzkowski²; Boris Feigelson²; James Wollmershauser²; ¹American Society for Engineering Education Postdoctoral Research Fellow sited at U.S. Naval Research Laboratory; ²U.S. Naval Research Laboratory #### Covetic Nanomaterials for Energy Applications — Covetic Materials II Program Organizers: David Forrest, US Department of Energy; Uthamalingam Balachandran, Argonne National Laboratory Wednesday PM Room: D282 October 17, 2018 Location: Greater Columbus Convention Center Session Chair: David Forrest, U.S. Department of Energy #### 2:00 PM Invited **Development of Covetic Materials for Energy Applications**: *Uthamalingam Balachandran*¹; Beihai Ma¹; Stephen Dorris¹; Tae Lee¹; Jie Wang²; Jianguo Wen²; Paul Jablonski³; David Forrest⁴; ¹Argonne National Laboratory Energy Systems Division; ²Argonne National Laboratory; ³National Energy Technology Laboratory; ⁴U.S. Dept. of Energy #### 2:40 PM **Processing Cu-covetic Materials in a Controlled Atmosphere**: *Steve Dorris*¹; U. (Balu) Balachandran¹; B. Ma¹; T. H. Lee¹; P. D. Jablonski²; ¹Argonne National Laboratory; ²National Energy Technology Laboratory #### 3:00 PM Overview on Copper Covetic Materials: *Iwona Jasiuk*¹; Sabrina Nilufar¹; Gabriela Couvertier-Santos¹; Sakshi Braroo¹; ¹University of Illinois #### 3:20 PM Break #### 3:40 PM **Microstructural Characterization of Covetic Nanomaterials**: *Beihai Ma*¹; U. (Balu) Balachandran¹; Stephen Dorris¹; Tae Lee¹; Jie Wang¹; Jianguo Wen¹; Adam Rondinone²; ¹Argonne National Laboratory; ²Oak Ridge National Laboratory #### 4:00 PM Two Step Synthesis and Properties of Cobalt Covetics: Zafer Turgut¹; Gregory Kozlowski²; Michael Susner³; Michael McLeod⁴; John Horwath¹; ¹AFRL/RQQM; ²Wright State University; ³UES Inc.,; ⁴UDRI 4:20 PM Concluding Comments ## Deformation and Transitions at Grain Boundaries VI — Grain Boundary Energy and Structure II Program Organizers: Thomas Bieler, Michigan State University; Shen Dillon, University of Illinois; Saryu Fensin, Los Alamos National Laboratory; Jian Luo, University of California San Diego; Douglas Spearot, University of Florida Wednesday PM Room: A123 October 17, 2018 Location: Greater Columbus Convention Center Session Chairs: Kiran Solanki, Arizona State University; Fadi Abdeljawad, Sandia National Laboratories #### 2:00 PM Invited Stiffness Matters: The Role of the Interface Stiffness Tensor on Grain Boundary Dynamical Processes: Fadi Abdeljawad¹; Stephen Foiles²; Khalid Hattar²; Brad Boyce²; ¹Clemson University; ²Sandia National Laboratories ## MS&T18 #### MATERIALS SCIENCE & TECHNOLOGY #### 2:30 PM Structure and Properties of bcc Mg Synthesized Using Interface Strain Engineering: Siddhartha Pathak¹; Manish Jain¹; Marko Knezevic²; Irene Beyerlein³; ¹Univ of Nevada, Reno; ²University of New Hampshire; ³University of California, Santa Barbara #### 2:50 PM Invited Towards Controlling Grain Boundary Stability through Ion Beam Modification: *Khalid Hattar*¹; Christopher Barr¹; Samuel Briggs¹; Brittany Muntifering¹; Daniel Bufford¹; Caitlin Taylor¹; Nan Li²; Aman Haqua³; ¹Sandia National Laboratories; ²Los Alamos National Laboratory; ³Pennsylvania State University #### 3:10 PM Invited Revealing the Role of Grain Boundary Structures on Magnetic Flux Trapping Behavior in Niobium: A First-principles Study: *P Grag*¹; T Bieler²; Kiran Solanki¹; ¹Arizona State University; ²Michigan State University #### 3:30 PM Break #### 3:50 PM ECCI Characterization of Dislocation Evolution near Grain Boundaries and Its Effect on the Superconducting Properties of Niobium for SRF Cavities: *Mingmin Wang*¹; Shreyas Balachandran²; Santosh Chetri²; Anatolii Polyanskii²; Peter Lee²; Christopher Compton³; Thomas Bieler¹; ¹Michigan State University; ²National High Magnetic Field Laboratory;
³Facility for Rare Isotope Beams #### 4:20 PM On The Influence of Thermo-mechanical Process History on Stress Corrosion Cracking Of Solution Annealed Type 304 Stainless Steel: Osama Alyousif¹; ¹Kuwait University ### Eco-Friendly and Sustainable Ceramics — Novel Wastederived Cellular Materials Program Organizers: Enrico Bernardo, University of Padova; Henry Colorado, Universidad De Antioquia; Ivo Dlouhy, Institute of Physics of Materials, Academy of Sciences of the Czech Republic; Aldo Boccaccini, University of Erlangen-Nuremberg; Antonio Pedro Oliveira, Federal University of Santa Catarina; Isabella Lancellotti, Universita' di Modena e Reggio Emilia; Alexander Karamanov, Bulgarian Academy of Sciences Institute of Physical Chemistry "Rostislaw Kaischew"; Vilma Ducman, Slovenian National Building and Civil Engineering Institute Wednesday PM Room: A114 October 17, 2018 Location: Greater Columbus Convention Center Session Chairs: Isabella Lancellotti, University of Modena and Reggio Emilia; Yiannis Pontikes, KU Leuven #### 2:00 PM Invited From Waste CRT Glasses to Foam Glass: A Case of Study to Re-use Electric and Electronic End of Life Materials: Francois Mear¹; ¹Lille University #### 2:30 PM Invited Glassy Foams from Recycling: Some Examples of Study and Applications: Ronan Lebullenger¹; ¹University of Rennes #### 3:00 PM Invited Production of Hollow Glass Microspheres from Waste Glasses by Flame Synthesis with Na2SO4 Blowing Agent: Jozef Kraxner¹; Dušan Galusek¹; ¹FunGlass – Centre for Functional and Surface Functionalized Glass #### 3:20 PM Break #### 3:40 PM High Strength Cellular Glass-ceramics from Glass By-products of Metal Extraction Processes Applied on MSWI Bottom Ash: Patricia Rabelo Monich¹; Hugo Lucas²; Bernd Friedrich²; Enrico Bernardo¹; ¹University of Padova; ²RWTH Aachen #### 4:00 PM Upcycling of Vitreous By-product of the Plasma Heating of MSW into Multifunctional Porous Glass-ceramics: Patricia Rabelo Monich¹; Daniele Desideri¹; Enrico Bernardo¹; ¹University of Padova ## **Environmental Degradation and Embrittlement of Structural Metals — Hydrogen Embrittlement II** Program Organizers: Jun Song, McGill University; Ankit Srivastava, Texas A&M University; Homero Castaneda, Texas A&M University; Salim Brahimi, McGill University / IBECA Technologies; Frank Cheng, University of Calgary; Ronald Miller, Carleton University; Xin Pang, Canmetmaterials, Natural Resources Canada; Stephen Yue, McGill University Wednesday PM Room: C161A/161B October 17, 2018 Location: Greater Columbus Convention Center Session Chair: Sriraman Rajagopalan, McGill University #### 2:00 PM Invited Role of Grain Boundaries in Hydrogen Diffusion in Metals: Fast or Slow?: Jun Song¹; Xiao Zhou¹; ¹McGill University #### 2:30 PM A Novel Approach to Assess Material Susceptibility to Hydrogen Embrittlement (HE) Using Finite Element Analyses (FEA): *Tuhin Das*¹; Esaie Legrand²; Salim Brahimi³; Jun Song¹; Stephen Yue¹; ¹Department of Mining and Materials Engineering, McGill University; ²Laboratoire des Sciences de l'Ingénieur pour l'Environnement, LaSIE, Bat. Marie Curie, Av. Michel Crepeau; ³IBECA Technologies Corp #### 2:50 PM Invited Fracture Mechanics Analysis of a High Strength Hydrogen Embrittlement L43 BOP Connector Bolt Failure: *Herman Amaya*¹; Bryan Fahimi¹; Ramgopal Thodla²; ¹Schlumberger; ²DNVGL USA, Inc #### 3:20 PM Break #### 3:50 PM Microstructural Variation at Different Layers of API 51 X80 Pipeline Steel Thickness and Its Relation to Hydrogen Degradation: *Enyinnaya Ohaeri*¹; Jerzy Szpunar; ¹University of Saskatchewan #### 4:10 PM Invited **Hydrogen Embrittlement of High Strength Alloys: Understanding the Similarities and Differences:** Xu Lu¹; Dong Wang¹; Di Wan¹; Mohammad Ahmadzadeh¹; *Afrooz Barnoush*¹; ¹Norwegian University of Science and Technology ## Fast/Ultrafast Characterization of Irreversible Transformations in Materials with X-rays and Electrons — Synchrotron X-ray and XFEL Imaging Program Organizers: Tian Li, Lawrence Livermore National Laboratory; Tao Sun, Argonne National Laboratory; Anders Madsen, European XFEL Wednesday PM Room: B246 October 17, 2018 Location: Greater Columbus Convention Center Session Chair: Tao Sun, Argonne National Laboratory #### 2:00 PM Invited Visualization and Measurement with Dynamic X-ray Radiography of Laser Melting in 3D Printing: Anthony Rollett¹; Ross Cunningham¹; Tao Sun²; Christopher Kantzos¹; Cang Zhao²; ¹Carnegie Mellon University; ²Argonne National Laboratory #### 2:30 PM Invited Characterizing the Dynamics of Melting and Solidification in Laser Powder Bed Fusion Additive Manufacturing Process by High-speed X-ray Imaging and Diffraction: Lianghua Xiong¹; Niranjan Parab²; Qilin Guo¹; Tao Sun²; *Lianyi Chen*¹; ¹Missouri S&T; ²Argonne National Laboratory #### 3:00 PM Investigation of Dynamic Fracture Behavior of Additively Manufactured Al-10Si-Mg Using High-speed Synchrotron X-ray Imaging: Niranjan Parab¹; Lianghua Xiong²; Cang Zhao¹; Yizhou Nie³; Cody Kirk³; Zherui Guo³; Xianghui Xiao¹; Weinong Chen³; Lianyi Chen²; Tao Sun¹; ¹Argonne National Laboratory; ²Missouri University of Science and Technology; ³Purdue University #### 3:20 PM Break #### 3:40 PM Invited Tracking of Stochastic Processes with Full Field Hard X-ray MHz Rate Single Pulse Imaging: Patrik Vagovic¹; Tokushi Sato¹; Rita Graceffa²; Pablo Villanueva-Perez¹; Ladislav Mikes²; Christian David³; Margie Olbinado⁴; Alexander Rack⁴; Andrej Hovan⁵; Jozef Ulicny⁵; Marcin Sikorsky²; Henry Chapman¹; Alke Meents¹; Joachim Schulz²; Thomas Tschentscher²; Adrian Mancuso²; ¹CFEL, DESY; ²European XFEL; ³PSI; ⁴ESRF; ⁵Safarik University #### 4:00 PM Ultrafast Sstructural Behavior in Shock-compressed Iron Probed Using XFEL: Tomokazu Sano¹; ¹Osaka University #### 4:20 PM Invited $\label{eq:continuity} \textbf{Dynamic X-ray Characterization of Reactive Materials} : \textit{Emre Gunduz}^1; \ ^1\text{Purdue University}$ #### From Diversity to Inclusion — Session II Program Organizers: Elvi Dalgaard, Pratt & Whitney Canada; Lynnette Madsen, Svedberg Science, Inc. Wednesday PM Room: B231 October 17, 2018 Location: Greater Columbus Convention Center #### 2:00 PM Invited **Diversity & Inclusion: Everyone Has a Responsibility**: *Lana Eagle*¹; ¹Industry Council for Aboriginal Business (ICAB) #### 2:30 PM Invited Observations, Learnings and Outlooks from the 3rd TMS Summit on Diversity: *Jonathan Madison*¹; Jennifer Andrew²; Megan Brewster³; Amy Clarke⁴; Kristen Constant⁵; Oscar Dubon⁶; Emily Kinser⁷; Matthew Korey⁸; Natalie Larson⁶; Michael Rawlings¹⁰; Rosa Rojas¹¹; ¹Sandia National Laboratories; ²University of Florida; ³Launch Forth; ⁴Colorado School of Mines; ⁵Iowa State University; ⁶University of California, Berkeley; ⁷IBM; ⁸Purdue University; ⁹University of California, Santa Barbara; ¹⁰NSF; ¹¹University of Arizona #### 3:00 PM Bring Your Whole Self to Work: Raul Rebak¹; ¹GE Global Research 3:20 PM Break #### 3:40 PM Invited Raising Awareness of the Existing Diversity and Inspiring the Next Generation: Lynnette Madsen¹; 'Svedberg Science, Inc. 4:00 PM Panel: Diversity and Inclusion at MS&T and Beyond 5:00 PM Cocktail Reception ## Glass, Amorphous, and Optical Materials: Common Issues within Science & Technology — Glass Formation, Relaxation, and Crystallization Program Organizers: John Kieffer, University of Michigan; Liping Huang, Rensselaer Polytechnic Institute Wednesday PM Room: A115 October 17, 2018 Location: Greater Columbus Convention Center Session Chair: To Be Announced #### 2:00 PM Invited Surface Relaxation of Glasses: Its Effects on Fibers and Thin Films: *Minoru Tomozawa*¹; ¹Rensselaer Polytechnic Institute #### 2:30 PM Invited Statistical Mechanical Modeling of Fluctuations in Glass-forming Systems: *John Mauro*¹; ¹The Pennsylvania State University #### 3:00 PM On the Prony Series Representation of Stretched Exponential Relaxation: *John Mauro*¹; Yihong Mauro¹; ¹The Pennsylvania State University #### 3:20 PM Break #### 3:40 PM **Thermal History-insensitive Glasses**: Alexandra Mitchell¹; Timothy Gross¹; Corning #### 4:00 PM Viscosities, Activation Energies, and Working Region Predictions for Bismuth Aluminoborosilicate Glasses: Levi Gardner¹; Michael Simpson¹; Krista Carlson¹; ¹University of Utah #### 4:20 PM Crystallization Kinetics of Amorphous Semiconductors and Phase Change Material Thin Films Studied with Nanosecond-scale Dynamic TEM: Thaddeus Rahn¹; Al Rise¹; Victoriea Bird¹; Mark Winseck¹; Huai-Yu Cheng²; Simone Raoux³; Geoffrey Campbell⁴; Melissa Santala¹; ¹Oregon State University; ²IBM/Macronix; ³Helmholtz-Zentrum Berlin für Materialien und Energie; ⁴Lawrence Livermore National Laboratory ## MSeT18 #### MATERIALS SCIENCE & TECHNOLOGY #### 4:40 PM **Growth of Gold Nanoparticle Inside Glass Matrix**: *Anahit Hovhannisyan*¹; Liping Huang¹; ¹Rensselaer Polytechnic Institute IMS Symposium on Metallography and Microstructural Characterization of Materials and the Correlation of Microstructure to Mechanical Properties — Metallography and Microstructural Characterization of Materials and the Correlation of Microstructure to Mechanical Properties III Program Organizers: Daniel Dennies, DMS, Inc.; James Martinez, NASA Johnson Space Center; Michael Keeble, Buehler, A Division of ITW; Jaret Frafjord, IMR Test Labs - Portland Wednesday PM Room: A212 October 17, 2018 Location: Greater Columbus Convention Center Session Chairs: Jaret Frafjord, IMR Test Labs - Portland; Chris Bagnall, MCS Associates, Inc; Mike Keeble, Buehler, A Division of ITW #### 2:00 PM Effects of Aging Treatment on the Microstructure and Hardness of Pb-free Solder Alloys: Carina Morando¹; Osvaldo Fornaro¹; ¹IFIMAT-CIFICEN-UNCPBA-CONICET #### 2:20 PM Characterization of a Thermomechanically Processed Mg-Li-Al Ultralight Alloy: Microstructure and Properties: Rezawana Islam¹; A Hadadzadeh²; Mary Wells³; Meysam Haghshenas¹; ¹University of North Dakota; ²University of Waterloo; ³University of Guelph #### 2:40 PM Assessing the Impact of Image Acquisition and
Processing Methods on Threedimensional Microstructural Reconstructions: Thomas Ivanoff¹; Jonathan Madison¹; Joshua Koepke¹; Bradley Jared¹; ¹Sandia National Laboratories #### 3:00 PM Computer Vision and Transfer Learning: A Multi-scale Approach to Quantify Microstructure for Correlation to Mechanical Properties: Andrew Kitahara¹; Elizabeth Holm¹; ¹Carnegie Mellon University #### 3:20 PM Break #### 3:40 PM Composite Overwrapped Pressure Vessel (COPV) Life Test: Richard Russell¹; Jacob Hochhalter²; David Dawicke²; ¹NASA Ksc; ²NASA LaRC #### 4:00 PM The Effect of Heat Treatment on Precipitation and Recrystallization Behavior of Selective Laser Melted Inconel 718: Runbo Jiang¹; Joseph Pauza¹; Anthony Rollett¹; ¹Carnegie Mellon University #### 4:20 PM Microstructure Quantification and Reduced Order Crystal Plasticity Modelling Using a Machine Learning Approach: Mengfei Yuan¹; Stephen Niezgoda¹; ¹The Ohio State University #### 4:40 PM The Effect of Tool Rotational Speed on the Mechanical Properties of Friction Stir Welding of Steel: Monatadhar Al-moussawi¹; Alan Smith²; ¹Al-Furat Al-Awsat Technical University; ²Sheffield Hallam University #### 5:00 PM A Dislocation Density-based Model for Deformation of a 3D Printed Silver Micro-pillars: Mehdi Hamid¹; Mohammad Sadeq Saleh²; Rahul Panat²; Hussein Zbib¹; ¹Washington State University; ²Carnegie Mellon University ## Interfaces, Grain Boundaries and Surfaces from Atomistic and Macroscopic Approaches — Thermodynamics Program Organizers: John Blendell, Purdue University; Ming Tang, Rice University; Shen Dillon, University of Illinois; Wayne Kaplan, Technion - Israel Institute of Technology; Dominique Chatain, CNRS, Aix-Marseille University Wednesday PM Room: A122 October 17, 2018 Location: Greater Columbus Convention Center Session Chair: Amanda Krause, Lehigh University #### 2:00 PM Invited Thermodynamics and Kinetics of Layering Transitions at Grain Boundaries: *Jeffrey Rickman*¹; Martin Harmer¹; Helen Chan¹; ¹Lehigh University #### 2:30 PM Invited Computing Grain Boundary Diagrams: From Phenomenological Thermodynamic Models to Atomistic Simulations: Chongze Hu¹; Shengfeng Yang²; Jian Luo¹; ¹Univ of California San Diego; ²UCSD/IUPUI #### 3:00 PM Invited Ab Initio Modeling of Two-dimensional Interfaces and Surfaces: Maytal Caspary Toroker¹; 'Technion - Israel Institute of Technology #### 3:30 PM Sintering Kinetics in Direct Ink Write Processes: Atomistic and Mesoscopic Modeling Perspectives: Fadi Abdeljawad¹; Jesse Sestito²; Yan Wang²; Allen Roach¹; ¹Sandia National Laboratories; ²Georgia Institute of Technology #### 3:50 PM Break #### 4:10 PM Atomistic Simulation of Field Evaporation from Field Emitter Tips: Christian Oberdorfer¹; Travis Withrow¹; Iman Ghamarian²; Emmanuelle Marquis²; Wolfgang Windl¹; ¹Ohio State Univ; ²University of Michigan #### 4:30 PM **Atomistic Study of Helium Effects in Nickel**: *Edmanuel Torres*¹; Jeremy Pencer¹; Lori Walters¹; ¹Canadian Nuclear Laboratories #### 4:50 PM Coarsening Statistics in an Iron Polycrystal and Advances in Grain Boundary Energy Extraction: *Yu-Feng Shen*¹; Xiaoting Zhong¹; Aditi Bhattacharya¹; He Liu¹; Gregory Rohrer¹; Robert Suter¹; ¹Carnegie Mellon University #### 5:10 PM **Ab-initio Characterization of Organic Functionalized Titania Membranes**: *Evan Hyde*¹; Matthew Beck¹; ¹University of Kentucky #### 5:30 PM Insights into the Structure and Energetics of Interfaces Between Iron and Cementite from Atomistic and Continuum Modeling: Christopher Weinberger¹; Matthew Guziewski¹; Shawn Coleman²; ¹Colorado State University; ²Army Research Laboratory ## Joining of Advanced and Specialty Materials (JASM XX) — Ultrasonic Joining Program Organizers: Mathieu Brochu, Mcgill University; Anming Hu, University of Tennessee Knoxville; Boian Alexandrov, Ohio State University; Darren Barborak, WeldQC, Inc; Akio Hirose, Osaka University; Peng He, Harbin Institute of Technology; Zhiyong Gu, University of Massachusetts Lowell Wednesday PM Room: C171 October 17, 2018 Location: Greater Columbus Convention Center Session Chair: Vikas Patel, ArcelorMittal USA ## 2:00 PM Effect of Steel Microstructure on the Bonding of Steel and Nickel by Ultrasonic Welding: $Jheyu\ Lin^1$; 1 University of Tokyo ### 2.20 PM Weld Formation during Ultrasonic Welding of Al Alloy to Cu: *Hiromichi Fujii*¹; Hiroki Endo¹; Yutaka Sato¹; Hiroyuki Kokawa¹; ¹Tohoku University ### 2:40 PM **Determination of Interfacial Wavelength and Process Parameters in Impact Welds**: *Taeseon Lee*¹; Jackson Peck¹; Isabel Boona¹; Anupam Vivek¹; Glenn Daehn¹; ¹Ohio State University ## 3:00 PM Thermal Fatigue Properties of Ultrasonic Bonded Copper Joint: *Takahito Fushimi*¹; Tomoki Matsuda¹; Tomokazu Sano¹; Akio Hirose¹; ¹Osaka University ## 3:20 PM Break ## 3:40 PM Development of a Hybrid Ultrasonic-resistance Spot Welding System for Aluminum Sheet: Lindsey Lindamood¹; David Workman¹; Jerry Gould¹; ¹EWI ## 4:00 PM Ultrasonic Bonding for LED Device Mounted on E-textile Using Plastic Flow of Solder as Cushioning Material: *Hiroaki Mort*¹; Kazushi Matsuoka¹; Hiromichi Fujii²; Atsuji Masuda³; ¹Osaka University; ²Tohoku University; ³Industrial Technology Center of Fukui Prefecture ## 4:20 PM Multi-material Integration for Automotive Structures Using Ultrasonic Additive Manufacturing: Hongqi Guo¹; Mark Gingerich¹; Leon Headings¹; Ryan Hahnlen²; Marcelo Dapino¹; ¹The Ohio State University; ²Honda R&D Americas, Inc. ## Joining of Advanced and Specialty Materials (JASM XX) — Welding Metallurgy II Program Organizers: Mathieu Brochu, Mcgill University; Anming Hu, University of Tennessee Knoxville; Boian Alexandrov, Ohio State University; Darren Barborak, WeldQC, Inc; Akio Hirose, Osaka University; Peng He, Harbin Institute of Technology; Zhiyong Gu, University of Massachusetts Lowell Wednesday PM Room: C172 October 17, 2018 Location: Greater Columbus Convention Center Session Chairs: Doris Ivette Villalobos Vera, Instituto Tecnológico de Veracruz; Ivan Mendoza-Bravo, Instituto Tecnologico de Veracruz ## 2:00 PM Weldability of Additively Manufactured 304L Stainless Steel: *Jeffrey Rodelas*¹; Daniel Tung¹; Alexander Barr¹; Matthew Vieira¹; ¹Sandia National Laboratory ### 2:20 PN Chloride-induced Stress Corrosion Cracking Behavior in 304 Stainless Steel Weldments: Xin Wu¹; Zhenzhen Yu¹; Scott Gordon¹; Stephen Liu¹; Zeev Shayer¹; Christopher Alexander²; Eric Schindelholz²; Charles Bryan²; ¹Colorado School of Mines; ²Sandia National Laboratories ## 2:40 PM Preliminary Investigations into LME Induced Failures in Austenitic Stainless Steels: Dean Sage¹; Carolin Fink¹; ¹Ohio State University ## 3:00 PM Strength Recovery in Welds of 17-4 and 13-8+Mo Maraging Stainless Steels: Robert Hamlin¹; *John DuPont*¹; ¹Lehigh University ## 3:20 PM Tempering Response of Type 410 Welding Consumables and Base Metals: Benjamin Lawson¹; Boian Alexandrov¹; ¹The Ohio State University ## 3:40 PM Break ## 4:00 PM Phase Transformations and Mechanical Properties of Welds Produced with a 10 wt% Ni Steel Welding Consumable: Erin Barrick¹; John DuPont¹; ¹Lehigh University ## 4:20 PM Quantification of the Tempering Response in Grade 22 Steel for Temper Bead Welding Applications: *Jeff Stewart*¹; Boian Alexandrov¹; ¹The Ohio State University ## 4:40 PM Effect of Multipass Welding on the Microstructural Evolution and Mechanical Properties of High Strength Low Alloy 100 Steel: *Jonah Duch*¹; John DuPont¹; ¹Lehigh University ## 5:00 PM Effect of Materials on Weld Residual Stress of Ship Structures: Yu-Ping Yang¹; TD Huang¹; Wei Zhang²; Charles Fisher³; Steve Scholler⁴; Randy Dull⁵; ¹Huntington Ingalls Shipbuilding; ²The Ohio State University; ³Naval Surface Warfare Center – Carderock Division; ⁴Huntington Ingalls Shipbuilding; ⁵EWI # MATSCITECH.ORG MATERIALS SCIENCE & TECHNOLOGY ## Journal of the American Ceramic Society Awards Symposium — JACerS Awards Symposium Session II Program Organizer: William Fahrenholtz, Missouri University of Science and Technology Wednesday PM Room: A125 October 17, 2018 Location: Greater Columbus Convention Center Session Chair: William Fahrenholtz, Missouri University of Science and Technology ## 2:00 PM Invited Emerging Opportunities in Ceramics and Glass Research: Follow-up from a 2016 NSF Workshop: *Katherine Faber*¹; 'California Institute of Tech ### 2:30 PM Invited Current Understanding and Future Research Directions at the Onset of the Next Century of Sintering Science and Technology: *Rajendra Bordia*¹; Suk-Joong Kang²; Eugene Olevsky³; ¹Clemson University; ²Korea Advanced Institute of Science and Technology (KAIST); ³San Diego State University ## 3:00 PM Invited **Mobility Transition is the Mechanism behind Two-step Sintering**: *Yanhao Dong*¹; I-Wei Chen²; ¹Massachusetts Institute of Technology; ²University of Pennsylvania ## 3:30 PM Break ## 4:00 PM Invited Characterization and Modeling of Microstructural Level Stresses in Alumina: Melissa Teague¹; Theron Rodgers¹; Scott Grutzik¹; Stephen Meserole¹; ¹Sandia National Laboratories ## 4:30 PM Invited Viscosity of Glass-forming Systems: From Medieval Stained Glass Windows to Advanced Functional Glasses: John Mauro¹; ¹The Pennsylvania State University ## 5:00 PM Invited Energetics and Structure Relations of Solid Phases in Silicon–oxygen–carbon System: *Jiewei Chen*¹; Sean King²; Alexandra Navrotsky³; ¹University of California Davis; ²Intel Corporation; ³Peter A. Rock Thermochemistry Laboratory and NEAT ORU, University of California Davis ## 5:30 PM Invited Environmental Resistance of Cr2AlC MAX Phase at High Temperature: Jesus Gonzalez-Julian¹; Olivier Guillon¹; Robert Vassen¹; ¹Forschungszentrum Jülich ## 6:00 PM Concluding Comments ## Light Metal Technology – Applications for the Transportation Industry — Aluminium Alloys Casting II Program Organizers: Julie Levesque, Quebec Metallurgy Center; Mihaiela Isac, McGill Metals Processing Centre; Xiaoming Wang, Purdue University; Roderick Guthrie, McGill University; Sa Ge, Hatch Ltd.; Kaan Inal,
University of Waterloo; Frederic Laroche, Rio Tinto Wednesday PM Room: B130 October 17, 2018 Location: Greater Columbus Convention Center Session Chairs: Roderick Guthrie, McGill University; Mohamad Idriss, CTA-BRP-UdeS ## 2:00 PM The Internet of Things (IoT) for Casting with 3D Printed Sand Molds: Jason Walker¹; Brian Vuksanovich¹; Eric MacDonald¹; Brett Conner¹; Guha Manogharan²; Santosh Reddy Sama²; Richard Lonardo³; Kirk Rogers⁴, Gerard Thiel⁵; Kip Woods⁵; ¹Youngstown State University; ²Pennsylvania State University; ³Youngstown Business Incubator; ⁴M&P Gravity Works LLC; ⁵University of Northern Iowa ### 2:20 PM **Porosity Management in High Pressure Aluminum Die Castings**: Dan Beabout¹; ¹Spectraforce ## 2:40 PM A Numerical Simulation of Transport Phenomenon for the Casting of AA6111 Plate Using Horizontal Single Belt Pilot Caster: Usman Niaz¹; Mihaiela Isac¹; Roderick Guthrie¹; ¹McGill University ## 3:00 PM Numerical and Physical Modeling of Horizontal Single Belt Casting (HSBC) of AA5182 Alloy for the Production of Thin Strip Material: *Cheng-Hung Hsin*¹; Roderick Guthrie¹; Mihaiela Isac¹; ¹MMPC, McGill University ## Manufacturing-Related Failures — Medical Device Failures Program Organizers: Andrew Havics, PH2 LLC; Burak Akyuz, ATS, Inc.; Pierre Dupont, UMONS Faculté polytechnique de MONS (FPMs) Wednesday PM Room: A210 October 17, 2018 Location: Greater Columbus Convention Center Session Chairs: Margaret Flury, Medtronic; Dana Medlin, EAG Laboratories, Inc.; Brad James, Exponent Failure Analysis Associates; Michael Boach, University of Microscippi Medical Contor Michael Roach, University of Mississippi Medical Center ## 2:00 PM Invited Retrieval and Analyses of Medical Devices for 5 Decades: Jack Lemons¹; ¹UAB ## 2:40 PM Failure Analysis of Orthopedic Implants: Gabriel Ganot¹; Brad James¹; ¹Exponent ## 3:00 PM Fatigue-to-fracture Testing, Finite Element Analysis, and Metallographic Analysis to Estimate Fatigue Durability of Superelastic Nitinol Stents for Medical Device Use: Sabrina Huang¹; Seoggwan Kim¹; Sara Sherman¹; Alan Saunders¹; Ray Boudreaux¹; ¹Cook Research Incorporated ### 3:20 PM Invited Incidence and Characterization of Corrosion in Stainless Steel Percutaneous Lead Systems Located Exterior to the Body: *Janet Gbur*¹; Dustin Tyler¹; John Lewandowski¹; ¹Case Western Reserve University ## 3:40 PM Break ## 4:00 PM Case Studies on Sterilization-induced Failures in Metallic Medical Devices: *Matthew Bowers*¹; Brad James¹; ¹Exponent, Inc. ## 4:20 PM Invited Failure Analysis of Fracture Fixation Devices for Medical Implant Applications: Dana Medlin¹; ¹EAG Laboratories, Inc. ## Materials Degradation in ${\rm CO_2}$ Environments — Session II Program Organizers: Richard Oleksak, National Energy Technology Laboratory; Julie Tucker, Oregon State University; Matthew Walker, Sandia National Laboratories Wednesday PM Room: C162A/162B October 17, 2018 Location: Greater Columbus Convention Center Session Chairs: Matthew Walker, Sandia National Laboratories; Richard Oleksak, National Energy Technology Laboratory ## 2:00 PM Invited Considerations in Materials Selection due to Oxidation in sCO₂ Compact Heat Exchangers: John Shingledecker¹; Steven Kung¹; Ian Wright²; Adrian Sabau³; ¹EPRI; ²WrightHT; ³Oak Ridge National Laboratory ## 2:30 PM Corrosion and In-situ Low Cycle Fatigue of 316L Stainless Steel in Supercritical CO₂: Julie Tucker¹; Lucas Teeter¹; Benjamin Adam¹; Sebastien Teysseyre²; ¹Oregon State University; ²Idaho National Laboratory ## 2:50 PM Effect of Supercritical CO₂ Exposure on Fatigue Thresholds in Nickel Superalloys Compared to Steam and Vacuum Exposures: *Kyle Rozman*¹; Ömer Dogan¹; Gordon Holcomb¹; Casey Carney¹; Jeffrey Hawk¹; ¹National Energy Technology Laboratory ## 3:10 PM Invited **Evaluation of Diffusion-bonded Joints of Austenitic Alloys Exposed to S-CO₂ Environment**: *Changheui Jang*¹; Ho Jung Lee²; Sung Hwan Kim¹; Sunghoon Hong²; ¹Korea Advanced Institute of Science & Technology; ²Korea Hydro and Nuclear Co., Ltd. ## 3:40 PM Break ## 4:00 PM Corrosion and Mechanical Performance of Grade 92 F-M Steel after Exposure to s-CO2: Andrew Brittan¹; Mark Anderson¹; ¹University of Wisconsin-Madison ## 4:20 PM Effect of Carburization on Deformation Behavior of a Metal-weld in sCO₂ Power Cycle Applications: Sajedur Akanda¹; Kyle Rozman¹; Reyixiati Repukaiti¹; Ömer Dogan¹; Jeffrey Hawk¹; ¹National Energy Technology Laboratory ## 4:40 PM The Effect of Carbon Dioxide Environment on the Spark Plasma Sintering of Cerium(IV) Oxide: *Anil Prasad*¹; Linu Malakkal²; Lukas Bichler¹; Jerzy Szpunar²; ¹University of British Columbia; ²University of Saskatchewan ## 5:00 PM The Thermodynamic Investigation of the Effect of CO₂ to the Stability of (La0.8Sr0.2)0.98MnO3d and La0.6Sr0.4Co0.2Fe0.8O3d as Cathodes of Solid Oxide Fuel Cell: Shadi Darvish¹; *Yu Zhong*²; ¹Florida International University; ²Worcester Polytechnic Institute ## Materials for Nuclear Applications and Extreme Environments — Processing and Behavior of Novel Fuels II Program Organizers: Cory Trivelpiece, Savannah River National Laboratory; Dev Chidambaram, University of Nevada, Reno; Raul Rebak, GE Global Research; Yutai Katoh, Oak Ridge National Laboratory; Jake Amoroso, Savannah River National Laboratory; Kevin Fox, Savannah River National Laboratory Wednesday PM Room: D183 October 17, 2018 Location: Greater Columbus Convention Center Session Chair: Cory Trivelpiece, Savannah River National Laboratory ## 2:00 PM Invited Technology Development for Applying a Two-stage Endcap to High Thermal Stability Fuel Rods: Jerry Gould¹; Cem Topbasi²; Bo Cheng²; *Lindsey Lindamood*¹; Steve Manring¹; Tim Mikel¹; ¹Edison Welding Inst; ²Electric Power Research Institute ## 2:40 PM Invited Microstructural and Microchemical Characterization of Nuclear Fuels: Assel Aitkaliveva¹; ¹University of Florida ## Mechanochemical Synthesis and Reactions in Materials Science III — Session II Program Organizers: Antonio Fuentes, Cinvestav Unidad Saltillo; Laszlo Takacs, University of Maryland Baltimore County; Challapalli Suryanarayana, University of Central Florida; Huot Jacques, University Du Quebec A Trois Rivieres Wednesday PM Room: B131 October 17, 2018 Location: Greater Columbus Convention Center Session Chair: Antonio Fuentes, Cinvestav Unidad Saltillo ## 2:00 PM Invited Kinetics of Mechanical Amorphization: Effective Avrami Exponents: *Javier Blázquez*¹; Alejandro Manchón-Gordón¹; Jhon Ipus¹; Clara Conde¹; Alejandro Conde¹; ¹University of Sevilla ## 2:30 PM A Multiscale Model of Solid State Amorphization during Milling of Pharmaceutical Materials: Yifei Zeng¹; Lorena Alzate-Vargas¹; Pilsun Yoo¹; Chunyu Li¹; Rachel Frocino³; Jeff Brum²; Peilin Liao¹; Alejandro Strachan¹; Marisol Koslowski¹; ¹Purdue University; ²GlaxoSmithKline, Analytical Sciences and Development ## 3:00 PM Phase Evolution during Mechanical Alloying of Equiatomic Iron-cobalt-nickel Alloy: Anuj Rathi¹; Vamsi Meka¹; Tanjore Jayaraman¹; ¹University of Michigan-Dearborn ## MS&T18 ## MATERIALS SCIENCE & TECHNOLOGY ## 3:20 PM Break ## 3:40 PM The Effect of Yttrium on the Grain Growth of Nanocrystalline Titanium: Peter Feldtmann¹; Carl Koch¹; Ron Scattergood¹; ¹North Carolina State University ### 4.00 PM Power Law Modeling of Acoustic Cavitation Erosion as a Materials Processing Technique: Jeremy Wright¹; Brian Mitchell²; ¹Tulane University; ²Tulane University ## 4:20 PM Combined Mechanochemical/Thermal Route for Smart Synthesis of LiFeSi2O6 from Different Fe and Si Sources: Erika Tóthová¹; Ralf Witte²; Michal Hegedüs³; Mamoru Senna⁴; Horst Hahn²; Paul Heitjans⁵; Vladimír Šepelák²; ¹Institute of Geotechnics, Slovak Academy of Sciences; ²Institute of Nanotechnology, Karlsruhe Institute of Technology; ³Institute of Chemistry, P. J. Šafárik University in Košice; ⁴Faculty of Science and Technology, Keio University; ⁵Institute of Physical Chemistry and Electrochemistry, Leibniz University Hannover ## 4:40 PM Effect of Cold Rolling and Ball Milling on the First Hydrogenation of Air Exposed TiFe + 4% Zr Alloy: Joydev Manna¹; *Huot Jacques*¹; ¹University Du Quebec A Trois Rivieres ## Microalloyed Steels — Microalloyed Steels III Program Organizers: Emmanuel De Moor, Colorado School of Mines; Steven Jansto, CBMM-North America Inc; Robert Glodowski, RJG Metallurgical LLC Wednesday PM Room: A225 October 17, 2018 Location: Greater Columbus Convention Center Session Chair: To Be Announced ## 2:00 PM Invited Quality Assessment and Suggestion of Standard Revision for High Strength Rebars in China: Caifu Yang¹; Xuehui Chen¹; Ruizhen Wang¹; ¹Central Iron and Steel Research Institute ## 2:30 PM Recrystallized Controlled Forging: The Key to Strong, Tough, Economical Microalloyed Steel Forgings with Relaxed Forging Conditions and No Heat Treatment: Aaron Stein¹; Anthony DeArdo¹; ¹University of Pittsburgh ## 2:50 PM Characterization of Microalloyed Armor Steels Produced in Small Scale: William Williams¹; Haley Doude¹; Andrew Oppedal¹; Wilburn Whittington¹; Hongjoo Rhee¹; ¹CAVS ## 3:10 PM Effect of Aluminum and Vanadium Fine Grain Practice on the Machinability of 4140 Steel: Mark Emmendorfer¹; Simon Lekakh¹; Laura Bartlett¹; Ronald O'Malley¹; Geary Ridenour²; Eduardo Sheid²; John Heerema³; ¹Missouri Univ of Science & Technology; ²Gerdau Special Steel North America; ³Gerdau Long Steel North America ## 3:30 PM Break ## 3:50 PM Effect of Nitrogen Content on the Microstructures and Mechanical Properties in Simulated CGHAZ of Normalized Vanadium Microalloyed Steel: Feng Chai¹; Zhongran Shi¹; Caifu Yang¹; Xuehui Chen¹; ¹Central Iron and Steel Research Institute ## 4:10 PM Study of Heat Treatment Process on Mechanical Properties of 10CrNiMoV Bulb Flat Steel: *Xuehui Chen*¹; Caifu Yang¹; Feng Chai¹; Qian Zhang¹; Yaqing Hou¹; Li Yang¹; ¹Central Iron and Steel Research Institute ### 4:30 PM Research and Development of Low Cost x65 and x70 Niobium Microalloyed Pipeline Steel: Xiaolong Yang¹; Qiang Wang¹; Shaojiang Yin¹; Miao Zang¹;
Zhixiu Zheng¹; Weijian Liu¹; Yunge Wang¹; ¹Hebei Iron and Steel Group Tangsteel Company ## Multiscale Modeling of Microstructure Deformation in Material Processing — Multiscale Modeling of Microstructure Deformation in Material Processing - Part II Program Organizers: Lukasz Madej, AGH University of Science and Technology; Krzysztof Muszka, AGH University of Science and Technology; Danuta Szeliga, AGH University of Science and Technology; Jaimie Tiley, Air Force Office of Scientific Research Wednesday PM Room: C170 October 17, 2018 Location: Greater Columbus Convention Center Session Chairs: Lukasz Madej, AGH University of Science and Technology; Krzysztof Muszka, AGH University of Science and Technology ### 2:00 PM Simulation of Dendrite Formation during Unstable Solidification Using a Second Order Level Set Method: Vimal Ramanuj¹; Ramanan Sankaran¹; ¹Oak Ridge National Laboratory ## 2:20 PM Phase-field Approach Coupled with Crystal Plasticity for Three-Dimensional Static Recrystallization in Ti-7Al Alloys and Comparison with Experiment: Arunabha Mohan Roy¹; Sriram Ganesan¹; Pinar Acar¹; Anna Trump¹; Susan Gentry¹; John Allison¹; Katsuyo Thornton¹; Veera Sundararaghavan¹; ¹University of Michigan-Ann Arbor ## 2:40 PM Deep Learning to Predict Stress Levels in a Microstructure under Uniaxial Tensile Deformation: Ankita Mangal¹; Elizabeth Holm¹; ¹Carnegie Mellon University ## 3:00 PM **Micromechanics-based Modeling of Grain Boundary Sliding Mechanism**: Shoieb Chowdhury¹; *Hesam Askari*¹; ¹University of Rochester ## 3:20 PM Modelling of Recrystallization Kinetics with Combined Finite Element and Phase Field Method: *Krzysztof Muszka*¹; Maciej Paszynski¹; Grzegorz Gurgul¹; Paulina Lisiecka-Graca¹; Danuta Szeliga¹; ¹AGH University of Science and Technology ## 3:40 PM Break ## 4:00 PM A Crystal Plasticity Model for Dynamic Recrystallization in Ti-6Al-4V Alloy: Arunabha Mohan Roy¹; Veera Sundararaghavan¹; ¹University of Michigan-Ann Arbor ## 4:20 PM Concepts of Communication Interface in the FE2 Method: Adam Legwand¹; Lukasz Madej¹; ¹AGH University of Science and Technology ## 4:40 PM Viscoplastic Self-consistent Modeling of Grain size Effects on Slip and Twinning in High Purity a-Ti: Daniel Savage¹; Zhangxi Feng¹; Nicholas Ferreri¹; Marko Knezevic¹; ¹University of New Hampshire Multiscale Simulation and Experimental Validation of Additive Manufacturing Technologies: A Status Update by Academia, Solution Providers and Industry on Its Intake, Market Opportunities Now and Going Forward — Multiscale Simulation in Additive Manufacturing and AM Panel Discussion Program Organizers: Deepankar Pal, 3DSIM; Ankit Saharan, EOS; Anthony Rollett, Carnegie Mellon University; Adrian Sabau, Oak Ridge National Laboratory Wednesday PM Room: A221 October 17, 2018 Location: Greater Columbus Convention Center Session Chair: Ankit Saharan, EOS ## 2:00 PM Beyond Single Part Qualification in AM: Mikkel Pedersen¹; Simon Sankare¹; Simon Mckown²; Shawn Kelly²; Blanka Szost¹; Dan Johns¹; ¹Oerlikon AM GmbH; ²Oerlikon AM (US) Inc. ## 2:30 PM Invited Microstructure Modeling of Inconel 718 Processed through Additive Manufacturing Process: Javed Akram¹; Pradeep Chalavadi¹; Deepankar Pal¹; Dave Conover¹; Brent Stucker¹; ¹ANSYS ## 2:50 PM Process Monitoring in Additive Manufacturing: Anja Loesser¹; ¹Eos Na ## 3:20 PM **Simulation Driven Design for Additive Manufacturing**: *Spencer Thompson*¹; ¹EOS of North America ## 3:50 PM Break ## 4:10 PM **Simulation and Validation for Better Build Plate Designs**: *Abdul Khader Khan*¹; Deepankar Pal¹; Kevin Chou²; ¹Ansys, Inc; ²University of Louisville ## 4:30 PM Invited New Support Structure Generation Methodologies in Metal Melting Based Additive Manufacturing Technologies: *Deepankar Pal*¹; Kevin Chou²; Abdul Khan³; ¹3DSIM; ²University of Louisville; ³ANSYS ## 4:50 PM Panel Discussion Nanotechnology for Energy, Environment, Electronics, Healthcare and Industry — Nanotechnology for Energy, Environment, Electronics, Healthcare and Industry - Session III Program Organizers: Gary Pickrell, Virginia Tech; Navin Manjooran, Siemens AG Wednesday PM Room: D181 October 17, 2018 Location: Greater Columbus Convention Center Session Chairs: Gary Pickrell, Virginia Tech; Navin Manjooran, Siemens AG ## 2:00 PM Introductory Comments ### 2:40 PM Structural and Electrical Properties of Hierarchical Multiscale Carbon Fabric: Wenhu Wang¹; Sharmila Mukhopadhyay¹; ¹Wright State University ### 3:00 PN Optimized Synthesis of Copper Oxide Nanoparticles Using a Simple Microwave-assisted Method: Shishir Kumar¹; Adarsh Bafana¹; Prasad Pawar¹; Ashiqur Rahman¹; Si Amar Dahoumane²; Clayton Jeffryes¹; ¹Lamar University; ²Yachay Tech University ## 3:20 PM Break ### 3:40 PM Three-dimensional Graphene Foam-polymer Composite with Superior Deicing Efficiency and Strength: *Jenniffer Bustillos*¹; Cheng Zhang²; Benjamin Boesl²; Arvind Agarwal²; ¹Florida International University; ²Florida International Univ ## 4:00 PM The Development & Characterization of Mechanically Exfoliated Graphite Based Counter Electrode for Natural Dye Sensitized Solar Cell (DSSC): *Muhammad Manzoor*¹; Muhammad Butt¹; Tahir Ahmad¹; Muhammad Kamran¹; ¹University of the Punjab ## 4:20 PM Thin Film Dielectric Polymer-ceramic Composites for Flexible Tactile Sensors Embedded within Robotic End-effectors: James Meyer¹; Kavin Sivaneri Varadhrajan Idaiam²; Edward Sabolsky²; Thomas Evans²; Powsiri Klinkhachorn³; ¹West Virginia University; ²Department of Mechanical and Aerospace Engineering, West Virginia University; ³Lane Department of Computer Science and Electrical Engineering, West Virginia University ## 4:40 PM Structural and Electrical Properties of Cadmium Substituted Cobalt Nano Ferrites by Citrate-gel Auto Combustion Method: Ravinder Dachepalli¹; Osmania University ## 5:00 PM Concluding Comments # MATSCITECH.ORG NATSCITECH.ORG MATERIALS SCIENCE & TECHNOLOGY Program Organizers: James Hemrick, Reno Refractories, Inc.; William Headrick, Jr, Missouri Refractories; Michel Rigaud, École Polytechnique Wednesday PM Room: A120 October 17, 2018 Location: Greater Columbus Convention Center Session Chairs: James Hemrick, RENO Refractories Inc; William Headrick, Missouri Refractories; Michel Rigaud, École Polytechnique de Montréal ## 2:00 PM Introductory Comments Dr. James Hemrick ## 2:05 PM Invited Thermo-chemo-mechanical Modelling of Refractories Behavior in Service: Keypoints and New Developments: *Eric Blond*¹; Anh Khoa Nguyen¹; Thomas Sayet¹; Athanasios Batakis¹; Emmanuel De Bilbao¹; Minh-Duc Duong¹; ¹University of Orléans ### 2:45 PM Applications of Kinetic Models to the Chemical Corrosion of Refractory in the Steelmaking Process: Marie-Aline Van Ende¹; In-Ho Jung¹; ¹Seoul National University ### 3:05 PM Dissolution of Ceramic Particle into Molten Slags: Design of Experiment and Interpretation of Result: *Youn-Bae Kang*¹; ¹POSTECH ## 3:25 PM Break 3:45 PM Introductory Comments Dr. William Headrick ## 3:50 PM Isolation or Corrosion of Microporous Magnesia in Contact with Slags of Different Basicity: Ao Huang¹; Huazhi Gu¹; Lvping Fu¹; ¹State Key Laboratory of Refractories and Metallurgy ## 4:10 PM Invited How to Match the Refractory Industry Needs for Continuous Innovation?: *Michel Rigaud*¹; Jacques Poirier¹; ¹École Polytechnique 4:50 PM Concluding Comments Dr. Michel Rigaud 5:10 PM TRI Reception ## Next Generation Biomaterials — Biomaterials V Program Organizers: Roger Narayan, University of North Carolina; Vipul Davé, Johnson & Johnson; Mohan Edirisinghe, University College of London; Sanjiv Lalwani, Lynntech, Inc. Wednesday PM Room: D182 October 17, 2018 Location: Greater Columbus Convention Center Session Chairs: Anthony Wren, Inamori School of Engineering; Yusuf Khan, University of Connecticut ## 2:00 PM Invited Germanium Based Glass Polyalkenoate Cements for Skeletal Applications: Glass Characterization and Physical and Bioactive Properties.: Anthony Wren¹; Sahar Mokhtari¹; Emily Krull²; Aisling Coughlan²; Nathan Mellott³; ¹Alfred University; ²University of Toledo; ³Michigan State University ### 2:20 PN **Effect of Radiation on Biologically Active Glasses**: Areeba Tufail¹; Brit Lee¹; Puneet Gill¹; Eric Bowman¹; Bradley Arnold¹; Fow-Sen Choa¹; Brian Cullum¹; Ching-Hua Su¹; *Narsingh Singh*¹; ¹University of Maryland, Baltimore County ### 2:40 PN Effects of Silver and Aluminum Addition in the Zirconium Based Thin Film Metallic Glass: Akib Jabed¹; Waseem Haider¹; Ishraq Shabib¹; ¹Central Michigan University ## 3:00 PM Invited Dual Growth Factor Delivery from Devitalized Allografts Enhances Healing in a Large Scale Segmental Bone Defect Model: Yusuf Khan¹; ¹University of Connecticut ## 3:20 PM Break ## 3:40 PM Towards Superior Bio-implant Steels through Submerged Friction Stir Processing: Gopinath Perumal¹; Amrita Chakrabarti¹; Aditya Ayyagari²; Deepika Kannan¹; Soumya Pati¹; Harpreet Grewal¹; Sundeep Mukherjee²; Shailja Singh¹; Harpreet Arora¹; ¹Shiv Nadar University; ²University of North Texas ## 4:00 PM **Tribocorrosion Behavior of Nanostructured Biomedical Co-Cr-Mo Alloys through High Pressure Torsion**: *Hakan Yilmazer*¹; Fatih Toptan²; Mitsuo Niinomi³; Burak Dikici⁴; Alexandra Alves²; Ihsan Çaha²; Murat Isik³; Hasan Koklul¹; Zenji Horita⁶; ¹Yildiz Technical University; ²Universidade do Minho; ³Tohoku University; ⁴Atatürk University; ⁵Washington State University; ⁶Kyushu University ## 4:20 PM Graphene Dispersed Silane Compound Coating and Its Immunity: *Hideyuki Kanematsu*¹; Katsuhiko Sano²; Dana Barry³; Akiko Ogawa¹; Nobumitsu Hirai¹; Takeshi Kougo¹; Daisuke Kuropda¹; Yoshimitsu Mizunoe⁴; ¹National Institute of Technology, Suzuka College; ²D&D Corporation, Japan; ³Clarkson University; ⁴The Jikei University School of Medicine ## 4:40 PM Cu-bearing Antibacterial Stainless Steels as Novel Metallic Biomaterials: M. Babar Shahzad¹; Wei Wang¹; Yiyin Shan¹; Ke Yang¹; ¹Institute of Metal Research ## Phase Transformations in Ceramics: Science and Applications — Phase
Transformations in Ceramics: Science and Applications - Processing-Microstructure-Properties I Program Organizers: Waltraud Kriven, University of Illinois at Urbana-Champaign; Pankaj Sarin, Oklahoma State University; Yu Zhong, Worcester Polytechnic Institute Wednesday PM Room: A124 October 17, 2018 Location: Greater Columbus Convention Center Session Chair: Waltraud M. Kriven, University of Illinois at Urbana-Champaign ## 2:00 PM Invited Microstructural Engineering of Powders for Scalable Processing of Metalceramic Nanocomposites: Helen Chan¹; Kevin Anderson¹; Richard Vinci¹; Edward Gorzkowski²; Eric Patterson²; Scooter Johnson²; ¹Lehigh University; ²Naval Research Laboratory ## 2:30 PM Invited **Unusual Phase Transformations during Flash Sintering**: *Rishi Raj*¹; ¹University of Colorado ### 3:00 PM In-situ Study on Mechanical Behavior of Flash-sintered Yttria Stabilized Zirconia at Elevated Temperature: Jaehun Cho¹; Qiang Li¹; Han Wang¹; Zhe Fan¹; Jin Li¹; Sichuang Xue¹; Haiyan Wang¹; Troy Holland²; Amiya Mukherjee³; Xinghang Zhang¹; ¹Purdue University; ²Colorado State University; ³University of California, Davis ## 3:20 PM Break ## 3:40 PM New Heat Treatment Method to Manipulate the Structure of PMN-PT Single Crystals: *Hooman Sabarou*¹; Vadym Drozd²; Osama Awadallah²; Andriy Durygin²; Dehua³; Yu Zhong⁴; ¹Worcester Polytechnic Institute; ²Florida International University; ³Navy Undersea Warfare Center; ⁴Worcester Polytechnic Inst ## 4:00 PM Invited In-situ SEM & XRD Study of Selective Reduction of Metals from Oxides: Scott Misture¹; ¹Alfred University ## 4:30 PM BaO-doped TiO2 Nanostability: The Role of Surface Segregation on Phase Transition: Andre Da Silva¹; Douglas Gouvêa¹; *Ricardo Castro*²; ¹University of São Paulo; ²University of California, Davis ## 4:50 PM **Domain-selective and Facet-selective Photoreactivity on the Surface of Ferroelastic CaTiO**₃: *Kayla Zitello*¹; Paul Salvador¹; Gregory Rohrer¹; ¹Carnegie Mellon University ## PSDK XIII: Phase Stability and Diffusion Kinetics — Manufacturing and Phase Transformations Program Organizers: Zi-Kui Liu, Pennsylvania State University; Michael Gao, National Energy Technology Laboratory; Hans Seifert, Karlsruhe Institute of Technology; Wei Xiong, University of Pittsburgh; Raymundo Arroyave, Texas A & M University Wednesday PM Room: A213 October 17, 2018 Location: Greater Columbus Convention Center Session Chairs: Chelsey Hargather, New Mexico Institute of Mining and Tech; Xiaochun Li, University of California, Los Angeles ## 2:00 PM Invited Breaking Metallurgical Barriers by Nanotechnology Enabled Microstructure Control: Xiaochun Li¹; ¹University of California ### 2:20 PN Predicting Precipitation Strengthening in Mg-Nd Alloys Using Phase Field Modeling, Dislocation Dynamics, and Experiments: Stephen DeWitt¹; Chaoming Yang¹; Arunabha Roy¹; Zhihua Huang¹; Amit Misra¹; Liang Qi¹; John Allison¹; ¹University of Michigan ## 2:40 PM B4C-TiC to TiB2-C High Temperature Transformation: Boron Carbide Stability and Boron Transport Mechanisms: Oleksii Popov¹; Oleksandra Klepko²; Serhii Chornobuk¹; Edward Lutsak²; ¹Taras Shevchenko National University of Kyiv; ²V. Bakul Institute for Superhard Materials ## 3:00 PM Phase Separation and Ordering in FCC/BCC Solid Solutions Using Steepestentropy-ascent Quantum Thermodynamics: Ryo Yamada¹; Michael Von Spakovsky¹; William Reynolds, Jr.¹; ¹Virginia Polytechnic Institute ## 3:20 PM Break ## 3:40 PM Invited A First-principles Investigation of an Improved 5-Frequency Model for Solute Diffusion: Chelsey Hargather¹; Shun-Li Shang²; Zi-Kui Liu²; ¹New Mexico Institute of Mining and Technology; ²Pennsylvania State University ## 4:10 PM **Carburization and Nitridation of Fe-based Diffusion Multiples for Carbonitride Characterization**: *Chris Eastman*¹; Ji-Cheng Zhao²; ¹TimkenSteel Corporation; ²The Ohio State University ## 4:30 PM θ' to θ Transformation in Al-Cu Alloys Investigated with Phase Field Simulations, Advanced Characterization, and Mathematical Analysis: Patrick Shower¹; Dongwon Shin¹; Lawrence Allard¹; James Morris¹; Jonathan Poplawsky¹; Amit Shyam¹; ¹Oak Ridge National Laboratory ## 4:50 PM Computational Thermodynamic and Kinetic Modeling for Phase Dissolution and Growth in Al Alloys: *Kyle Fitzpatrick-Schmidt*¹; Victor Champagne²; Danielle Cote¹; ¹Worcester Polytechnic Institute; ²US Army Research Laboratory ## 5:10 PM Thermodynamic Analysis of the Suitability of Binary Oxides for MBE Source Materials: *Kate Adkison*¹; Brandon Bocklund¹; Darrell Schlom²; Zi-Kui Liu¹; ¹Pennsylvania State University; ²Cornell University # MATSCITECH.ORG STATEMENT OF THE STATEME ## Semiconductor Heterostructures: Theory, Growth, Characterization, and Device Applications — Semiconductor Heterostructures II Program Organizers: John Ayers, University of Connecticut; Ganesh Balakrishnan, University of New Mexico; Phil Ahrenkiel, South Dakota School of Mines & Technology Wednesday PM Room: B132 October 17, 2018 Location: Greater Columbus Convention Center Session Chair: Ganesh Balakrishnan, University of New Mexico ## 2:00 PM Introductory Comments ## 2:05 PM **Epitaxial Growth of Photonic Crystal Surface Emitting Lasers**: *Kevin Reilly*¹, Sadhvikas Addamane¹; Emma Renteria¹; Akhil Raj Kumar Kalapala²; Seungwon Yeom²; Weidong Zhou²; Ganesh Balakrishnan¹; ¹University Of New Mexico; ²University of Texas at Arlington ### 2:25 PM **Effect of Core Material on Gas Sensing Properties of Core Shell Nanostructures**: *Priyanka Karnati*¹; Shiekh Akbar²; Patricia Morris¹; ¹The Ohio State University; ²Department of Material Science and Engineering The Ohio State University ### 2:45 PM **Electrical Properties of Mo/SiC Schottky Barrier Diodes**: Sai Naredla¹; Tom Oder¹; ¹Youngstown State University ## 3:05 PM Plasma-enhanced MOCVD for Growth of Elemental Al on III-V Surfaces: *Nikhil Pokharel*¹; Nathan Smaglik¹; Phil Ahrenkiel¹; ¹South Dakota School of Mines & Technology ## 3:25 PM Restraint of Surface Degeneration during the High Temperature Annealing of AlN Buffer Layer in N2–CO Gas Ambient by Quasi-closed System: *Cheng Cheng*¹; ¹National Central University ## Small-scale Properties of Materials and Length-scale Phenomena — Mechanical Testing Program Organizers: Meysam Haghshenas, University of North Dakota; Charles Lu, University of Kentucky; Finn Giuliani, Imperial College London Wednesday PM Room: A121 October 17, 2018 Location: Greater Columbus Convention Center Session Chairs: Finn Giuliani, Imperial College London; Gaurav Mohanty, Tampere University of Technology ## 2:00 PM Invited Role of Surfaces on the Length-scale Dependence of the Incipient Yield Stress of Ductile Metals: Robert Klassen¹; Azm Islam¹; Mahdi Bagheripoor¹; ¹University of Western Ontario ## 2:20 PM Invited Small Scale Mechanical Testing Techniques Applied to Engineering Materials. Benefits and Challenges: Peter Hosemann¹; David Frazer¹; Cameron Howard¹; Anya Prasitthipayongop¹; Hi Vo¹; David Krumwiede¹; ¹University of California, Berkeley ## 2:40 PM Invited Exploring the Limits of Additive Strengthening Mechanisms in Nanocrystalline, Nanotwinned Metallic Thin Films: Jessica Krogstad¹; ¹University of Illinois, Urbana-Champaign ## 3:00 PM Invited Recent Applications of Nanoindentation for Further Understanding of Advanced Structural Materials: Dong-Hyun Lee¹; Guanghui Yang¹; Jeong-Min Park¹; *Jae-il Jang*¹; ¹Hanyang University ## 3:20 PM Break ### 3:40 PM Invited Reduced Geometry Tensile Samples For Property Evaluation In Stampings From 3rd Generation AHSS: Andrew Frerichs¹; Grant Justice¹; Brian Meacham¹; Sheng Cheng¹; Alla Sergueeva¹; Daniel Branagan¹; ¹NanoSteel Company Inc ## 4:00 PM Invited The Effect of Thin Carbon and Chemomechanically Softened Layers on the Near Surface Mechanical Properties of Sapphire Tested by Nanoindentation: Stephen Bull¹; Arti Yadav¹; ¹Newcastle University ## 4:20 PM **Mechanical Behavior of High Strength Nanotwinned AlMg Alloy**: *Sichuang Xue*¹; Qiang Li¹; Yifan Zhang¹; Han Wang¹; Haiyan Wang¹; Xinghang Zhang¹; ¹Purdue University ### 4:40 PM Invited **Bulk Moduli and High-Pressure Crystal Structures of Uranium Silicides:** *Xiaofeng Guo*¹; Xujie Lü²; Joshua Whita³; Andrew Nelson³; Robert Roback³; Hongwu Xu³; ¹Washington State University; ²Center for High Pressure Science & Technology Advanced Research; ³Los Alamos National Laboratory ## 5:00 PM Invited Mechanical Interface Energies for Capturing Grain Boundary Effect in Sub Micron Volumes: Katerina Aifantis¹; Bryan Kuhr¹; ¹University of Florida ## 5:20 PM Invited **Dynamic TEM In Situ Mechanical Testing: Characterization of Defects Motion at High Strain Rates**: *Thomas Voisin*¹; Michael Grapes¹; Tian Li¹; Jonathan Ligda²; Nicholas Lorenzo²; Brian Schuster²; Melissa Santala³; Yong Zhang⁴; Geoffrey Campbell¹; Timothy Weihs⁴; ¹Lawrence Livermore National Laboratory; ²Army Research Laboratory; ³Oregon State University; ⁴Johns Hopkins University ## Surface Protection and Spray Technology for Enhanced Materials Performance: Science, Technology, and Application — Aerosol, Sputtering, and Functional Coatings Program Organizers: Kang Lee, NASA Glenn Research Center; Jun Song, McGill University; Yutaka Kagawa, The University of Tokyo; Dongming Zhu, NASA Glenn Research Center; Rodney Trice, Purdue University; Daniel Mumm, University of California, Irvine; Mitchell Dorfman, Oerlikon Metco (US) Inc.; Christian Moreau, Concordia University; Emmanuel Boakye, UES Inc.; Edward Gorzkowski, Naval Research Laboratory; Scooter Johnson, Naval Research Laboratory; Richard Chromik, McGill University; Stephen Yue, McGill University Wednesday PM Room: B234 October 17, 2018 Location: Greater Columbus Convention Center Session Chairs: Edward Gorzkowski, Naval Research Laboratory; Scooter Johnson, Naval Research Laboratory ### 2:00 PM **Assessment of Ferromagnetic Properties of Materials Deposited by Aerosol Deposition**: *Scooter Johnson*¹; Syed Qadri¹; Sanghoon Shin¹; ¹Naval Research Laboratory ### 2:20 PM Corrosion
Characterization of Thin Aluminium Films Deposited on Mild Steel Substrates by rf Magnetron Sputtering: Fredrick Mwema¹; Oluseyi Oladijo²; Esther Akinlabi¹; ¹University of Johannesburg, APK; ²Botswana International University of Science and Technology ## 2:40 PM Applications of Thin Pure Aluminium Films Deposited by Sputtering Techniques: Fredrick Mwema¹; Oluseyi Oladijo²; Esther Akinlabi¹; ¹University of Johannesburg, APK; ²Botswana International University of Science and Technology ## 3:00 PM Understanding of Droplets Dynamics and Deposition Area in Electrospraying by Experimental and Modeling Approaches: Xiong (Bill) Yu¹; Zhuoying Jiang¹; ¹Case Western Reserve University ## 3:20 PM Break ## 3:40 PM **Die Lubricant Characterization and Properties in High Pressure Die Casting Applications**: *Chunlei Wang*¹; Charles Monroe¹; ¹University of Alabama at Birmingham ## 4:00 PM **Heat Treatment Optimization of Inconel 718 Cladding on Hot Forging Dies**: *Aaron Washburn*¹; Matthew Willard¹; David Schwam¹; ¹Case Western Reserve University ## Ultra High Performance Metallic Systems for Aerospace, Defense, and Automotive Applications — Ultrafine Grained / Nanostructured / Composites / Hybrids Program Organizers: Ali Yousefiani, Boeing Research And Technology; Troy Topping, California State University, Sacramento; Robert Dillon, Jet Propulsion Laboratory; Linruo Zhao, NRC Aerospace Wednesday PM Room: B235 October 17, 2018 Location: Greater Columbus Convention Center Session Chair: Troy Topping, California State University, Sacramento ## 2:00 PM **Design and Development of Ultrafine-grained, High-strength Silver**: *Vladilena Gaisina*¹; Ricardo Komai¹; Erik Sease²; Evander Ramos²; Suveen Mathaudhu²; James Saal¹; ¹QuesTek Innovations LLC; ²University of California, Riverside ### 2:20 PM **High Strength and Deformability of Super-strong Nanotwinned Al(Fe) Alloys:** *Qiang Li*¹; Sichuang Xue¹; Jian Wang²; Haiyan Wang¹; Xinghang Zhang¹; ¹Purdue University; ²University of Nebraska–Lincoln ### 2:40 PM Toward Understanding the Negative Influence of Oxygen in Nanograin Size Stability of Fe14Cr4Hf Alloy: Peiman Shahbeigi Roodposhti¹; Mostafa Saber²; Ronald Scattergood³; Sina Shahbazmohamadi¹; ¹University of Connecticut; ²Oregon Tech; ³North Carolina State University ## 3.00 PN Densification and Flow Stress Analysis of Al-SiCp Metal Matrix Composites Processed by Direct Powder Forging: *Erica Bindas*¹; Jiwon Kim¹; John Lewandowski¹; Matthew Willard¹; Don Hashiguchi²; Kyung Chung³; ¹Case Western Reserve Univ; ²Materion Brush Inc.; ³Materion Brush Inc. ## 3:20 PM Break ## 3:40 PM Mechanical Anisotropy in Extruded Metal Matrix Composites: Conrad Park¹; Erica Bindas¹; Ji Xia¹; Don Hashiguchi²; Kyung Chung²; John Lewandowski¹; Matthew Willard¹; ¹Case Western Reserve University; ²Materion Brush Incorporated ## 4:00 PM Nanoporous Stainless Steel with Structural Hierarchy: Alexander Preston¹; Kaka Ma¹; ¹Colorado State University ## 4:20 PM Addressing the Need for Thermophysical Property Data of Metal and Alloys for New Material Development: Boris Wilthan¹; V. Diky¹; A. Kazakov¹; S. Townsend¹; Ken Kroenlein¹; ¹National Institute of Standards and Technology # MATSCITECH.ORG MATERIALS SCIENCE & TECHNOLOGY ## Additive Manufacturing of Metals: Microstructure and Material Properties — Jet Binder and Wire-based AM Processes Program Organizers: Andrzej Wojcieszynski, ATI Specialty Materials; Ulf Ackelid, Freemelt AB; Ola Harrysson, North Carolina State University; Sudarsanam Babu, The University of Tennessee, Knoxville Thursday AM Room: A214 October 18, 2018 Location: Greater Columbus Convention Center Session Chair: Howard Kuhn, University of Pittsburgh ### 8:00 AM Kinetics of Densification and Microstructural Evolution during Sintering of Binder Jet 3D Printed Alloy 625 Powders: Amir Mostafaei¹; Josh Porter¹; Pierangeli Rodriguez¹; Markus Chmielus¹; ¹University of Pittsburgh ### 8:20 AM Microstructure and Mechanical Properties of Solid-state Additive Friction Stir Processed Alloy 600 Claddings on 304L Stainless Steel: Biswajit Dalai¹; Vijay Vasudevan¹; Nanci Hardwick²; Jianqing Su²; Chase Cox²; Benjamin Sutton³; Nicholas Mohr³; Seetha Mannava¹; Young Pyun⁴; ¹University of Cincinnati; ²Aeroprobe Corp; ³EPRI; ⁴Sun Moon University ### 8:40 AM Parameter Selection for Wire Arc Additive Manufacturing (WAAM) Process: Lobna Wahsh¹; Ahmed El-Shater²; Faress Hamdy²; Mahmoud Torky²; Hanadi Salem²; Ahmed Mansour²; Mohamed Azzam²; ¹American University in Cairo; ²American University in Cairo ## 9:00 AM **Deposition of Aluminum 4043 during Wire Arc Additive Manufacturing**: *Paul Korinko*¹; Eric Kriikku¹; Andrew Duncan¹; Anna D'Entremont¹; John Bobbitt¹; Matthew Folsom¹; Matthew Van Swol¹; Poh-Sang Lam¹; William Housley¹; ¹Savannah River National Laboratory ## 9:20 AM Additive Manufacturing of Ti-6Al-4V through Fused Filament Fabrication: *Matthew Dunstan*¹; James Paramore¹; Brady Butler¹; ¹United States Army Research Lab ## 9:40 AM In-situ Microstructure Growth Characterization of Wire-fed Electron Beam Additively Manufactured Ti-6Al-4V Components: *Nathan Johnson*¹; Aaron Stebner¹; Branden Kappes¹; ¹Colorado School of Mines ## 10:00 AM Break ## 10:20 AM Mechanical Properties and Microstructural Characterization of 308L Stainless Steel Processed via Wire Feed Electron Beam Additive Manufacturing: Daniel Coughlin¹; Matt Dvornak¹; Andrew Duffield¹; Patrick Hochanadel¹; John Carpenter¹; ¹Los Alamos National Laboratory ## 11:00 AM The Porosity and Mechanical Behavior of 2219-Al Fabricated by Wire and Arc Additive Manufacturing: *Xuewei Fang*¹; Lijuan Zhang²; Hui Li²; Chaolong Li²; Bingheng Lu¹; ¹Xi'an Jiaotong University; ²National Innovation Institute of Additive Manufacturing, Xi'an ## 10:40 AM **Binder-Jet Sintered SAM Alloy vs. SAM Alloy Infiltrated with Bronze**: *Rina Mudanyi*¹; Cameron Shackleford¹; Cindy Waters¹; Amy Elliott²; ¹North Carolina A&T State University; ²Oak Ridge National Laboratory ## Additive Manufacturing of Metals: Microstructure and Material Properties — Performance of AM Materials Program Organizers: Andrzej Wojcieszynski, ATI Specialty Materials; Ulf Ackelid, Freemelt AB; Ola Harrysson, North Carolina State University; Sudarsanam Babu, The University of Tennessee, Knoxville Thursday AM Room: A215 October 18, 2018 Location: Greater Columbus Convention Center Session Chair: Anthony Rollett, Carnegie Mellon University ## 8:00 AM Enhanced Corrosion Response of Additive Manufactured over Wrought 316L Stainless Steel in Acidic Environment: *Jahangir Khan Lodhi*¹; Waseem Haider¹; Kashif Miraj Deen²; ¹Central Michigan University; ²University of British Columbia ## 8:20 AM Fatigue Resistance of AlSi10Mg SLM Material Related to Microstructure's 5 Scales: Julius Domfang¹; *Yves Nadot*¹; Gilbert Henaff²; Julien Nicolai³; Lionel Ridosz⁴; ¹ENSMA; ²École Nationale Supérieure de Mécanique et d'Aérotechnique; ³Pprime / Univ Poitiers; ⁴Zodiac Aerospace ### 8:40 AM High-temperature Performance of Selective Laser Melted Addalloy^{FM}, a L12-Precipitation-strengthened Aluminum Superalloy: *Joe Croteau*¹; Seth Griffiths²; Rolf Erni²; Marta Rossell²; Christian Leinenbach²; David Seidman³; David Dunand³; Nhon Vo¹; ¹NanoAl LLC; ²Empa; ³Northwestern University ## 9:00 AM Investigation of the Molybdenum – Titanium System with Additive Manufacturing Methods: *Michael Niezgoda*¹; Dan Thoma¹; John Perepezko¹; ¹University of Wisconsin Madison ## 9:20 AM Property Development of New Generation Aluminum Materials via MELDTM Processing: *Wayne Daye*¹; Thomas Pelletiers¹; Nanci Hardwick²; Chase Cox²; ¹Kymera International; ²Aeroprobe Corporation ## 9:40 AM Quantifying the Effect of Preferred Orientations on Response during Plane-Strain Indentation: *Mustafa Rifat*¹; Xi Gong¹; Guha Manogharan¹; Edward Demeter¹; Saurabh Basu¹; ¹Penn State ## 10:00 AM Break ## 10:20 AM Role of Composition on Microstructure of Additively Manufactured Functionally Graded Titanium-chromium Alloys: Jonova Thomas¹; Deep Choudhuri²; Jon-Erik Mogonye³; *Srinivas Mantri*²; Thomas Scharf²; Rajarshi Banerjee²; ¹Purdue University; ²University of North Texas; ³Army Research Laboratory ## 10:40 AM Additive Manufacture of Magnetically Graded Materials: Felicity Freeman¹; Alex Lincoln²; Al Lambourne³; Iain Todd¹; ¹University of Sheffield; ²University of Manchester; ³Rolls-Royce plc ## 11:00 AM Gas Atomization and Additive Manufacturing of Al-Zn-Mg-Sc-Zr Alloy: Le Zhou¹; Holden Hyer¹; Sharon Park¹; Brandon McWilliams²; Kyu Cho²; Yongho Sohn¹; ¹Univ of Central Florida; ²U.S. Army Research Laboratory ## 11:20 AM A Study of the Process-geometry Dependency of Material Characteristics in Thin Strut Features Fabricated via Laser Powder Bed Fusion Additive Manufacturing: Shanshan Zhangl; Li Yangl; 'University of Louisville ## Additive Manufacturing of Metals: Post Processing – Post Processing Program Organizers: Ola Harrysson, North Carolina State University; Andrzej Wojcieszynski, ATI Specialty Materials; Ulf Ackelid, Freemelt AB; S. Babu, Indian Institute of Technology Madras Thursday AM Room: A216 October 18, 2018 Location: Greater Columbus Convention Center Session Chair: Ulf Ackelid, Freemelt ## 8:00 AM Comparison of HAZ Simulated Microstructures of As-printed and Wrought 17-4 Stainless Steel: Franklyn Kellogg¹; Andelle Kudzal²; Josh Taggart-Scarft²; Brandon McWilliams³; ¹SURVICE Engineering; ²ORAU; ³US Army Research Laboratory ### 8:20 AM Developing Relationships between as Deposited Microstructure and Precipitation Strengthening in Additively Manufactured Materials: Todd Palmer; Scott Meredith¹; Andrew Iams¹; ¹Pennsylvania State University ### 8-40 AM Gas-phase Alloying and Sintering Kinetics of 3D Printed Nickel Scaffolds: Safa Khodabakhsh¹; Ashley Paz y Puente¹; ¹University of Cincinnati ### 9:00 AM How Can Digital Technologies and Craftsmanship Provide Solutions for the Heritage Sector?: Ann-Marie Carey¹; ¹School of Jewellery ## 9:20 AM Microstructure and Properties of Additive Laser Powder Bed Fusion
Processed and Heat-treated IN625 Alloy: Aruneshwar Somasundaram¹; Micheal Kattoura¹; Seetha Ramaiah Mannava¹; Vijay Vasudevan¹; ¹University of Cincinnati ## 9:40 AM Microstructure of Binder Jet 3D Printed Ti-6Al-4V Parts after Sintering or Hot Isostatic Pressing: Erica Stevens¹; Samantha Schloder¹; Eric Bono²; David Schmidt¹; Markus Chmielus¹; ¹University of Pittsburgh; ²Carpenter Technology Corporation ## 10:00 AM Break ## 10:20 AM Post-process Curing Effects on Conductivity of Additively Manufactured Silver Pastes for Electric Motor Applications: Valerie Wiesner¹; Michael Halbig¹; Mrityunjay Singh²; ¹NASA Glenn Research Center; ²Ohio Aerospace Institute ## 10:40 AM Process Chain Optimization in the Case of SLM-based Tool Making: Franz-Josef Villmer¹; Olaf Elstermeyer²; ¹OWL UAS; ²Realizer GmbH, DMG Mori AG ## 11:00 AM **Production and Post Processing of a Hybrid Additive Manufacturing Heat Exchanger**: *Adam Hehr*¹; Mark Norfolk¹; Justin Wenning¹; John Sheridan²; Scott Roberts³; Arthur Mastropietro³; ¹Fabrisonic LLC; ²Sheridan Solutions LLC; ³Jet Propulsion Laboratory ## Advanced Manufacturing, Processing, Characterization, and Modeling of Functional Materials — Advanced Manufacturing II Program Organizers: Mohammad Elahinia, University of Toledo; Markus Chmielus, University of Pittsburgh; Reginald Hamilton, The Pennsylvania State University; Hamdy Ibrahim, University of Tennessee at Chattanooga; Haluk Karaca, University of Kentucky; Mohammad Mahtabi, University of Tennessee at Chattanooga; Reza Mehrabi, University of Toledo; Reza Mirzaeifar, Virginia Tech Thursday AM Room: B230 October 18, 2018 Location: Greater Columbus Convention Center Session Chairs: C. Virgil Solomon, Youngstown State University; Mohammad Mahtabi, University of Tennessee at Chattanooga; Ajay Kumar P., University of Wisconsin-Milwaukee, Materials Dept; Parisa Bayatimalayeri, University of Toledo ## 8:00 AM Invited Exploiting Severe Plastic Deformation during Orthogonal Cutting Processes to Prepare Mn-Al Base Alloys for Permanent Magnet Applications: *Jachyuk Jo*¹; Vishwanadh Bathula¹; Subarna Khanal¹; Ravi Shankar¹; Hasso Weiland²; Jörg Wiezorek¹; ¹University of Pittsburgh; ²Arconic Inc. ### 8:40 AM Numerical Modeling of Deformation Behavior of Lattice Structures 3D Printed from Inconel 718 and NiMnGa Powders: C. Virgil Solomon¹; Stephen Isacco¹; Rafaela Vannutelli¹; Christopher Barrett¹; Matthew Caputo¹; ¹Youngstown State University ## 9:00 AM A Comparative Experimental Investigation of Electric Discharge Machining Process Variants: *Krishnakant Dhakar*¹; Akshay Dvivedi²; ¹Maulan Azad National Institute of Technology; ²Indian Institute of Technology Roorkee ## 9:20 AM The Effect of Mold Temperature on Exudation in Heated Mold Continuous Casting Cu–15%Ni–8%Sn Alloy: *Jihui Luo*¹; ¹Yangtze Normal University ## 9-40 AM First-principles Study on the Electronic, Optical and Thermodynamic Properties of $\text{La}_x\text{Sr}_{1,x}\text{Co}_y\text{Fe}_{1,y}\text{O}_{3,d}$ (x, y =0.0 ~ 1.0) Perovskites: $\textit{Ting Jia}^1$; Hua Hao²; Paul Ohodnicki¹; Benjamin Chorpening¹; Gregory Hackett¹; Zhi Zeng²; Yuhua Duan¹; ¹National Energy Technology Laboratory, United States Department of Energy; ²Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences ## 10:00 AM Break ## 10:20 AM Large-scale Molecular-dynamics Simulations of Solid Phase Epitaxy in Si: *Kayo Kohno*¹; Manabu Ishimaru¹; ¹Kyushu Institute of Technology ## 10:40 AN Pressure Development and Wear Analysis of Tapered Screw Extruder Biomass Briquetting Machines: Sunday Ojolo¹; *Ifeoluwa Orisaleye*¹; Sehinde Ajiboye¹; ¹University of Lagos # MATSCITECH.ORG NATERIALS SCIENCE & TECHNOLOGY ## Advanced Steel Metallurgy: Products and Processing — General Steel Session II Program Organizers: Justin Raines, SSAB Americas; Charles Enloe, General Motors; Emmanuel De Moor, Colorado School of Mines Thursday AM Room: A226 October 18, 2018 Location: Greater Columbus Convention Center Session Chair: Daniel Baker, GM Global Propulsion Systems; Mingzhi Xu, Georgia Southern University ## 8:00 AM Invited Nucleation of Graphite Particles Formed in Medium Carbon Steel after Graphitising Anneal: Aqil Inam¹; David Edmonds²; Rik Drummond-Brydson²; ¹University of the Punjab; ²University of Leeds ## 8:30 AM An Investigation of the Machinability of Abrasion Resistant AR450 Steel: Mark Emmendorfer¹; Simon Lekakh¹; Laura Bartlett¹; Ronald O'Malley¹; Rick Bodnar²; Sunday Abraham²; Yufeng Wang²; Matthew Werner²; ¹Missouri University of Science & Technology; ²SSAB Americas ### 8.50 AM **Toughness and Separation Improvement for X70 Pipeline Steels**: *Emily Mitchell*¹; Amy Clarke¹; Sven Vogel²; Enrico Lucon³; Kester Clarke¹; ¹Colorado School of Mines; ²Los Alamos National Lab; ³National Institute of Standards And Technology ## 9:10 AM Cyclic Intercritical Heat Treatment of AISI 1045 Steel: Srinath Bayya¹; Saeed Saboury¹; ¹Bradley University ## 9:30 AM **Hydrogen Effects in Microstructure Development during Steel Processing:** *Haoxue Yan*¹; Zhiyuan Liang²; Mohadeseh Mousavi¹; C. Cem Tasan¹; ¹Massachusetts Institute of Technology; ²Texas A&M University ## 9:50 AM Effect of Fire on Mechanical Properties and Microstructure of Steel Bars Produced in Bangladesh: Shubhrodev Bhownik¹; Rashidun Shaown¹; Sayem Shahriar¹; ¹Bangladesh University of Engineering and Technology ## 10:10 AM Break ## 10:30 AM Microstructure Evolution and Dynamic Recrystallization Kinetics under Heavy Reduction: *Ji Cheng*; Yang Qi; Zhu Miaoyong ## 10:50 AM The Influence of Transformation Induced Plasticity on Damage Development in QP1500: Concetta Pelligra¹; Javad Samei¹; David Wilkinson¹; ¹McMaster University ## Advanced Steel Metallurgy: Products and Processing — General Steel Session III Program Organizers: Justin Raines, SSAB Americas; Charles Enloe, General Motors; Emmanuel De Moor, Colorado School of Mines Thursday AM Room: A223 October 18, 2018 Location: Greater Columbus Convention Center Session Chairs: Justin Raines, SSAB Americas; Charles Enloe, General Motors ## 8:00 AM Electron and Atom Probe Microscopic Analysis of Inverse Bainite Transformation in Hypereutectoid Steels: Rangasayee Kannan¹; Yiyu Wang¹; Sudarsanam Babu²; Leijun Li¹; ¹University of Alberta; ²University of Tennessee ## 8:20 AM Analysis of Orientation and Size of the Cylindrical Voids Inside Steel Blocks Using FEM and Ultrasonic Time of Flight Diffraction Technique: Abolfazl Zolfaghari¹; Davood Shahriari²; Amin Zolfaghari³; ¹Department of Mechanical Engineering, Tennessee Technological University; ²Department of Mechanical Engineering, École de Technologie Supérieure; ³Department of Mechanical Engineering, Ferdowsi University of Mashhad ### 8:40 AM Reverse Transformation Behavior from Martensite to Austenite in Ni-C Steels Studied by In-situ SEM/EBSD Analysis: *Ooura Natsumi*¹; Kazuki Fujiwara¹; Kaori Kawano¹; Nobuhiro Tsuji²; ¹Nippon Steel & Sumitomo Metal; ²Kyoto University ## 9:00 AM Steel Self-monitoring of Stress and defects by Capacitance Measurement, Enabled by the Electric Permittivity and Piezoelectricity of Steel: *Deborah Chung*¹; Kairong Shi¹; ¹State University of New York Buffalo ## 9:20 AM Effect of SO2 on Rust Evolution and Anti-corrosion Performance of Weathering Steel: Guiqin Fu¹; Dongliang Li¹; Miaoyong Zhu¹; Northeastern University ## 9:40 AM Development and Application of Anti-corrosion Steel for the Inner Bottom of Cargo Oil Tanks: Xiaobing Luo¹; Feng Chai¹; Hang Su¹; Caifu Yang¹; Hao Li¹; Yaqing Hou¹; Xuehui Chen¹; ¹Central Iron and Steel Research Institute ## 10:00 AM Break ## 10:20 AM Thermodynamics Study of Siderite Fluidized Magnetization Roasting Process: *Qiang Zhao*¹; Jilai Xue¹; ¹University of Science and Technology Beijing ## 10:40 AM Flow Field Simulation Study on the Iron Ore Particle in Fluidized Magnetization Roasting Reactor: *Qiang Zhao*¹; Jilai Xue¹; ¹University of Science and Technology Beijing ## Advances in Solid Oxide Fuel Cell Technology — SOFC Research and Development Program Organizers: Scott Swartz, Nexceris LLC; Matthew Seabaugh, Nexceris LLC; Jeff Stevenson, Pacific Northwest National Laboratory Thursday AM Room: D281 October 18, 2018 Location: Greater Columbus Convention Center Session Chairs: Jason Nicholas, Michigan State University; Xiao-Dong Zhou, University of Louisiana at Lafayette ## 8:00 AM Characterization of Ceramic Oxide Microstructure with Picosecond Ultrasonic: Yuzhou Wang¹; Marat Khafizov¹; David Hurley²; Zilong Hua²; Gaofeng Sha¹; ¹Ohio State University; ²Idaho National Laboratory ## 8:20 AM **Optimised Composite Cathodes for SOFC**: Guttorm Syvertsen-Wiig¹, Sophie Labonnote-Weber¹; Maria Angeltveit²; *Andreas Richter*¹; Kjell Wiik²; ¹Cerpotech; ²Norwegian University of Science and Technology ## 8:40 AM Engineering of Microstructures of Protonic Ceramics by A Novel Rapid Laser Reactive Sintering for Ceramic Energy Conversion Devices: Shenglong Mu¹; Zeyu Zhao¹; Jincheng Lei¹; Yuzhe Hong¹; Tao Hong¹; Dong Jiang¹; Yang Song¹; William Jackson¹; Kyle Brinkman¹; Fei Peng¹; Hai Xiao¹; *Jianhua "Joshua" Tong*¹; ¹Clemson University ## 9:00 AM Fabrication of LSGM Thin Films on Porous Anode Supports by Pulsed Laser Deposition for IT-SOFC: Subhajit Pan¹; Koushik Biswas¹; ¹Indian Institute of Technology Kharagpur ## 9:20 AM Improvement of Cathode Materials for Proton Conducting Intermediate Temperature Solid Oxide Fuel Cells: Shichen Sun¹; Zhe Cheng¹; ¹Florida International University ## 9:40 AM Effect of Nickel Catalyst Impregnation on Ni-YSZ Cermet Electrode Polarization Using Symmetric Cells: Boshan Mo¹; Paul Gasper¹; Yanchen Lu¹; Soumendra Basu¹; Uday Pal¹; Srikanth Gopalan¹; ¹Boston University ## 10:00 AM Break ## 10:20 AM Redox Tolerant Anodes in SOFC Designs Using a Freeze Cast Tubular Support: Benjamin Emley¹; ¹University of Houston ## 10:40 AM Rare Earth Nickelate Cathodes for SOFCs in High Oxygen Partial Pressure environments: Jane Banner¹; Srikanth Gopalan¹; ¹Boston
University ## 11:00 AM Low Temperature Silver-based Brazing of Stainless Steel to Gadolinium Doped Ceria for SOFC Applications: Yuxi Ma¹; Quan Zhou¹; *Jason Nicholas*¹; ¹Michigan State University ## 11:20 AM Sintering and Electrical Conductivity Properties of La1-xCax(Cr0.33Fe0.33Ni0.33)O3 For SOFC Applications: Sai Gajjala¹; Rasit Koc¹; ¹Southern Illinois University Carbondale ## 11:40 AM Short Stack Kit for the Open Flange™ Set-up: Pierre Coquoz¹; Noelia Coton¹; Raphael Ihringer¹; ¹Fiaxell Sarl ## Advances in Surface Engineering — Functional Coatings/Films/Surface Features Program Organizers: Brian Skinn, Faraday Technology, Inc.; Timothy Hall, Faraday Technology, Inc.; Sandip Harimkar, Oklahoma State University; Michael Roach, University of Mississippi Medical Center; Rajeev Gupta, The University of Akron Thursday AM Room: B144/145 October 18, 2018 Location: Greater Columbus Convention Center Session Chair: Santosh Vijapur, Faraday Technology, Inc. ## 8:00 AM Invited Surface Modification of Carbon Nanotube Carpets for Wettability Tailoring: Kimia Kiaei¹; Lvmeng He¹; Sharmila Mukhopadhyay¹; ¹Wright State University ### 8:40 AM Carbon Nanotube Dispersion in Solvents and Polymer Solutions: Mechanisms, Assembly, and Preferences: Chandrani Pramanik¹; Jacob Gissinger¹; Satish Kumar²; *Hendrik Heinz*¹; ¹University of Colorado Boulder; ²Georgia Institute of Technology ### 9:00 AM Influence of Impaction Velocity on Films Deposited by High Speed Aerosol Deposition of Ag: Jeremiah McCallister¹; Michael Becker¹; John Keto¹; Desiderio Kovar¹; ¹University of Texas at Austin ### 9.20 AM Thermal Conductivity of Poly (3,4-ethylenedioxythiophene) Films Engineered by Oxidative Chemical Vapor Deposition (oCVD): *Phil Smith*¹; B. Reeja-Jayan¹; ¹Carnegie Mellon University ## 9:40 AN Performance Improvement of Cathode Electrodes in Lithium Ion Batteries by Nanoscale Surface Engineering via Chemical Vapor Deposition Polymerization: Laisuo Su¹; Phil Smith¹; B. Jayan¹; ¹Carnegie Mellon University ## 10:00 AN Electro Chemical Characterization of Mechanically Exfoliated Graphite Based Organic Dye Sensitized Solar Cell (DSSC): Muhammad Manzoor¹; Muhammad Butt¹; Tahir Ahmad¹; Muhammad Kamran¹; ¹University of the Punjab ## Ceramics and Glasses Simulations and Informatics — Atomistic Simulations Program Organizers: Mathieu Bauchy, University of California, Los Angeles; Peter Kroll, University of Texas at Arlington; Efrain Hernandez-Rivera, U.S. Army Research Laboratory Thursday AM Room: A113 October 18, 2018 Location: Greater Columbus Convention Center Session Chairs: Mathieu Bauchy, University of California, Los Angeles; John Mauro, The Pennsylvania State University ## 8:00 AM Keynote Genesis of "Free" Carbon in Silicon Oxycarbide Ceramics: Peter Kroll¹; ¹University of Texas at Arlington ## 8:40 AN Modeling and Simulation of Silicon Oxycarbide Ceramics Using a Reactive Force Field (ReaxFF): *Ilia Ponomarev*¹; Peter Kroll¹; ¹The University of Texas at Arlington ## MS&T18 ## MATERIALS SCIENCE & TECHNOLOGY ### 9:00 AM Predicting Reduction Conditions and Temperature Dependent Properties of Mayenite Electride by Density Functional Theory Calculations: *Zheng Yu*¹; Bu Wang²; ¹University of Wisconsin Madison; ²UW-Madison ### 9:20 AM **Phonon Engineering for Tunable Thermal Expansion of RE-silicate EBC Candidates**: *Jingyang Wang*¹; ¹Shenyang National Laboratory for Materials Science, Institute of Metal Research, ## 9:40 AM **Fission Product Diffusion in Silicon Carbide: A Computational Study**: *Nanjun Chen*¹; Qing Peng¹; Fei Gao¹; Zhijie Jiao¹; Isabella Van Rooyen²; ¹University of Michigan; ²Idaho National Laboratory ## 10:00 AM Break ### 10:20 AM Transparency Enhancement for SrVO₃ by SrTiO₃ Mixing: A First-principles Study: Zhi Liu¹; Nikolas Podraza¹; Sanjay Khare¹; Pankaj Sarin²; ¹University of Toledo; ²Oklahoma State University ### 10-40 AM **MXenes with Wide Band Gaps and Novel Magnetic Properties**: *Weiwei Sun*¹; Yu Xie²; Paul Kent¹; ¹Oak Ridge National Laboratory; ²Rice University ### 11:00 AM Accurate Simulation of Oxides and Hydroxides Up to the Large Nanometer Scale: Krishan Kanhaiya¹; Michael Nathanson¹; Hendrik Heinz¹; ¹University of Colorado Boulder ### 11:20 AM Effect of Water Vapor Pressure on Phase Transformation Rate of t'-Yttria Stabilized Zirconia: Amir Saeidi¹, Daniel Mumm¹; ¹University of California Irvine ## 11:40 AM **Ion Irradiation and Microstructure Alterations of Ceramic Materials**: *Eva Zarkadoula*¹; Yanwen Zhang¹; William Weber²; ¹Oak Ridge National Laboratory; ²University of Tennessee ## Characterization & Methods in Failure Analysis — FAS-IMS Failure Analysis Applications of Microanalysis, Microscopy, Metallography & Fractography Program Organizers: Andrew Havics, PH2 LLC, Burak Ákyuz, ATS, Inc.; Pierre Dupont, UMONS Faculté polytechnique de MONS (FPMs) Thursday AM Room: A211 October 18, 2018 Location: Greater Columbus Convention Center Session Chairs: Daniel Dennies, DMS, Inc.; Amber Dalley, RJ Lee Group; James Lane, Professional Analysis and Consulting Inc; Burak Akyuz, Applied Technical Services Inc; Brett Miller, IMR Metallurgical Services; Andrew Havics, pH2, LLC ## 8:00 AM Invited In-situ Micro Mechanical Testing on High-strength Nanotwinned Al Alloys and Gradient Structured Ni Alloys: *Qiang Li*¹; Jie Ding¹; Sichuang Xue¹; Haiyan Wang¹; Xinghang Zhang¹; ¹Purdue University ## 8:40 AM Invited **Improvements in EDS Design and the Impact on Analyzing Polymer Materials**: *Michael Hjelmstad*¹; ¹Oxford Instruments ## 9:00 AM Gamification of Metallographic Lab Practice Teaching by Failure Analysis.: Véronique Vitry¹; Fabienne Delaunois¹; ¹UMONS ### 9:20 AM The Metallurgy of Fire Cause and Origin Analysis: Kale Stephenson¹; Brad James¹; ¹Exponent ### 9:40 AM Invited Failure Analysis of a Dissimilar Metal Braze Joint: Brett Miller¹; Phillip Swartzentruber¹; Justin Barnes¹; ¹IMR Test Labs- Louisville ### 10:00 AM Break ## 10:20 AM Failure Analysis of Heating Coils: Abdulmohsen Alsahli¹; Abdelgader Abdelgalii¹; Abdulaziz Al-Meshari¹; ¹Saudi Basic Industries Corp. (Sabic) ### 10:40 AN Failure Analysis of T91 Grade Reheater Tube of a Supercritical Power Plant: Ravi Kumar Yadavalli¹; Anand Varma¹; ¹NTPC LTD ### 11:00 AM Metallurgical Evaluation of a 9310 Steel Bevel Gear Used for a Commercial Aircraft Engine Application: *Jonathan Morales*¹; ¹GE Aviation ### 11:20 AM Oil Heater Tube Failure due to Excessive Unintended Carburization: David Williams¹; ¹Engineering Design & Testing Corp. ## Deformation and Transitions at Grain Boundaries VI — Gradients near Grain Boundaries Program Organizers: Thomas Bieler, Michigan State University; Shen Dillon, University of Illinois; Saryu Fensin, Los Alamos National Laboratory; Jian Luo, University of California San Diego; Douglas Spearot, University of Florida Thursday AM Room: A123 October 18, 2018 Location: Greater Columbus Convention Center Session Chairs: Bing Liu, Xi'an Jiaotong University; Jicheng Gong, Oxford University ## 8:00 AM After Six Decades of Hall-petch Relationship: A New Exponential Function for Better Correlation of Grain Size Effect on Strength of Iron/Steel over Multiple Length Scales: K. S. Ravi Chandran¹; ¹University of Utah ## 8:20 AM Anisotropy Grading Enables Simultaneous Increase in Strength and Ductility in Nanostructured Alloys: Seyedeh Mohadeseh Taheri Mousavi¹; Dingshun Yan²; Dierk Raabe³; C. Cem Tasan¹; ¹MIT; ²Institute of Mechanics, Chinese Academy of Sciences; ³Max-Planck-Institut für Eisenforschung ## 8:40 AM Leveraging FFT Based Crystal Plasticity Models to Predict Texture Evolution and Activity of Deformation Modes in NiCoCr Medium Entropy Alloy: Supriyo Chakraborty¹; Connor Slone¹; Michael Mills¹; Stephen Niezgoda¹; ¹The Ohio State University ## 9:00 AM Mechanical Behavior Study of Structurally Gradient Ni Alloy by In-situ Micropillar Compression Tests: *Jie Ding*¹; Qiang Li¹; Jin Li¹; Sichuang Xue¹; Zhe Fan²; Haiyan Wang¹; Xinghang Zhang¹; ¹Purdue University; ²Oak Ridge National Lab ## 9:20 AM Microstructure Analysis of Ti-6Al-4V Chips Obtained from Turning Using Electron Backscatter Diffraction Mapping: *Jiawei Lu*¹; Thomas Bieler¹; Patrick Kwon¹; ¹Michigan State University ### 9:40 AM Invited **Size Effect in Sn Grain Boundary Sliding**: *Jicheng Gong*¹; Angus Wilkinson¹; Materials Department, Oxford University ## 10:10 AM Break ## 10:30 AM Invited Characterization of Interface Dislocations: Jian Wang¹; ¹University of Nebraska–Lincoln ## 11:00 AM The Effect of Grain Size, Parent Orientation and Loading History on Crystallographic Misorientation after Deformation in Two BCC Titanium Alloys: Vahid Khademi¹; Carl Boehlert¹; Thomas Bieler¹; ¹Michigan State University ## 11:20 AM The Role of Phase Boundaries in Damage Behavior of Metastable Dual-phase High-entropy Alloy: An In-situ SEM/EBSD Investigation: *Shaolou Wei*¹; Jinwoo Kim¹; Cemal Tasan¹; ¹Massachusetts Institute of Technology ### 11-40 AM **Deformation Accommodation at Triple Junctions in Columnar-grained Nickel**: *Mingjie Li*¹; David Duquette¹; Ying Chen¹; ¹RPI ### 12:00 PM Formation of the Grain Boundary Structure of Low-alloyed Steels in the Process of Plastic Deformation: Sergey Shejko¹; George Sukhomlin²; Valerii Mishchenko³; Vadim Shalomeev¹; Valentina Tretiak¹; ¹Zaporizhzhya National Technical University; ²Pridneprovsk State Academy of Civil Engineering and Architecture; ³Zaporozhye National University ## Eco-Friendly and Sustainable Ceramics — Innovative Sustainable Building Materials Program Organizers: Enrico Bernardo, University of Padova; Henry Colorado, Universidad De Antioquia; Ivo Dlouhy, Institute of Physics of Materials, Academy of Sciences of the Czech Republic; Aldo Boccaccini, University of Erlangen-Nuremberg; Antonio Pedro Oliveira, Federal University of Santa Catarina; Isabella Lancellotti, Universita' di Modena e Reggio Emilia; Alexander Karamanov, Bulgarian Academy of Sciences Institute of Physical Chemistry "Rostislaw Kaischew"; Vilma Ducman, Slovenian
National Building and Civil Engineering Institute Thursday AM Room: A114 October 18, 2018 Location: Greater Columbus Convention Center Session Chairs: Francois Mear, Université Lille1; Ronan Lebullenger, Université de Rennes 1 ## 8:00 AM Introductory Comments ## 8:20 AM Mechanical and Fracture Performance of Cellulose Fibers Based Geopolymeric Composite Incorporating Wastes: Gianmarco Taveri¹; Ivo Dlouhy¹; ¹Institute of Physics of Materials (IPM) ## 8:40 AM Marble-like Cordierite-containing Glass-ceramics from 'Reactive Sinter-crystallization' of Recycled LCD Glass and Engineered Additives: Enrico Bernardo¹; Acacio Rincon Romero¹; Yuta Nagano²; Ken Choju²; ¹University of Padova; ²Nippon Electric Glass Co., Ltd ### 9:00 AM Production of Low-temperature Stoneware Tiles with Borosilicate Glass Waste as Flux: Magdalena Lassinantti Gualtieri¹; Consuelo Mugoni¹; Denia Mazzini²; Cristina Siligardi¹; ¹University of Modena and Reggio Emilia, Department of Engineering "Enzo Ferrari"; ²Colorobbia Italia S.P.A. ### 9.20 AM Microwave Process Development of the Municipal Solid Waste Incinerator Bottom Ash: Georgia Flesoura¹; Beatriz Garcia-Banos²; Jose Manuel Catala-Civera²; Jozef Vleugels¹; Yiannis Pontikes¹; ¹KU Leuven; ²Universitat Politecnica de Valencia ## 9:40 AM Upcycling of Porcelain Stoneware Polishing Waste into Highly Porous Ceramic Foams: Patricia Rabelo Monich¹; Acacio Rincon Romero¹; Federico Bottaro¹; Enrico Bernardo¹; ¹University of Padova ### 10:00 AM Fatigue Mechanisms of Lead Free (Bi1/2Na1/2)TiO3-BaTiO3 Piezoceramic System: $xi shi^1$; Nitish Kumar¹; Mark Hoffman¹; ¹University of New South Wales ## Fast/Ultrafast Characterization of Irreversible Transformations in Materials with X-rays and Electrons — Fast TEM Imaging - Phase Transformation and Beyond Program Organizers: Tian Li, Lawrence Livermore National Laboratory; Tao Sun, Argonne National Laboratory; Anders Madsen, European XFEL Thursday AM Room: B246 October 18, 2018 Location: Greater Columbus Convention Center Session Chair: Tian Li, Lawrence Livermore National Laboratory ## 8:00 AM Invited Rapid Solidification of Al-based Alloys Using In-situ Dynamic Transmission Electron Microscopy: Joseph McKeown¹; Amy Clarke²; Christian Leinenbach³; Seth Griffiths³; John Roehling¹; Jörg Wiezorek⁴; Manyalibo Matthews¹; ¹Lawrence Livermore National Laboratory; ²Colorado School of Mines; ³Empa; ⁴University of Pittsburgh ## 8:30 AM Invited New Insights into Metallic Alloy Microstructural Evolution by In-situ Characterization: Amy Clarke¹; Joseph McKeown²; Damien Tourret³; Seth Imhoff¹; Paul Gibbs⁴; John Roehling²; Kamel Fezzaa⁵; Tao Sun⁵; Francisco Coury¹; Joseph Jankowski¹; Adam Stokes¹; Yaofeng Guo¹; Dan Coughlin⁴; Michelle Espy⁴; Frank Merrill⁴; Theron Rodgers⁶; Jonathan Madison⁶; Alain Karma⁷; ¹Colorado School of Mines; ²Lawrence Livermore National Laboratory; ³IMEDA Materials Institute; ⁴Los Alamos National Laboratory; ⁵Argonne National Laboratory; ⁶Sandia National Laboratories; ⁷Northeastern University ## 9:00 AM Transmission Electron Microscopy Study of the Transition from Cooperative Two-phase Growth to Partitionless Single-phase growth in Hypo-eutectic Al-Cu Alloys during Rapid Solidification: Jorg Wiezorek¹; Joseph McKeown²; Vishnawadh Bathula¹; ¹University of Pittsburgh; ²Lawrence Livermore National Laboratory ## 9:20 AN Observing Nanometer-scale Dendrite Growth in Aluminum Alloys: John Roehling¹; Tomorr Haxhimali¹; Aurélien Perron¹; Adam Stokes²; Amy Clarke²; Manyalibo Matthews¹; Joseph McKeown²; ¹Lawrence Livermore National Laboratory; ²Colorado School of Mines ## MSaT18 ## MATERIALS SCIENCE & TECHNOLOGY ## 9:40 AM Invited Measuring Crystal Growth Rates in an Amorphous Ag-In-Sb-Te Phasechange Material over Large Temperature Ranges Using In-situ Microscopy Techniques: Victoriea Bird¹; Al Rise¹; Khim Karki²; Daan Hein Alsem²; Geoffrey Campbell³; *Melissa Santala*¹; ¹Oregon State University; ²Hummingbird Scientific; ³Lawrence Livermore National Laboratory ## 10:00 AM Dynamic TEM Characterization of a Liquid-mediated Nucleation Mechanism for Explosive Crystallization of Amorphous Germanium: *Garth Egan*¹; Tae Wook Heo¹; Geoffrey Campbell¹; ¹Lawrence Livermore National Laboratory ## 10:20 AM Break ### 10:40 AM Invited Dynamic Investigation of Energetic Materials with Electron Microscopy: Volkan Ortalan¹; ¹Purdue University ### 11:10 AM Invited Characterization of Defects Motion at High Strain Rate In-situ Inside a TEM: *Thomas Voisin*¹; Michael Grapes¹; Tian Li¹; Jonathan Ligda²; Nicholas Lorenzo²; Brian Schuster²; Melissa Santala³; Yong Zhang⁴; Geoffrey Campbell¹; Timothy Weihs⁴; ¹Lawrence Livermore National Laboratory; ²Army Research Laboratory; ³Oregon State University; ⁴Johns Hopkins University ### 11.40 AM Polymorphic Reactions and In-situ Single Crystal Metal Oxide Nanowire Formation in the TEM: Pelagia Gouma¹; ¹The Ohio State University ## Interfaces, Grain Boundaries and Surfaces from Atomistic and Macroscopic Approaches — Interfaces Program Organizers: John Blendell, Purdue University; Ming Tang, Rice University; Shen Dillon, University of Illinois; Wayne Kaplan, Technion - Israel Institute of Technology; Dominique Chatain, CNRS, Aix-Marseille University Thursday AM Room: A122 October 18, 2018 Location: Greater Columbus Convention Center Session Chair: Carol Handwerker, Purdue University ## 8:00 AM **Modeling of Interfacial Plasticity**: *Huseyin Sehitoglu*¹; Sertan Alkan¹; ¹University of Illinois ## 8:20 AM Liquid/Substrate Interface for the Heterogeneous Nucleation in Grain Refinement of Alloys: Yanfeng Han¹; ¹Shanghai Jiao Tong University ## 8:40 AM Microstructure Evolution in a Binary Alloy under External Magnetic and Elastic Field: A Phase-field Study: Rupesh Chafle¹; Somnath Bhowmick¹; Rajdip Mukherjee¹; ¹Indian Institute of Technology, Kanpur ## 9:00 AN Triple Junction Structure and Carbide Precipitation in Inconel 600 Alloy: Sandeep Sahu¹; Shashank Shekhar¹; ¹Indian Institute of Technology Kanpur ## 9:20 AM **Triple Junction Energy in Nickel**: *Mingjie Li*¹; David Duquette¹; Ying Chen²; ¹Rensselaer Polytechnic Institute (RPI); ²Rensselaer Polytechnic Institute ## 9:40 AM **Multiscale Analysis for Clarification of Silver-alumina Bonding Mechanism**: *Hajime Ashida*¹; Tomoki Matsuda¹; Tomokazu Sano¹; Akio Hirose¹; ¹Osaka University ## 10:00 AM Break ### 10:20 AM Invited Computational Design of Metal Oxides to Enhance the Wetting and Adhesion of Silver-based Brazes on Yttria-Stabilized-Zirconia: Thanaphong Phongpreecha¹; Jason Nicholas¹; Thomas Bieler¹; Yue Qi¹; ¹Michigan State University ## 10:40 AM Atomistic Modeling of La3+ Doping Segregation Effect on Nanocrystalline Yttria-stabilized Zirconia: Shenli Zhang¹; Haoyan Sha¹; Ricardo Castro¹; Roland Faller¹; ¹University of California, Davis ## 11:00 AM Modeling 3D Dendritic Solidification Using Lattice Boltzmann Method with Multiple Grids: Elaheh Dorari¹; Mohsen Eshraghi²; Sergio Felicelli¹; ¹The University of Akron; ²California State University ### 11:20 AM A Discrete Dislocation Loop Based Model to Study Elastic Fields Due to a Twin: *Yubraj Paudel*¹; Christopher Barrett¹; Haitham El Kadiri¹; ¹Mississippi State University ## Joining of Advanced and Specialty Materials (JASM XX) — Dissimilar Materials Joining Program Organizers: Mathieu Brochu, Mcgill University; Anming Hu, University of Tennessee Knoxville; Boian Alexandrov, Ohio State University; Darren Barborak, WeldQC, Inc; Akio Hirose, Osaka University; Peng He, Harbin Institute of Technology; Zhiyong Gu, University of Massachusetts Lowell Thursday AM Room: C171 October 18, 2018 Location: Greater Columbus Convention Center Session Chairs: Zhenzhen Yu, Colorado School of Mines; Judy Schneider, University of Alabama At Huntsville ## 8:00 AM Characterization of Dissimilar Metal Welds between Low Alloy Steel Butter Welds and Grade F65 Steel Using Alloy 625 Filler Wire: Ryan Buntain¹; ¹Ohio State University ## 8:20 AM Development of Graded Transition Joints for Avoiding Failure of Dissimilar Welds in High Temperature Service.: Jonathan Galler¹; John DuPont¹; ¹Lehigh University ## 8:40 AM High Temperature Mechanical Behavior near the Fusion Boundary in Grade 91 Steel Dissimilar Metal Welds: *Michael Kuper*¹; Boian Alexandrov¹; Joshua Burgess²; ¹Ohio State University; ²GE Power ## 9:00 AM **Microstructural Evolution of Dissimilar Metal Welds Involving Grade 91**: *Sean Orzolek*¹; John DuPont¹; John Seifert²; ¹Lehigh University; ²Electric Power Research Insitute ## 9:20 AM Microstructural Characterization of Low Alloy Steel Girth Welds for Joining of Internally Clad X65 Pipes: *Alejandro Alvarez*¹; Boian Alexandrov¹; ¹The Ohio State University ### 9:40 AM Improving Dissimilar Titanium-stainless Steel Fiber Laser Joint Strength through the Changing of Single Interlayer Thickness: Seyed Reza Elmi Hosseini¹; Kai Feng²; Pulin Nie²; Ke Zhang²; Jian Huang²; Zhuguo Li²; Hiroyuki Kokawa²; Shanghai Key Laboratory of Materials Laser Processing and Modification; ²Shanghai Key Laboratory of Materials Laser Processing and Modification, School of Materials Science and Engineering, Shanghai Jiao Tong University ## 10:00 AM Break ## 10:20 AM Effect of Electrode Material on Dissimilar Joints between Grade 70 SA-516 and Grade B SA-517 Carbon Steels: Fahad Riaz¹; Muhammad Kamran¹; Atif Makhdoom¹; Tahir Ahmad¹; Faran Bilal¹; ¹University Punjab Lahore ### 10.40 AM Can Polymer be Welded to Metal?: Fengchao Liu¹; Pingsha Dong¹; Wei Lu¹; Kai Sun¹; ¹University of Michigan ## Nanotechnology for Energy, Environment, Electronics, Healthcare and Industry — Nanotechnology for Energy, Environment, Electronics, Healthcare and Industry - Session IV Program Organizers: Gary Pickrell, Virginia Tech; Navin Manjooran, Siemens AG Thursday AM Room: D181 October 18, 2018 Location: Greater Columbus Convention Center Session Chairs: Gary Pickrell, Virginia Tech; Navin Manjooran, Siemens AG ## 8:00 AM Introductory Comments ## 8:40 AM The Effect of Core Size and Coating Layers on
the Hypertermia Performance of Iron Oxide, Manganese Ferrite, Magnesium Ferrite and Strontium Ferrite Superparamagnetic Nano Particles: Celaletdin Ergun¹; Mona Nejatpour¹; Esra Alveroglu¹; Yakup Böke¹; ¹Istanbul Technical University ## 9:00 AM Two-dimensional Chiral-chain Van Der Waals Crystal Tellurene for High Performance Photothermal Conversion: Ruoxing Wang¹; Wenzhuo Wu¹; ¹Purdue University ## 9:20 AM Understanding the Mechanism of TiO₂ Nanotubes Formation at Low Potentials (= 8 V) through Electrochemical Methods: *Umair Shah*¹; Waseem Haider¹; ¹Central Michigan University ## 9:40 AM On the Design of Novel Paticulates from MAX Phases: Surojit Gupta¹; ¹University of North Dakota ## 10:00 AM Break ## 10:20 AM Nanoscale Materials for Catalysis, Synthetic Fuels and for Chemical Energy Conversion: Khurram Joya¹; ¹KFUPM ## 10:40 AM Novel, Non-toxic Graphene Quantum Dots for Cancer-imaging and Diagnostic Systems: Suparnamaaya Prasad¹; ¹Massachusetts Institute of Technology 11:00 AM Concluding Comments ## Next Generation Biomaterials — Biomaterials VI *Program Organizers:* Roger Narayan, University of North Carolina; Vipul Davé, Johnson & Johnson; Mohan Edirisinghe, University College of London; Sanjiv Lalwani, Lynntech, Inc. Thursday AM Room: D182 October 18, 2018 Location: Greater Columbus Convention Center Session Chair: Abhinav Acharya, Arizona State University ### 8:00 AM Invited Localized Multi-component Delivery Platform Generates Local and Systemic Anti-tumor Immunity: Abhinav Acharya¹; ¹University of Pittsburgh ### 8.20 AV Reactivation of Antibiotics with Silver-doped Bioactive Glass-ceramic Particles against MRSA: Natalia Pajares¹; Neal Hammer¹; Xanthippi Chatzistavrou¹; ¹Michigan State University ### 8:40 AM In-vitro Testing of the Antibacterial Activity, Moisture Uptake and Cell Cytotoxicity of Nylon Coated Ultra-high Molecular Weight Polyethylene Biomaterial: *Nancy Hassanein*¹; Ali Nassar¹; Habiba Bougherara²; Asma Amleh¹; American University in Cairo; ²Ryerson University ### 9:00 AM Synthesis and Characterization of Antibacterial Newberyite (NB) Particulates: Prabaha Sikder¹; Sarit Bhaduri¹; ¹University of Toledo ## 9:20 AM Multi Walled Carbon Nanotube Carpets as Scaffolds for Accelerated Neuronal Cell Growth: Soham Parikh¹; Debra Mayes¹; Sharmila Mukhopadhyay¹; ¹Wright Stafe ## 9:40 AM Development of Single-phase, Antibacterial Tri-magnesium Phosphate Hydrate Coatings on Polyetheretherketone (PEEK) for Effective Treatment against Surgical Site Infections (SSIs): Prabaha Sikder¹; Sarit Bhaduri¹; ¹University of Toledo ## 10:00 AM Break ## 10:20 AM Surface-enhanced Raman Detection of Glucose on Different Substrates for Biosensing Applications: Laila Alqarni¹; Biao Leng¹; ¹New Jersey Institute of Technology ## 10:40 AM Preparation of Microalgal EPS/PVA Blend Nanofibers Reinforced with Graphene for Waste Water Remediation: Adarsh Bafana¹; Shishir Kumar¹; Prasad Pawar¹; Ashiqur Rahman¹; Clyaton Jeffryes¹; ¹Lamar University ## 11:00 AM Characterization and Bioactivity Test in CEL2 Bioactive Glass-ceramic Porous Scaffolds Loaded with Chitosan Microspheres: Esmeralda Villicana¹; Ena Aguilar²; ¹Universidad Michoacana de San Nicolas de Hidalgo; ²Universidad Michoacana de San de Hidalgo # MATSCITECH.ORG STATEMENT OF THE STATEME Phase Transformations in Ceramics: Science and Applications — Phase Transformations in Ceramics: Science and Applications - Processing-Microstructure-Properties II/Theory Program Organizers: Waltraud Kriven, University of Illinois at Urbana-Champaign; Pankaj Sarin, Oklahoma State University; Yu Zhong, Worcester Polytechnic Institute Thursday AM Room: A124 October 18, 2018 Location: Greater Columbus Convention Center Session Chairs: Yu Zhong, Florida International University; Anton Van Der Ven, University of California ## 8:00 AM Study of the Cofactor Conditions in ZrO₂-Based Shape-memory Ceramics: *Edward Pang*¹; Alan Lai¹; Srikanth Patala²; Christopher Schuh¹; ¹Massachusetts Institute of Technology; ²North Carolina State University ### 8:30 AM Shape Memory Ceramics: Understanding Functionality through Martensitic Transformation: *Hunter Rauch*¹; Hang Yu¹; ¹Virginia Tech ## 9:00 AM Understanding the Role of Microwave Heating on the Crystallization Behavior, Microstructure Formation and Mechanical Response of ZrO2-Containing SiO2 – MgO - Al2O3 – K2O – B2O3 – F Mica Glass-ceramics: Shibayan Roy¹; Mrinmoy Garai²; Sunil Yadav²; Atiar Molla³; ¹Indian Institute of Technology (IIT), Kharagpur; ²Materials Science Centre, Indian Institute of Technology (IIT), Kharagpur; ³Glass Division, CSIR-Central Glass and Ceramic Research Institute, Kolkata ## 9:30 AM Invited Unraveling Phase Transformation Mechanisms in Ceramic Electrode Materials of Li, Na and Mg Batteries: Anton Van Der Ven¹; ¹University of California ## 10:00 AM Break ## 10:30 AM Invited The Diffuse Critical Point and Enhancement of the Electrocaloric and Electromechanical Effect in Relaxor Ferroelectric Ceramics: Nikola Novak¹; Brigita Rozic¹; Rasa Pirc¹; Zdravko Kutnjak¹; ¹Jozef Stefan Institute ## 11:00 AM Electronic and Optical Properties of Vanadium Oxides from First Principles: *Nathan Szymanski*¹; Terence Liu¹; Tim Alderson¹; Nikolas Podraza¹; Pankaj Sarin²; Sanjay Khare¹; ¹University of Toledo; ²Oklahoma State University ## 11:30 AM Invited Universal Link of Magnetic Exchange and Structural Behavior under Pressure in Chromium Spinels: Ilias Efthimiopoulos¹; Indiras Khatri²; Terence Liu²; Sanjay Khare²; Pankaj Sarin³; Vladimir Tsurkan⁴; Alois Loidl⁴; Dongzhou Zhang⁵; Nathan Szymanski²; ¹Oakland University; ²University of Toledo; ³Oklahoma State University; ⁴University of Augsburg; ⁵University of Hawaii ## Small-scale Properties of Materials and Length-scale Phenomena — Structure II Program Organizers: Meysam Haghshenas, University of North Dakota; Charles Lu, University of Kentucky; Finn Giuliani, Imperial College London Thursday AM Room: A121 October 18, 2018 Location: Greater Columbus Convention Center Session Chairs: Jessica Krogstad, University of Illinois at Urbana-Champaign; Meysam Haghshenas, University of North Dakota ## 8:00 AM Invited Interlayer Confinement Phenomena and Thermodynamics – Structure – Property Relations in Layered Double Hydroxide Nanostructures: Di Wu¹; Gengnan Li¹; Dantong Qiu¹; Chen Yang¹; ¹Washington State University ### 8:20 AM **Time-dependent Mechanical Properties of Lithium Metal Studied by Nanoindentation**: *Yikai Wang*¹; Xingcheng Xiao²; Yang-Tse Cheng¹; ¹University of Kentucky; ²Chemical and Materials Systems, General Motors Global Research and Development Center ## 8:40 AM Invited On Determining Stress-Strain Curves and the Fracture Toughness of Metal Feedstock Powder for Additive Manufacturing with Nanoscale Instrumented Indentation Testing: *Bryer Sousa*¹; Derek Tsaknopoulos¹; Victor Champagne²; Danielle Cote¹; ¹Worcester Polytechnic Institute; ²US Army Research Laboratory ## 9:00 AM Invited Synthesis of Two-dimensional Transition Metal Nitrides for Energy Storage and Beyond: Xu Xiao¹; Yury Gogotsi¹; ¹Drexel University ## 9:20 AM Invited The Mechanics of Reinforcement of Nanocomposites by 2D Materials: Dimitrios Papageorgiou¹; Ian Kinloch¹; Robert Young¹; ¹University of Manchester ## 9:40 AM Invited Collective Motion of Dislocation Associated with Local Plasticity Initiation and Subsequent Behavior in bcc Metals: *Takahito Ohmura*¹; ¹National Institute for Materials Science ## 10:00 AM Break ## 10:20 AM Investigating the Effect of Severe Surface Plastic Deformation on Sensitization and the Tensile Behavior of AA5083: Denise Yin¹; Heather Murdoch¹; B. Hornbuckle¹; Joseph Labukas¹; ¹U.S. Army Research Laboratory ## 10:40 AM Nanoscale Structure-Property Relationships of Polyacrylonitrile/CNT Composites as a Function of Polymer Crystallinity and CNT Diameter: Jacob Gissinger¹; Chandrani Pramanik¹; Bradley Newcomb²; Satish Kumar²; *Hendrik Heinz*¹; ¹University of Colorado Boulder; ²Georgia Institute of Technology ## 11:00 AM Isolating Solute Effects in Grain Boundary Strengthening Using Nanoindentation: Prasad Pramod Soman¹; Erik Herbert¹; Katerina Aifantis²; Stephen Hackney¹; ¹Michigan Technological University; ²University of Florida ## Ultra High Performance Metallic Systems for Aerospace, Defense, and Automotive Applications — High Temperature and other High Performance Alloys Program Organizers: Ali Yousefiani, Boeing Research And Technology; Troy Topping, California State University, Sacramento; Robert Dillon, Jet Propulsion Laboratory; Linruo Zhao, NRC Aerospace Thursday AM Room: B235 October 18, 2018 Location: Greater Columbus Convention Center Session Chair: Linruo Zhao, National Research Council of Canada ### 8:00 AM **Quality Assurance of the GTE Cast Blades Protective Coating**: Pavel Zhemanyuk¹; Vladimir Klochikhin¹; Valeriy Shilo¹; Aleksey Pedash¹; *Valeriy Naumyk*²; ¹JSC «Motor Sich»; ²Zaporozhye National Technical University ### 8.20 AM Processing Scalability and Quaternary Additives for Improved Mo Matrix Mo-Si-B: Peter Marshall¹; ¹Imaging Systems Technology ## 8:40 AM Cyclic Oxidation Performance of Three Ni-based Superalloys at 900°C in Air: *Mallikarjuna Heggadadevanapura Thammaiah*¹; William Caley¹; Norman Richards¹; ¹University of Manitoba ## 9:00 AM Heat Treatable Cr-based Alloys and the Improvement of their Oxidation Resistance by Alloying: Anke Ulrich¹; Petra Pfizenmaier²; Ali Soleimani-Dorcheh¹; Uwe Glatzel²; Mathias Galetz¹; ¹DECHEMA-Forschungsinstitut; ²University Bayreuth ## 9:20 AM Ultra-conductive Alloys for Low-volume, Low-weight Applications: Keerti Kappagantula¹; Frank Kraft¹; ¹Ohio University ## 9:40 AM **Hot Cracking Phenomena in Light-weight Armor Steel**: *William Evans*¹; Katherine Sebeck²; ¹The Ohio State University; ²TARDEQ ## **POSTER SESSION** ## WITH PRESENTERS The poster session is divided into 3 separate presentation times (P1, P2, and P3) and grouped by topic area. Poster presenters only need to stand by their posters during their designated
presentation time. All poster sessions will be held on Tuesday, October 16. ## Poster Session I (P1) - 11:00 a.m. - 12:00 pm. - Additive Manufacturing - Ceramic and Glass Materials - Failure Analysis - Iron and Steel (Ferrous Alloys) - Materials-Environment Interactions - Nanomaterials ## Poster Session II (P2) - 12:00 p.m. - 1:00 p.m. - Biomaterials - Electronic and Magnetic Materials - Energy - Fundamentals, Characterization, and Computational Modeling ## Poster Session III (P3) - 4:45 p.m. - 5:45 p.m. - Processing and Manufacturing - Late News Poster Session ## Additive Manufacturing of Composites and Complex Materials III — Poster Session Program Organizers: Dirk Lehmhus, Fraunhofer - Ifam; Jonathan Spowart, Air Force Research Laboratory; Nikhil Gupta, New York University; Eric Jaegle, Max-Planck-Institut Fuer Eisenforschung Tuesday AM Room: Hall A October 16, 2018 Location: Greater Columbus Convention Center 11:00 AM - 12:00 PM P1-1: 3D Printed, Carbon Fiber Reinforced Functionally Graded Lattices for Energy Absorption: Jason Walker¹; Emili Bonanno¹; Trevor Leonard¹; Mckenzie Scheckelhoff¹; Efrain Velez¹; Brett Conner¹; Youngstown State University P1-2: Additive Manufacturing of Clay Modified with Electric Arc Furnace Steel Dust (EAF Dust): Edisson Ordoñez¹; Henry Colorado¹; ¹Universidad de Antioquia P1-3: Additive Manufacturing of Waste Tire Powders Based Composite Materials: Carlos Revelo¹; Mauricio Correa¹; Henry Colorado¹; ¹Universidad De Antioquia P1-4: Evaluation of Multiple Additive Manufacturing Approaches to Design and Fabricate Functionally Graded Materials: *Timothy Daugherty*¹; Brian Vuksanovich¹; Jason Walker¹; Pedro Cortes¹; Brett Conner¹; ¹Youngstown State University ## Additive Manufacturing of Metals: Microstructure and Material Properties — Poster Session Program Organizers: Andrzej Wojcieszynski, ATI Specialty Materials; Ulf Ackelid, Freemelt AB; Ola Harrysson, North Carolina State University; Sudarsanam Babu, The University of Tennessee, Knoxville Tuesday AM Room: Hall A October 16, 2018 Location: Greater Columbus Convention Center 11:00 AM - 12:00 PM P1-5: Effect of the Powder Fusion Vector on the Properties of Samples, Manufactured by Additive Technology: Pavel Zhemanyuk¹; Vladimir Klochikhin¹; Nicolay Rud¹; Valeriy Naumyk²; ¹JSC «Motor Sich»; ²Zaporozhye National Technical University P1-6: Fatigue Life Study of Additively Manufactured IN718 under Varied Process Parameters: *Mahemaa Rajasekaran*¹; Christopher Kantzos¹; Anthony Rollet¹; ¹Carnegie Mellon University P1-7: Microstructure and Mechanical Properties of Al-Si-Fe-Cu-Zn Alloys with Mn and Ca Addition: *Yong-Ho Kim*¹; Hyo-Sang Yoo¹; Hyeon-Taek Son¹; Korea Inst Of Industrial Tech P1-8: Microstructure and Mechanical Properties of Binder Jet 3D Printed Co-Cr-Mo Biomedical Alloy: *Pierangeli Rodriguez*¹; Amir Mostafaei¹; Markus Chmielus; ¹Univ of Pittsburgh **P1-9: Residual Stress Mapping of As-built and HIP GRCop-84 Fabricated by SLM**: *Robert Minneci*¹; Jeff Bunn²; Zachary Jones³; Terri Tramel³; Claudia Rawn¹; ¹The University of Tennessee; ²Oak Ridge National Laboratory; ³NASA Marshall Space Flight Center P1-10: Study Effects of Cyclic Thermal Gradients on Ti-6Al-4V by In-situ TEM Heating Experiment upon Additive Manufacturing Growth Conditions: Meiyue Shao¹; Cheng-Han Li¹; Curtis Frederick²; Sudarsanam Babu²; Joerg Jinschek¹; ¹The Ohio State University; ²The University of Tennessee P1-11: The Investigation of Defects in Additive Manufactured Nickel Superalloy and Optimized Processing Parameter: Cong Liu¹; Iain Todd¹; ¹University of Sheffield ## Additive Manufacturing of Metals: Post Processing — Poster Session Program Organizers: Ola Harrysson, North Carolina State University; Andrzej Wojcieszynski, ATI Specialty Materials; Ulf Ackelid, Freemelt AB; S. Babu, Indian Institute of Technology Madras Tuesday AM Room: Hall A October 16, 2018 Location: Greater Columbus Convention Center 11:00 AM - 12:00 PM P1-12: Effect of HIP on Laser Powder Bed Fused & Electron Beam Melted Parts: Jason Walker¹; William Bevan¹; Michael Juhasz¹; Brett Conner¹; Anna Rashid¹; ¹Youngstown State University P1-13: Influence of Post Processing upon the Mechanical Properties of Additively Manufactured Titanium Alloy Octet Lattice Structures: *Andrew Neils*¹; Abbas Moftakhar²; Liang Dong¹; Haydn Wadley¹; ¹University of Virginia Department of Materials Science; ²General Electric ## Additive Manufacturing: In-situ Process Monitoring and Control — Poster Session Program Organizers: Ulf Ackelid, Freemelt AB; Andrzej Wojcieszynski, ATI Specialty Materials; Sudarsanam Babu, The University of Tennessee, Knoxville; Ola Harrysson, North Carolina State University Tuesday AM Room: Hall A October 16, 2018 Location: Greater Columbus Convention Center 11:00 AM - 12:00 PM P1-14: A Flash Thermography Technique for In-situ Inspection for the Laser Powder Bed Fusion Process: *Bin Zhang*¹; Letchuman Sriparagash²; Zachary Reese¹; Angela Allen¹; Christopher Evans¹; ¹University of North Carolina at Charlotte; ²Siemens Corporate Technology ## MSeT18 MATERIALS SCIENCE & TECHNOLOGY ## Additive Manufacturing: Modeling and Simulation of AM Materials, Processes, and Mechanics — Poster Session Program Organizers: Jing Zhang, Indiana University-Purdue University Indianapolis; Li Ma, Johns Hopkins University Applied Physics Laboratory; Xinghua Yu, Oak Ridge National Laboratory; Yeongil Jung, Changwon National University Tuesday AM Room: Hall A October 16, 2018 Location: Greater Columbus Convention Cente 11:00 AM - 12:00 PM Session Chairs: Jing Zhang, Indiana University - Purdue University Indianpolis; Jing Zhang, Indiana University - Purdue University Indianapolis P1-15: Micorstructure Evolution during Cold Spray by Molecular Dynamics Simulation: Bowen Deng¹; David Hobbs¹; ¹Montana Tech of the University of Montana **P1-16:** Using Computer Vision for Microstructure Analysis: *Bo Lei*¹; Elizabeth Holm¹; ¹Carnegie Mellon University ## Advanced Coatings for Wear and Corrosion Protection — Poster Session Program Organizers: Evelina Vogli, LM Group Holdings Inc; Fei Tang, Dnv Gl; Timothy Hall, Faraday Technology, Inc.; Jing Xu, Faraday Technology Inc.; Santosh Vijapur, Faraday Technology, Inc. Tuesday AM Room: Hall A October 16, 2018 Location: Greater Columbus Convention Center 11:00 AM - 12:00 PM Session Chairs: Evelina Vogli, LMGH; Fei Tang, DNV GL; Timothy Hall, Faradey Technology Inc. P1-54: Microstructure and Densification of Al-Cr-Si Alloy Target Prepared by Using Gas-atomization and Spark Plasma Sintering: *Hyeon-Taek Son*¹; Yong-Ho Kim¹; Hyo-Sang Yoo¹; ¹Korea Institute of Industrial Technology ## Advanced Steel Metallurgy: Products and Processing — Poster Session Program Organizers: Justin Raines, SSAB Americas; Charles Enloe, General Motors; Emmanuel De Moor, Colorado School of Mines Tuesday AM Room: Hall A October 16, 2018 Location: Greater Columbus Convention Center 11:00 AM - 12:00 PM P1-38: Computational Prediction of Hot Cracking during Welding of HSLA Steels: *Maddie McAllister*¹; Badri Narayanan²; Michael Kottman²; Eric Gulliver²; ¹Case Western Reserve University; ²Lincoln Electric P1-40: Effects of Pre-dispersed and Surface-modified AITi-MgO Nanoparticles on Inclusion Characteristics in Carbon Structural Steel: *Hao Guo*¹; Shufeng Yang¹; Jingshe Li¹; Jikang Li¹; Tiantian Wang¹; Hongbo Zheng¹; ¹University of Science and Technology Beijing P1-41: Evolution Behaviors and Mechanisms of Internal Crack Healing in Steels at Elevated Temperatures: Ruishan Xin¹; ¹HBIS Group Technology Research Institute P1-42: Research on Improving Slab Internal Quality under Heavy Reduction Technology: Guangyun Wei¹; Jianxin LI¹; Jinbao Chang¹; Shuangjiang Li¹; Li Sun¹; ¹HBIS GROUP P1-43: Steel Inclusion Classification Using Computer Vision and Machine Learning: Nan Gao¹; Elizabeth A. Holm¹; ¹Carnegie Mellon University ## Ceramic and Crystal Materials for Optics and Photonics — Poster Session Program Organizers: Yiquan Wu, Alfred University; Jas Sanghera, Naval Research Laboratory; Michael Squillante, RMD, Inc; Akio Ikesue, World-Lab. Co., Ltd; Mark Dubinskiy, Amy Research Laboratory Tuesday AM Room: Hall A October 16, 2018 Location: Greater Columbus Convention Center 11:00 AM - 12:00 PM P1-17: Densification and Grain Growth of Y2O3-MgO Nanocomposite during Two-step Sintering: Doo Hyun Choi¹; Seok-Min Yong¹; Seok-Young Ko¹; Kisu Lee¹; Dong-Ik Cheong¹; ¹Agency for Defense Development P1-18: Fabrication of Nano-grained MgAl2O4 Spinel Using Sinter-HIP Process: Seok-Young Ko¹; Kisu Lee¹; Doo Hyun Choi¹; Seok-Min Yong¹; Dong-Ik Cheong¹; Agency for Defense Development ## Ceramics and Glasses Simulations and Informatics — Poster Session Program Organizers: Mathieu Bauchy, University of California, Los Angeles; Peter Kroll, University of Texas at Arlington; Efrain Hernandez-Rivera, U.S. Army Research Laboratory Tuesday AM Room: Hall A October 16, 2018 Location: Greater Columbus Convention Center 11:00 AM - 12:00 PM P1-19: First-principles Study of the Tribology of Glass in Different Environments: *Jordan Barr*¹; Susan Sinnott¹; ¹Penn State University ## Characterization & Methods in Failure Analysis — Poster Session Program Organizers: Andrew Havics, PH2 LLC; Burak Akyuz, ATS, Inc.; Pierre Dupont, UMONS Faculté polytechnique de MONS (FPMs) Tuesday AM Room: Hall A October 16, 2018 Location: Greater Columbus Convention Center 11:00 AM - 12:00 PM Session Chair: Andrew Havics, pH2, LLC P1-33: Strain Analysis of Geometric Stress Concentrations in Nanostructured CuAg Composite: *Rongmei Niu*¹; Ke Han¹; ¹National High Magnetic Field Lab. ## Controlled Synthesis, Processing, and Applications of Structural and Functional Nanomaterials — Poster Session Program Organizers: Haitao Zhang, University of North Carolina at Charlotte; Kathy Lu, Virginia Tech; Edward Gorzkowski, Naval Research Laboratory; Gurpreet Singh, Kansas State University; Kejie Zhao, Purdue University; Jian Shi, Rensselaer Polytechnic Institute
Tuesday AM Room: Hall A October 16, 2018 Location: Greater Columbus Convention Center 11:00 AM - 12:00 PM P1-65: Biomineralized ZnS Nanoparticle Dissolution: An in-Situ Electron Microscopy Study: Eric Pierce¹; Jeremy Eskelsen¹; Jie Xu²; Ji Won Moon¹; David Graham¹; Michelle Chiu¹; Baohua Gu¹; ¹Oak Ridge National Laboratory; ²University of Texas-El Paso **P1-66:** Engineering Nano-structure of Perovskite Ceramics: *Habibollah Aminirastabi*¹; DongLiang Pengl; Gouli Ji¹; Hao Xue¹; ¹Xiamen University P1-68: Liquid Phase Epitaxial Growth of Nickel Zinc Ferrite Films and Studies on Converse Magneto-electric Effects in a Composite with PZT: Peng Zhou¹; Tianjin Zhang²; Gopalan Srinivasan¹; ¹Oakland University; ²Hubei University P1-69: Load Dependent Hardness of Nanocrystalline and Microcrystalline Ceramics: James Wollmershauser¹; Heonjune Ryou²; Boris Feigelson¹; Edward Gorzkowski¹; Kathryn Wahl¹; ¹U.S. Naval Research Laboratory; ²American Society for Engineering Education Postdoctoral Research Fellow sited at U.S. Naval Research Laboratory ## Eco-Friendly and Sustainable Ceramics — Poster Session Program Organizers: Enrico Bernardo, University of Padova; Henry Colorado, Universidad De Antioquia; Ivo Dlouhy, Institute of Physics of Materials, Academy of Sciences of the Czech Republic; Aldo Boccaccini, University of Erlangen-Nuremberg; Antonio Pedro Oliveira, Federal University of Santa Catarina; Isabella Lancellotti, Universita' di Modena e Reggio Emilia; Alexander Karamanov, Bulgarian Academy of Sciences Institute of Physical Chemistry "Rostislaw Kaischew"; Vilma Ducman, Slovenian National Building and Civil Engineering Institute Tuesday AM Room: Hall A October 16, 2018 Location: Greater Columbus Convention Center 11:00 AM - 12:00 PM **P1-20:** A Novel Lightweight Low-temperature Stoneware Tile: Cristina Siligardi¹; *Magdalena Lassinantti Gualtieri*¹; Denia Mazzini²; ¹University of Modena and Reggio Emilia, Department of Engineering "Enzo Ferrari"; ²Colorobbia Italia S.P.A. P1-21: Eco-friendly and Sustainable Lightweight Aggregates for Building and Agronomic Purpose: Luisa Barbieri¹; Fernanda Andreola¹; Alessandro Borghi¹; Anna Maria Ferrari¹; *Isabella Lancellotti*¹; ¹UNIMORE P1-22: Evaluation of the Durability in Hydraulic Concrete, a Waste from the Aggregates Trituration, and Additives to Reduce the Reactivity Alkaliaggregate: Guilliana Agudelo-Buitrago¹; Henry Colorado¹; ¹Universidad De Antioquia P1-23: Obtainment of Lightweight Ceramic Materials by Biochar Addition: Giulio Allesina¹; Fernanda Andreola¹; Luisa Barbieri¹; *Isabella Lancellotti*¹; Simone Pedrazzi¹; Paolo Tartarini¹; Vittorio Vezzali¹; ¹University of Modena and Reggio Emilia ## Glass, Amorphous, and Optical Materials: Common Issues within Science & Technology — Poster Session Program Organizers: John Kieffer, University of Michigan; Liping Huang, Rensselaer Polytechnic Institute Tuesday AM Room: Hall A October 16, 2018 Location: Greater Columbus Convention Center 11:00 AM - 12:00 PM P1-25: Role of Iron in Sodium Aluminosilicates and Sodium Silicates: Mostafa Ahmadzadeh¹; John McCloy¹; ¹Washington State University ## Innovative Processing and Synthesis of Ceramics, Glasses and Composites — Poster Session Program Organizers: Narottam Bansal, National Aeronautics and Space Administration; Jitendra Singh, Retired, U.S. Army Research Laboratory Tuesday AM Room: Hall A October 16, 2018 Location: Greater Columbus Convention Center 11:00 AM - 12:00 PM P1-26: Fabrication of Thick Films of Alumina Nanoparticles Using Electrophoretic Deposition: Prabal Tiwari¹; Jennifer Andrew¹; ¹University of Florida ## MS&T18 MATERIALS SCIENCE & TECHNOLOGY ## International Symposium on Ceramic Matrix Composites — Poster Session Program Organizers: Jitendra Singh, Retired, U.S. Army Research Laboratory; Narottam Bansal, National Aeronautics and Space Administration; Jacques Lamon, CNRS; Sung Choi, Naval Air Systems Command Tuesday AM Room: Hall A October 16, 2018 Location: Greater Columbus Convention Center 11:00 AM - 12:00 PM Session Chair: Jitendra Singh, Retired, U.S. Army Research Laboratory P1-27: Preventive Erosion Coating on Metal Tube Using for Industrial Biomass Boiler: Noppakun Sanpo¹; ¹SCG Chemicals Co., Ltd. ## Manufacturing-Related Failures — Poster Session Program Organizers: Andrew Havics, PH2 LLC; Burak Akyuz, ATS, Inc.; Pierre Dupont, UMONS Faculté polytechnique de MONS (FPMs) Tuesday AM Room: Hall A October 16, 2018 Location: Greater Columbus Convention Center 11:00 AM - 12:00 PM Session Chair: Andrew Havics, pH2, LLC P1-34: Effect of Strain Rate on the Rolling of Nickel Based Alloy: Chien-Lin Lai¹; Ming-Yen Li¹; Shih-Ming Kuo¹; Yeong-Tsuen Pan¹; ¹China Steel Corporation P1-35: Evaluation of the Relationship between Surface Roughness and Stress Concentration Factor in Fatigue Failure of Ti6Al4V EBM Parts: Oluwatobi Kalejaiye¹; Cynthia Waters¹; Christopher Evans²; Boyce Collins¹; Oluwaseun Adewumi¹; Manisha Banker¹; ¹North Carolina A&T State University; ²UNCC P1-36: The Influence of Microporosity on the Mechanical Properties of K4169 Alloy with/without HIP Treatment: Maodong Kang¹; Yun Wu¹; Yahui Liu¹; Junwei Yu¹; Jun Wang¹; Haiyan Gao¹; ¹Shanghai Jiao Tong University ## Microalloyed Steels — Poster Session Program Organizers: Emmanuel De Moor, Colorado School of Mines; Steven Jansto, CBMM-North America Inc; Robert Glodowski, RJG Metallurgical LLC Tuesday AM Room: Hall A October 16, 2018 Location: Greater Columbus Convention Cente 11:00 AM - 12:00 PM P1-48: Detection of Inclusions in Steel by Electrochemical Corrosion Methods: Xuewei Zhang¹; ¹Central Iron and Steel Research Institute P1-51: Influence of Carbide Precipitation on Stability of Grain-refined Reversed Structures in a 321 Austenitic Stainless Steel under Tensile Loading: *Yanming He*¹; Tiansheng Wang¹; ¹Yanshan University ## Phase Transformations in Ceramics: Science and Applications — Poster Session Program Organizers: Waltraud Kriven, University of Illinois at Urbana-Champaign; Pankaj Sarin, Oklahoma State University; Yu Zhong, Worcester Polytechnic Institute Tuesday AM Room: Hall A October 16, 2018 Location: Greater Columbus Convention Center 11:00 AM - 12:00 PM P1-28: Effect of A-site Aliovalent Doping on the Thermo-physical Properties of RENbO₄ Materials: *Dan Lowry*¹; Leah McMillan¹; Pankaj Sarin¹; ¹Oklahoma State University P1-29: Influence of W and Mo Substitution on Phase Stability and Transformation Properties of CeNbO₄: Dan Lowry¹; Tony Thomas²; Edward Sabolsky²; Pankaj Sarin¹; ¹Oklahoma State University; ²West Virginia University P1-30: In-situ High Temperature X-ray Diffraction up to 1500°C in Air: Lab Source XRD and Quadrupole Lamp Furnace: Dan Lowry¹; Gregory Dillard¹; Pankaj Sarin¹; ¹Oklahoma State University P1-31: Role of Thermodynamic Miscibility Gap in Phase Selection in Sol-gel Synthesis of (Y, Yb) Silicates: Surendra Anantharaman¹; Raghunandan S¹; Hari Kumar K.C¹; Suresh Kumar R²; Kamaraj M¹; Ashutosh Gandhi³; ¹Indian Institute of Technology Madras; ²Liquid Propulsion Systems Centre, Indian Space Research Organization; ³Indian Institute of Technology Bombay ## Selection of Materials for Application in Corrosive Environments — Poster Session Program Organizers: Ajit Mishra, Haynes International; Matthew Asmussen, Pacific Northwestern National Laboratory; Sudhakar Mahajanam, Pinnacle Advanced Reliability Technologies; Wilfred Binns, Nuclear Waste Management Organization; John Zhang, Gamry Instruments; Guang-Ling Song, Xiamen University; Eric Schindelholz, Sandia National Laboratories; Raul Rebak, GE Global Research Tuesday AM Room: Hall A October 16, 2018 Location: Greater Columbus Convention Center 11:00 AM - 12:00 PM P1-55: A Superhydrophobic Composite Coating and Its Corrosion Resistance: Jiuhua Wang¹; Dajiang Zheng¹; *Guang-Ling Song*²; ¹Xiamen University; ²General Motors P1-56: Corrosion Inhibition Effect by Dimethylethanolamine on Concrete Steel-reinforcement in Aggressive Environments: *Joshua Okeniyi*¹; Elizabeth Okeniyi²; ¹Covenant University; ²Covenant University, Ota, Nigeria P1-57: Influence of Microstructure on Electrochemical Corrosion Behavior of a Pure Al Coating: Yanyan Zhang¹; Dajiang Zheng¹; Guang-Ling Song¹; ¹Xiamen University P1-58: Investigating Anticorrosion Performance of Syzygium Samarangense Leaf-extract on Steel-reinforcement in Concrete: *Joshua Okeniyi*¹; Elizabeth Okeniyi¹; ¹Covenant University P1-59: Microstructural Evolution and Corrosion Assessment in Saline Water of 2xx.0 Aluminum Alloys Developed by Squeeze Casting Technique: Yogendra Mahton¹; Meeta Kamde¹; *Partha Saha*²; ¹NIT Rourkela; ²National Institute of Technology Rourkela P1-62: Study of Inhibitive Performance of Eco-friendly Material on Stainless Steel in Simulated Saline Environment: *Omotayo Sannt*¹; API Popoola¹; ¹Tshwane University of Technology P1-63: The Characteristic Change of Oxygen Free Copper Based Welding Material in High Temperature Environment Containing a Large Amount of Hydrogen: *Doryun Lee*¹; Gyootaek Lee¹; Kanghyouk Choi¹; Changho Moon¹; ¹POSCO ## User-related Failures — Poster Session Program Organizers: Andrew Havics, PH2 LLC; Burak Akyuz, ATS, Inc.; Pierre Dupont, UMONS Faculté polytechnique de MONS (FPMs) Tuesday AM Room: Hall A October 16, 2018 Location: Greater Columbus Convention Center 11:00 AM - 12:00 PM Session Chair: Andrew Havics, pH2, LLC P1-37: Analysis on Effect of Expensive Soil Using Polumeric Stabilizing Agents: Xijin Zhang¹; Xiong Yu¹; Yuan Guo¹; Xudong Fan¹; ¹Case Western Reserve University ## 10th International Symposium on Green and Sustainable Technologies for Materials Manufacturing and Processing — Poster Session Program Organizers: Yiquan Wu, Alfred University; Hisayuki Suematsu, Nagaoka University of Technology; Surojit Gupta, University of North Dakota; Junichi Tatami, Yokohama National University; Enrico Bernardo, University of Padova; Zhengyi Fu, Wuhan University of Technology; Rajiv Asthana, University of Wisconsin-Stout; Allen
Apblett, Oklahoma State University; Richard Sisson, Worcester Polytechnic Institute; Tatsuki Ohji, National Institute of Advanced Industrial Science and Technology; Mritunjay Singh, Ohio Aerospace Institute Tuesday PM Room: Hall A October 16, 2018 Location: Greater Columbus Convention Center 11:00 AM - 12:00 PM P3-1: Investigation of Carbon Fiber Reinforced Silica Sol Shell for Investment Casting: Rui Guo¹; ¹Hubei University of Automotive Technology ## Advanced Manufacturing, Processing, Characterization, and Modeling of Functional Materials — Poster Session Program Organizers: Mohammad Elahinia, University of Toledo; Markus Chmielus, University of Pittsburgh; Reginald Hamilton, The Pennsylvania State University; Hamdy Ibrahim, University of Tennessee at Chattanooga; Haluk Karaca, University of Kentucky; Mohammad Mahtabi, University of Tennessee at Chattanooga; Reza Mehrabi, University of Toledo; Reza Mirzaeifar, Virginia Tech Tuesday PM Room: Hall A October 16, 2018 Location: Greater Columbus Convention Center 4:45 PM - 5:45 PM P3-2: Mathematical Modelling of Residual Stresses in End Milling: Sunday Ojolo¹; Adebayo Ogundare¹; ¹University of Lagos P3-3: Novel Material Properties from High Turbulence Coaxial Jet Mixing-modeling and Characterization: David Spang¹; ¹Rowan College at Burlington County P3-4: Numerical Simulation of Physical Field in a Continuous Hot-dip Galvanizing Bath: $Jianfeng He^{1}$; ¹Baosteel P3-5: Polymer-derived Porous Carbon Spheres Modified Superhydrophobic Melamine Formaldehyde Sponge (PCS@MF) for Oil Spill Remediation: Love Dashairya¹; Partha Saha¹; ¹NIT Rourkela P3-6: Tensile Strength Evaluation of Aluminium Alloy 6063 Hybrid Metal Matrix Composite by Using Stir Casting Method.: Balwinder Singh¹; ¹GZS Campus CET Bathinda P3-7: Thermo-mechanical Coupled Analysis of Hot Press Forming with 22MnB5 Steel: Jonghun Yoon¹; ¹Hanyang University ERICA ## Advances in Dielectric Materials and Electronic Devices — Poster Session Program Organizers: Amar Bhalla, University of Texas; Ruyan Guo, The University of Texas at San Antonio; Rick Ubic, Boise State University; Danilo Suvorov, Jožef Stefan Institute Tuesday PM Room: Hall A October 16, 2018 Location: Greater Columbus Convention Center 12:00 PM - 1:00 PM Session Chair: José de Los Santos Guerra , Universidade Federal de Uberlândia **P2-8:** Anelastic Behavior in GaN LED under Forward and Reverse Bias: *Chun-Kail Huang*¹; ¹National Central University **P2-9: Capacitor: Constant Voltage/Current Sources**: Steven Tidrow¹; *Jessica Scoones*¹; Dustin Travis¹; Soutik Betal¹; Walter Schulze¹; Steven Pilgrim¹; ¹Alfred University **P2-10:** CoFe₂O₄-BaTiO₃Core-shell Nanocomposites: Synthesis, Structural, Microstructural and Ferroic Properties: *Luiz Fernando Cotica*¹; Denise Alanis¹; Raquel Bini¹; Gustavo Dias¹; Ivair Santos¹; Ruyan Guo²; Amar Bhalla²; ¹State University Of Maringa; ²University of Texas at San Antonio **P2-11:** Electronic Properties of Rare-earth-modified Barium Titanate Ferroelectrics by DFT: *Abrahan Pablo Aslla Quispe*¹; Roberto Hiroki Miwa¹; Jose de los Santos Guerra¹; ¹Universidade Federal de Uberlandia P2-12: Fabrication and Characterization of PVDF/Ba<0.85>Ca<0.15>Zr<0.1>Ti<0.9>O<3> (BCZT) Composite Film: Effect of Two Different Method Prepared BCZT Powder: Ranabrata Mazumder¹; Pragya Dixit¹; National Institute of Technology Rourkela **P2-13: Integrated Piezoelectric and Thermoelectric Sensing and Energy Conversion**: *Bryan Gamboa*¹; *Maximilian Estrada*¹; Albert Djikeng¹; Daniel Nsek¹; Samer Dessouky¹; Amar Bhalla¹; Ruyan Guo¹; ¹University of Texas at San Antonio **P2-15:** Shottky Barrier Fractal Nature Correction: *Vojislav Mitic*¹; Goran Lazovic²; Zoran Vosika³; Vesna Paunovic³; Sandra Veljkovic³; Branislav Vlahovic⁴; ¹University of Nis; Institute of Technical Sciences of SASA; ²University of Belgrade; ³University of Nis; ⁴North Carolina Central University **P2-16:** Spatial Magnetic Source Detection Based on Magnetoelectric Heterostructure with 2D & 3D Configurations: *Junran Xu*¹; Chung Ming Leung¹; Xin Zhuang¹; Jiefang Li¹; Dwight Viehland¹; ¹Virginia Tech ## MSeT18 ## MATERIALS SCIENCE & TECHNOLOGY P2-17: Synthesis and Analyses, Structural and Microstructural CoFe2O4:BaTiO3 Core-shell Nanocomposites: Denise Alanis¹; Luiz Cótica²; Ruyan Guo³; Amar Bhalla³; Moumita Dutta³; ¹UTSA/ UEM; ²UEM; ³UTSA P2-18: Temperature and Pressure Dependent Dielectric Properties of Sugary Carbonated Solutions: Carlos Acosta¹; Amar Bhalla¹; Ruyan Guo²; ¹University of Texas at San Antonio; ² University of Texas at San Antonio **P2-19:** Thermal and Structural Properties of Glass-ceramic Based Composites Containing Ferroelectric Nanocrystals: Renato Cruvinel de Oliveira¹; Anielle Almeida Silva²; Noélio Oliveira Dantas²; *Jose de los Santos Guerra*²; ¹Universidade Estadual Paulista; ²Universidade Federal de Uberlandia ## Advances in Solid Oxide Fuel Cell Technology — Poster Session Program Organizers: Scott Swartz, Nexceris LLC; Matthew Seabaugh, Nexceris LLC; Jeff Stevenson, Pacific Northwest National Laboratory Tuesday PM Room: Hall A October 16, 2018 Location: Greater Columbus Convention Center 12:00 PM - 1:00 PM **P2-23:** Comparison of H2S Poisoning for Proton Conducting SOFC Versus Oxide Ion Conducting SOFC: *Shichen Sun*¹; Zhe Cheng¹; ¹Florida International Univ **P2-24: High-temperature Redox Stable Anode Materials for SOFC**: Tony Thomas¹; He Qi¹; *Edward Sabolsky*¹; Xingbo Liu¹; John Zondlo¹; Richard Hart²; ¹West Virginia University; ²GE Global Research Centre P2-25: Sintering and Electrical Conductivity Properties of Calcium Doped La(Ni,Fe,Cr,Co)O3 for SOFC Cathode Materials: Sai Gajjala¹; Rasit Koc¹; Abhigna Kolisetty²; ¹Southern Illinois University Carbondale; ²AECOM ## Advances in Surface Engineering — Poster Session Program Organizers: Brian Skinn, Faraday Technology, Inc.; Timothy Hall, Faraday Technology, Inc.; Sandip Harimkar, Oklahoma State University; Michael Roach, University of Mississippi Medical Center; Rajeev Gupta, The University of Akron Tuesday PM Room: Hall A October 16, 2018 Location: Greater Columbus Convention Center 4:45 PM - 5:45 PM Session Chair: Brian Skinn, Faraday Technology, Inc. **P3-8: Scanning Auger Microprobe Signal Optimization**: *Ji Xia*¹; Frank Ernst¹; ¹Case Western Reserve University P3-9: Surface Free Energy and Moisture Susceptibility Evaluation of Modified and Foamed Asphalt Binders: *Jianying Hu*¹; Xiong Yu¹; ¹Case Western Reserve University ## Boron, Boron Coatings, Boron Compounds and Boron Nanomaterials: Structure, Properties, Processing, and Applications — Poster Session *Program Organizers:* Jens Kunstmann, Technische Universität Dresden; Roumiana Petrova, New Jersey Institute of Technology; Scott Beckman, Washington State University Tuesday PM Room: Hall A October 16, 2018 Location: Greater Columbus Convention Center 4:45 PM - 5:45 PM P3-10: Boronitride Nanosheet Aerogel Phase Change Material Composites: Russell Dent¹; Marjan Kashfipour¹; Jiahua Zhu¹; ¹University of Akron ## Composition-Processing-Microstructure-Property Relationships of Titanium Alloys — Poster Session Program Organizers: Benjamin Morrow, Los Alamos National Laboratory; Carl Boehlert, Michigan State University; Kayla Calvert, TIMET - HTL; Yufeng Zheng, The Ohio State University Tuesday PM Room: Hall A October 16, 2018 Location: Greater Columbus Convention Center 4:45 PM - 5:45 PM **P3-11:** Continuous Severe Plastic Deformation Methods: *Asli Günay Bulutsuz*¹; Mehmet Emin Yurci¹; ¹Yildiz Technic University P3-12: Development of Low Cost Titanium-manganese System Shape Memory Alloys: Masahiko Ikeda¹; Masato Ueda¹; ¹Kansai University **P3-13: Modeling Elastic Modulus in the Ti-Al-V Alloy System**: Sawyer Gill¹; *Joshua Strother*¹; Albert Ostlind¹; Chelsey Hargather¹; James Saal²; Ricardo Komai²; ¹New Mexico Institute of Mining & Technology; ²QuesTek Innovations, LLC ## IMS Symposium on Metallography and Microstructural Characterization of Materials and the Correlation of Microstructure to Mechanical Properties — Poster Session Program Organizers: Daniel Dennies, DMS, Inc.; James Martinez, NASA Johnson Space Center; Michael Keeble, Buehler, A Division of ITW; Jaret Frafjord, IMR Test Labs - Portland Tuesday PM Room: Hall A October 16, 2018 Location: Greater Columbus Convention Center 12:00 PM - 1:00 PM Session Chair: Daniel Dennies, DMS, Inc. **P2-31: Controlled Atmosphere Creep Testing for High Resolution Strain Localization Measurement**: *Ashton Egan*¹; Connor Slone¹; Michael Mills¹; ¹The Ohio State University P2-32: EBSD and Metallogrphy of Hydroformed /Annealed CRES Liner for Cryo COPVs Used in Human Rated Spacecraft.: $James\ Martinez^1$; $^1NASA\ Johnson\ Space\ Center$ **P2-33:** Machine Learning and Physical Simulation to Solve the Missing Boundary Problem: *Thomas Matson*¹; Eric Li¹; Keith Kozlosky¹; Jingxi Cai¹; Elizabeth Holm¹; ¹Carnegie Mellon University P3-19: TEM-Investigation on Eutectic Phase Formation in Ni-30Cr Filler Metal 52XL: Cheng-Han Li¹; Meiyue Shao¹; Carolin Fink¹; John Lippold¹; Joerg Jinschek¹; ¹The Ohio State University ## Interfaces, Grain Boundaries and Surfaces from Atomistic and Macroscopic Approaches — Poster Session Program Organizers: John Blendell, Purdue University; Ming Tang, Rice University; Shen Dillon, University of Illinois; Wayne Kaplan, Technion - Israel Institute of Technology; Dominique Chatain, CNRS, Aix-Marseille University Tuesday PM October 16, 2018 Room: Hall A Location: Greater Columbus Convention Center 12:00 PM - 1:00 PM P2-35: Controlling Surface Charge and the Photochemical Reactivity on SrTiO3 Surfaces with the Solution pH: Mingyi Zhang¹; Paul Salvador¹; Gregory Rohrer¹; ¹Carnagie Mellon University **P2-36:** Modeling the Effects of Bubble Dynamics on Dendrite Growth during Solidification of Binary Alloys: Seyed Amin Nabavizadeh¹; Mohsen Eshraghi²; Sergio Felicelli¹; ¹University of Akron; ²California State University P2-37: Understanding the Mechanism of Metal
Oxidation on the Nanoscale: Vacancy Transport, Energy Barriers, and Rate Predictions: Krishan Kanhaiya¹; Michael Nathanson¹; Hendrik Heinz¹; ¹University of Colorado Boulder ## Joining of Advanced and Specialty Materials (JASM XX) — Poster Session Program Organizers: Mathieu Brochu, Mcgill University; Anming Hu, University of Tennessee Knoxville; Boian Alexandrov, Ohio State University; Darren Barborak, WeldQC, Inc; Akio Hirose, Osaka University; Peng He, Harbin Institute of Technology; Zhiyong Gu, University of Massachusetts Lowell Tuesday PM Room: Hall A October 16, 2018 Location: Greater Columbus Convention Center 4:45 PM - 5:45 PM P3-14: Additive Manufacturing for the Fabrication of Pylon in Lower Limb Prosthesis: Fariborz Tavangarian¹, ¹Pennsylvania State University, Harrisburg P3-15: Comparative Analysis of the Mechanical Properties of Aluminum Alloys Welded Joints Obtained by Friction Stir Welding: Fedor Isupov¹; Anton Naumov¹; Oleg Panchenko¹; Leonid Zhabrev¹; Anatoliy Popovich¹; ¹Peter the Great Saint-Petersburg Polytechnic University P3-16: Effect of Beam Oscillation on Porosity & Intermetallic Compounds Formation of Electron Beam welded DP600 Steel to Al 5754 Alloy Joints: Soumitra Dinda¹; Prakash Srirangam²; Gour Gopal Roy¹; ¹Indian Institute Of Technology Kharagpur; ²University of Warwick P3-17: Effects of Titanium on Active Bonding between Sn3.5Ag4Ti(Ce,Ga) Alloy Filler and GaAs Substrate: *Xiaoqiang Wang*¹; Yue Zhi¹; Hongwei Luo¹; Zhigang Cai¹; Lanxian Cheng²; ¹China Electronic Product Reliability and Environmental Testing Research Institute; ²South China Agricultural University P3-18: Finite Element Simulation of Temperature Field during FSW of Dissimilar Al-Cu Joint: Evgenii Rylkov¹; Fedor Isupov¹; Oleg Panchenko¹; Anton Naumov¹; Iurii Golubev¹; ¹Peter the Great St.Petersburg Polytechnic University ## **Late News Poster Session** Tuesday PM Room: Hall A October 16, 2018 Location: Greater Columbus Convention Center 4:45 PM - 5:45 PM P3-38: 4D and In Situ X-ray Microscopy for Studying Change & Evolution in Materials Across Multiple Length Scales: William Fadgen¹; Will Harris¹; Hrishikesh Bale¹; Steve Kelly¹; Benjamin Hornberger¹; ¹Carl Zeiss X-ray Microscopy P3-39: A Computational Approach for Predicting Mechanical Properties of Plasma Sprayed Ceramic Oxide Coatings: Sadhana Bhusal¹; Cheng Zhang¹; Jenniffer Bustillos¹; Pranjal Nautiyal¹; Benjamin Boesl¹; Arvind Agarwal¹; ¹Florida International University **P3-40:** A Fast Microwave Synthesis Method of TiP2O7/Carbon Composites for Aqueous Electrolyte Lithium-ion Batteries: *Haosheng Song*¹; Jinming Wu¹; Wei Wu¹; ¹Carnegie Mellon University P3-42: Application of Automated Scripting with CALPHAD to Explore the Sensitivity of Chemical Composition in Alternative Titanium Alloys for Additive Manufacturing: Ryan Jennings¹; Ben Brown¹; Benjamin Sikora¹; ¹Kansas City National Security Campus **P3-43:** Bacterial Pectinase for Improvement of Pineapple Fiber Quality: Pilanee Vaithanomsat¹; Chanaporn Trakooljae¹; Jiraporn Meelaksana¹; *Rungsima Chollakup*¹; Jirachaya Boonyarit¹; Anthika Boondaeng¹; ¹KAPI, Kasetsart University **P3-44:** Characterization of Zirconia Produced by Nano Particle Jetting: John Martin¹; Brett Conner¹; Pedro Cortes¹; Eric MacDonald¹; ¹Youngstown State University P3-45: Cluster Formation of Network-Modifier Cations in Cesium Silicate Glasses Studied with ²⁹Si MAF NMR: Daniel Jardon-Alvarez¹; Kevin Sanders²; Pyae Phyo³; Jay Baltisberger³; Philip Grandinetti¹; ¹Ohio State University; ²Université de Lyon; ³Berea College P3-46: Comparison of Ti₂AlC Thick Coatings Deposited by Plasma Spray and Kerosene-fuelled High Velocity Oxy-fuel (HVOF) Spray: *Zheng Zhang*¹; Jisheng Pan¹; Doreen Mei Ying Lai¹; Suo Hon Lim¹; ¹Institute of Materials Research and Engineering P3-48: Constraints of NiO-GDC/GDC/LSCF-GDC Manufactured by Tape Casting and Reactive Magnetron Sputtering Processes of Solid Oxide Fuel Cells: carlos ignacio londoño¹; ¹Femto-ST P3-49: Corrosion Mechanism of Spinel-Periclase-Zirconia (MgAl2O4-MgO-ZrO2) Refractories for RH Degasser: Somnath Mandal¹; C. J. Dileep Kumar²; Devendra Kumar¹; ¹Indian Institute of Technology (Banaras Hindu University); ²TRL Krosaki Refractories Limited P3-50: Cracking in Forged 1½" dia SA 182 F304L Integrally Reinforced Nozzles from a Fourth Stage Suction Separator for a CO₂ Compressor: Riza Khan¹; Allan Ramkhelawan¹; ¹In-Corr-Tech Ltd P3-51: Development of High Strength Hot-rolled Steel Products for Automotive Applications: Esther Hutten¹; Hatem Zurob¹; Sujay Sarkar²; Erika Bellhouse³; Yaping Lu³; ¹McMaster University; ²ArcelorMittal Global R&D Maizieres; ³ArcelorMittal Global R&D Hamilton ## MS&T18 ## MATERIALS SCIENCE & TECHNOLOGY - P3-52: Development of Manufacturing Process for 'Ni-42Cr-0.1N' Fuel Clad Tube Alloy: *Ashmita Patra*¹; Narahari Prasad¹; Sivasubramanian Krishnan¹; ¹Mishra Dhatu Nigam LTD - P3-53: Development of Pore Network in Binder-jetted Reactive Materials: Kartik Ganjoo¹; Pragnya Kunchala¹; Keerti Kappagantula¹; ¹Ohio University - P3-54: Development of Rhenium Free Heat-resistant Nickel Alloy for the Cast Blades Production by the Method of Directional Crystallization: Evgeniy Milonin¹; Pavel Malinovsky¹; *Valeriy Naumyk*²; Sergey Gayduk²; ¹JSC «Motor Sich»; ²Zaporozhye National Technical University - P3-55: Diffusion Studies for Ceramic-to-Metal Joining for Heat Exchanger Applications: Yaiza Rodriguez¹; Allyssa Bateman¹; Luke Schoensee¹; Timothy Phero¹; Brian Jaques¹; ¹Boise State University - P3-56: Effect of Additive Defect Density on High Temperature Electrical Performance of Ultra-Conductive Copper Alloys: Keerti Kappagantula¹; *Jacob Smith*¹; ¹Ohio University - P3-57: Effect of CaO/SiO2 and Al2O3/SiO2 on the Oxygen Activity in S32205 Duplex Stainless Steel Melts: *Jianchao Zheng*¹; Xiaojun Hu¹; Shaopeng Fu²; Ping Lin²; Kuochih Chou¹; ¹University of Science and Technology Beijing; ²Ruipu Technology Group Co., Ltd. - P3-59: Effect of Pyrolysis Temperature on Biomass Chars CO2 Gasification Reactivity: Wei Tong¹; Qingcai Liu¹; Chen Yang¹; Tianshi Zhang¹; Shan Ren¹; ¹Chongqing University - P3-62: Effects of Manufacturing Parameters on Electrical and Mechanical Performance of Ultra-conductive Aluminum Alloys: Aditya Nittala¹; Keerti Kappagantula¹; ¹Ohio University - P3-63: Effects of Ti Particles Addition on the Mechanical Properties of Magnesium Alloy AZ31: Baleegh Alobaid¹; ¹University of Kentucky - P3-64: Electrical and Mechanical Performance of 3D Printed Hybrid Polymer Composites: Yahya Al Majali¹; Keerti Kappagantula¹; ¹Ohio University - P3-65: Electrochemical Behavior and Microstructural Study of Traditionally and Additive Manufactured Ti6Al4V: *Hafiz Muhammad Hamza*¹; M.J.K. Lodhi¹; Waseem Haider¹; ¹Central Michigan University - P3-66: Electrostatic Levitation for Studies of Additive Manufacturing Materials for Extreme Environments: Michael SanSoucie¹; Jan Rogers¹; Robert Hyers²; ¹NASA MSFC; ²University of Massachusetts - P3-67: Embedded Sensors within Ceramic Refractory for - **High-temperature Process and Health Monitoring**: Kathy Sabolsky¹; *Gunes Yakaboylu*¹; Kavin Sivaneri¹; Benjamin Buzzo¹; *Edward Sabolsky*¹; Jeffrey Bogan²; Margaret Raughley²; ¹West Virginia University; ²HarbisonWalker International Technology Center - P3-68: Engineering Mechanical, Biodegradable, and Sorption Behaviours of a Bioelastomer by Clay: Sungkwon Yoon¹; Biqiong Chen¹; ¹Queen's University Belfast - P3-70: Experimental Benchmarks for Mechanical Properties of Highly-loaded Carbon Nanotube-reinforced Polyether Ether Ketone: Margie Guerrero Fernandez¹; Carlos Marín¹; ¹University of Puerto Rico at Mayaguez - P3-71: Experimental Considerations for Producing Reliable High-pressure Adsorption Isotherms Using the Volumetric Method: Christopher Sims¹; Huong Giang Nguyen¹; Jarod Horn¹; Laura Espinal¹; ¹National Institute of Standards and Technology - P3-72: Extrusion Based 3D Printing of Metallic Scaffolds Using Particle Based Liquid Inks: Kameswara Pavan Ajjarapu¹; Safa Khodabakhsh¹; ¹University of Cincinnati - P3-73: Fabrication of Co-Cr-Mo Fiber from the Melt by Unidirectional Solidification: *Yuui Yokota*¹; Takayuki Nihei²; Masao Yoshio¹; Akihiro Yamaji¹; Yuji Ohashi¹; Shunsuke Kurosawa¹; Kei Kamada¹; Akira Yoshikawa¹; ¹Tohoku University; ²C&A Corporation - P3-74: Fabrication of Cytocompatible Porous Poly(Lactic Acid) Scaffold by Porogen Leaching Method for Bone Tissue Engineering: Rungsima Chollakup¹; Pimchanok Pimton²; Pimpon Uttayarat³; Tatsanee Phermthai⁴; ¹KAPI, Kasetsart University; ²Walailak University; ³Thailand Institute of Nuclear Technology; ⁴Faculty of Medicine Siriraj Hospital, Mahidol University - P3-75: Fabrication of Porous Metals via Selective Phase Dissolution of an Al-Cu Alloy: *Juan Vargas Martinez*¹; Oscar Suárez¹; ¹University of Puerto Rico Mayaguez - P3-76: Facile Synthesis of Citric Acid Derived Carbon Nanodots and Their Application As Exogenous Hydrogen Peroxide Sensor: Olayemi Fakayode¹; ¹University of Johannesburg - **P3-77:** Four Decades of CALPHAD: Statistical Trends in Published Thermodynamic Models: *Richard Otis*¹; Axel Van de Walle²; ¹Jet Propulsion Laboratory; ²Brown University - **P3-78:** Freeze-casting and Freeze-drying Solid Oxide Fuel Cells: *Yanhai Dul*¹; Nader Hedayat¹; Dhruba Panthi¹; Hoda Ilkhani¹; Benjamin Emley²; Theo Woodson¹; ¹Kent State University; ²University of Houston - P3-79: Friction Stir Welding of Precipitation Strengthened Aluminum to Solid Solution Strengthened Aluminum for Military Applications: *Martin McDonnell*¹; Nelson Martinez²; Demetrios Tzelepis¹; ¹US Army-TARDEC; ²Concurrent Technologies Corporation - P3-80: Grain Boundary Segregation and Precipitate Behavior in Inconel 718 Superalloys: *Matt Pietrucha*¹; Katherine Rice¹; Robert Ulfig¹; David Larson¹; Yimeng Chen¹; ¹Cameca Instruments - P3-81: Growth Rate Dependence of Microstructure and Mechanical Properties on Co-Cr-Mo Fibers Fabricated by Unidirectional Solidification: Shoki Abe¹;
Yuui Yokota²; Takayuki Nihei³; Masao Yoshino¹; Akihiro Yamaji¹; Yuji Ohashi²; Shunsuke Kurosawa⁴; Kei Kamada⁵; Akira Yoshikawa⁶; ¹IMR, Tohoku University; ²NICHe, Tohoku University; ³C&A; ⁴NICHe, Tohoku University, Yamagata University; ⁵NICHe, Tohoku University, C&A; ⁶IMR, Tohoku University, NICHe, Tohoku University. C&A - P3-82: High-yield Synthesis of Nanostructured Boron Phosphide via a Pyrotechnic Pathway: Zhaohua Luan¹; Lauren Morris¹; Anthony Shaw¹; Christopher Haines¹; Jay Poret¹; ¹ARDEC - **P3-83:** Hydrogen Behaviour in a Duplex Stainless Steel: *Zoha Ghorant*¹; Afshin Yousefi¹; ¹Ibaraki University - P3-84: Improving Hardness and Corrosion Resistance of Aluminum Alloys by Mechanical Alloying and V Additions: Javier Esquivel¹; Rajeev Gupta¹; ¹The University of Akron - P3-85: In-situ Neutron Diffraction to Study the Solidification of Al-Si Alloys: *Eli Vandersluis*¹; Comondore Ravindran¹; Dimitry Sediako²; Abdallah Elsayed³; Glenn Byczynski⁴; ¹Ryerson University; ²University of British Columbia; ³University of Guelph; ⁴Nemak Canada Corporation - **P3-86:** Induced Porosity via Powder Bed Fusion: Scott Roberts¹; Ben Furst¹; Stefano Cappucci¹; Timothy O'Donnell¹; Eric Sunada¹; ¹NASA/Jet Propulsion Laboratory - **P3-87: Integrating Boron Nitride Nanotubes in Aluminum for Superior Mechanical Properties:** *Pranjal Nautiyal*¹; Benjamin Boesl¹; Arvind Agarwal¹; ¹Florida International University - P3-88: Investigation of KNN-based Materials for Multifunctional Energy Harvesting Applications: *Guoyang Ye*¹; ¹Engineering North Campus - P3-90: Mandibular Plates Prototypes for Maxillofacial Surgery by Additive Manufacturing: Design Evaluation and Accuracy: *Ilaria Campioni*¹; Ilaria Cacciotti¹; Nikhil Gupta²; ¹Niccolò Cusano University; ²New York University Tandon School of Engineering - P3-91: Mechanical Properties of Al-SiO2 Metal Ceramic Composite 3D Printed via Stereolithography: Bhargavi Mummareddy¹; Michael Maravola¹; Eric MacDonald¹; Jason Walker¹; Brian Hetzel¹; Brett Conner¹; Pedro Cortes¹; Youngstown State University - **P3-92:** Mechanism of Etching of Al-4.5Mg-1.0Mn Alloy: Aline D. Gabbardo¹; *Xi Wang*¹; Angeire Huggins¹; Gerald Frankel¹; ¹Ohio State University - P3-93: Melt-pool Scale Surface Topography for Single Tracks of Alloy 718 and TiAl Powders Deposited by Powder Bed Fusion (PBF) Technique: Seul Bi Lee¹; Jae Woong Kim¹; Jae Keun Hong²; Yoon Suk Choi¹; ¹Pusan National University; ²Korean Institute of Materials Science - P3-94: Microstructural and Doping Effects on Thermoelectric Properties of Si/β-FeSi₂ Composite: *Rajasekar Parasuraman*¹; Arun Umarji¹; ¹Indian Institute of Science - **P3-95:** Microstructural Evolution of Ion-irradiated ZrC: Raul Florez¹; ¹Missouri University of Science & Technology - P3-96: Microstructures and Mechanical Properties of Carbon-containing FeCuCrNi High Entropy Alloys Prepared by Selective Laser Melting: *Yong Liu*¹; Rui Zhou¹; Kechao Zhou¹; Ping Zhou¹; Min Song¹; ¹Central South University - P3-98: Modeling Single Tracks of Alloy 718 and TiAl Powders Deposited by Powder Bed Fusion (PBF) Technique: *Jae Woong Kim*¹; Seul Bi Lee¹; Jae Keun Hong²; Yoon Suk Choi¹; ¹Pusan National University; ²Korean Institute of Materials Science - P3-99: Modeling the Sensitization of 5XXX Series Aluminum Alloys: Matthew Steiner¹; *Likun Sun*¹; ¹University of Cincinnati - **P3-100:** Multiplex Viral Detection Platform Using Aptasensor: *Nileshi Saraf*¹; Michael Villegas¹; Sudipta Seal¹; ¹University of Central Florida - P3-101: Phase Separation in Silicate Glasses Revealed Through Inverse Laplace Analysis of ²⁹Si T, Relaxation: Mark Bovee¹; ¹Ohio State University - P3-102: Potential Barrier at the Grain Boundary of LaGaO3-based Solid Solution Deduced from a Linear Diffusion Model: Chih-Yuan Chang¹; Igor Lubomirsky²; Sangtae Kim¹; ¹University of California, Davis; ²Weizmann Institute of Science - P3-103: Potential of the Al2-xGaxW3O12 System for High Thermal Shock Resistance: *Isabella Costa*¹; Victoria Blair²; Bojan Marinkovic¹; ¹Pontifical Catholic University of Rio de Janeiro; ²US Army Research Laboratory - P3-104: Preliminary Investigations into the Mechanical/Current-Activated Reactive Processing of Nickel-Aluminide-CNT Composites: *Kaitlin Kehl*¹; Mehul Chauhan¹; Prathmesh Modi¹; Khaled Morsi¹; ¹San Diego State University - P3-105: Process-based Cost Modeling of IE-4 Induction Motors for Industrial Applications: *Inchul Choi*¹; ¹Korea Institute of Industrial Technology - P3-107: Pulsed Laser Deposition of VO₂Thin Films for Optical Applications: *Arun Umarji*¹; Devanshi Bhardwaj¹; S. B. Krupanidhi¹; ¹Indian Institute of Science - P3-108: Reheating Characteristics of Semi-solid AC7A Al alloy Fabricated by Cooling Slope Method.: Ahruem Beck¹; Sedong Lee¹; Seoyeong Kim¹; Duckhyun Kim¹; Sugun Lim¹; ¹Gyeongsang National University - P3-112: Simulating Fresnel-mode Lorentz TEM Images Using a Python Environment: Yukun Liu¹; Maxwell Li¹; Marc DeGraef¹; ¹Carnegie Mellon University - P3-113: Surface Modification of Iron Oxide Nanoparticles with Catechol-based Ligands for Improved Stability in Biocompatible Fluids: Minseon (Stella) Ju¹; Anna Samia¹: ¹Case Western Reserve University - P3-114: Spark Plasma Sintering of In Situ Nickel-Titanium-Graphite based Composites: Amit Patil¹; Tushar Borkar¹; ¹Cleveland State University - P3-115: Surface Modification of Na0.44MnO2 Positive Electrode Material Via Graphite for Aqueous Electrolyte Sodium-ion Batteries: *Jinming Wu*¹; Haosheng Song¹; Wei Wu¹; ¹Carnegie Mellon University - P3-116: Stabilization of Brownmillerite type SrCoO_{2.5} for Oxygen Enrichment Applications: *Arun Umarji*¹; Aswathy Narayanan¹; Rajasekar Parasuraman¹; Indian Institute of Science - **P3-119:** Study on the Solid-state Diffusion of the Al2O3-TiO2 System: *Jianchao Zheng*¹; Xiaojun Hu¹; Kuochih Chou¹; ¹University of Science and Technology Beijing - **P3-120:** Substitution of Critical Elements in RECo₅ based Permanent Magnet: *Kinjal Gandha*¹; Rakesh Chaudhary¹; Fanqiang Meng¹; Matthew Kramer¹; Ryan Ott¹; Cajetan Nlebedim¹; ¹Ames Laboratory - P3-121: Synergistic Antimicrobial Effect of Rambutan Peel Extract and Cinnamon Essential Oil on Properties of Whey Protein Isolate Based Film: Udomlak Sukatta¹; Prapassorn Rugthaworn¹; Nattaporn Khanoonkon¹; Prakit Sukyai¹; Kunat Kongsin¹; Natdanai Harnkarnsujarit¹; Rungsinee Sothornvit¹; Rungsima Chollakup¹; ¹KAPI, Kasetsart University - **P3-122:** The Assessment of Local Lattice Strains in Alloys Using Total Scattering: Lewis Owen¹; Howard Stone¹; Helen Playford²; ¹University of Cambridge; ²ISIS Neutron and Muon Source - P3-123: The Effect of Sn Addition on Heat Treatment of Extruded AM80 Magnesium Alloy: Seoyeong Kim¹; Sedong Lee¹; Duckhyun Kim¹; Ahruem Beck¹; Sugun Lim¹; ¹Gyeongsang National University - P3-124: The Influence of the Defects of MoO3, Contact Surface and Morphology of Al to the Ignition of the Mechanical Activated Composites Al/MoO3: Andrey Streletskii¹; Michail Sivak¹; ¹Institute of Chemical Physics RAS - P3-125: The Manufacture of W and Mo Layers on Metallic Sheets Through Intense Plastic Deformation Induced by Ball Collisions: Sergey Romankov¹; ¹Chonbuk National University - P3-126: Thermal Conductivity of Epoxy Resin Composites Filled with Combustion Synthesized AlN and h-BN Powders: Shyan-Lung Chung¹; Jeng-Shung Lin¹; Li-Hsuan Wei¹; Hsu-Pin Wu¹; Yu-De Wang¹; Tsung-Lin Hsieh¹; Jyun-Wei Syu¹; Wei-Lun Wang¹; Robert Yasaputera¹; ¹National Cheng Kung University - P3-127: Thermal Effects on the Structure and Magnetic Properties of Multicomponent Nanocrystalline Fe26.67Co26.67Ni26.67Al10Si10 Alloy Powder: Kathem Bazzi¹; Anuj Rathi¹; Vamsi Meka¹; Tanjore Jayaraman¹; ¹University of Michigan-Dearborn - P3-128: Transverse Rupture Strength of Ceria as a Surrogate Nuclear Fuel: *Adrianna Lupercio*¹; Jennifer Watkins¹; Jayson Foster²; Brian Jaques¹; ¹MSMSE at Boise State University and CAES; ²MSMSE at Boise State University and Dixie State University - P3-129: Tribological and Corrosive Behavior of Cold Sprayed Coating: Harminder Singh Chouhan¹; ¹Guru Nanak Dev University - P3-130: Understanding the Role of Lattice Activation in the Corrosion of the Mineral Chalcopyrite: Adam Karcz¹; Anne Juul Damø¹; Kim Dam-Johansen¹; David Chaiko²; ¹Technical University of Denmark; ²FLSmidth USA ## MATERIALS SCIENCE & TECHNOLOGY P3-131: VO₂(M1) Thin Films Synthesized by Ultrasonic Nebulized Spray Pyrolysis of Aqueous Combustion Mixture for IR Photodetection: Arun Umarji¹; Inyalot Tadeo¹; Mukhokosi Panzi¹; Krupanidhi Saluru¹; ¹Indian Institute P3-132: Modified Natural Rubber Latexes for Coating Applications: Nantana Jiratumnukul¹; Phuritchaya Sitthichan¹; ¹Chulalongkorn University P3-133: Sintering Effect on Thermal Conductivity of Metallic Powder in Laser Powder-bed Fusion: Shanshan Zhang¹; Brandon Lane²; Justin Whiting²; Kevin Chou1; 1University of Louisville; 2National Institute of Standards and Technology P3-134: A Study on Formation of Island Shaped Surface Oxide in AHSS Steels: Wonhwi Lee¹; ¹POSCO P3-135: 3D Printed ABS and Its Tensile, Creep, and Fatigue Behavior: Mingyo P3-136: 3D Printing of Zircon for Thin Walled and Biomimetic Structures: Piyush Pai Raikar¹; Jing Zhang¹; ¹Indiana University Purdue University Indianapolis P3-137: Additive Manufacturing of Polymers with High Geometric Accuracy: Xuehui Yang¹; Jing Zhang¹; Yeon-Gil Jung²; ¹Indiana University - Purdue University Indianapolis; 2Changwon National University P3-138: Centrifugal Weeder: Abhilash Gulhane¹; Jing Zhang¹; ¹IUPUI P3-139: Effects of Octahedral Tilting/Untilting Transition on the Piezoelectricity at Morphotropic Phase Boundary: Kang Yan¹; Shuai Ren²; Minxia Fang²; Xiaobing Ren³; ¹Nanjing University of Aeronautics and Astronautics,; ²Xi'an Jiaotong University; 3National Institute for Materials Science P3-140: Materials and Process Design for Metal Fused Filament Fabrication (MF3): Paramjot Singh¹; Sundar Atre¹; Kunal Kate¹; ¹University of Louisville P3-141:
Properties and Microstructure of Water Atomized Duplex Stainless Steel Processed by Laser-Powder Bed Fusion: Chang woo Gal¹; Subrata Nath¹; Harish Irrinki¹; Emma Clinning¹; Gautam Gupta¹; Sundar Atre¹; ¹University of Louisville ## **Light Metal Technology – Applications for the** Transportation Industry — Poster Session Program Organizers: Julie Levesque, Quebec Metallurgy Center; Mihaiela Isac, McGill Metals Processing Centre; Xiaoming Wang, Purdue University; Roderick Guthrie, McGill University; Sa Ge, Hatch Ltd.; Kaan Inal, University of Waterloo; Frederic Laroche, Rio Tinto Tuesday PM October 16, 2018 Room: Hall A Location: Greater Columbus Convention Center 4:45 PM - 5:45 PM P3-20: Development of the Commercial Automotive Wheel Manufacturing Process through the Lightweight Aluminum Multi-Cavity **Process**: *Min Seok Moon*¹; GunSung Chung¹; MyeongHan Yoo¹; JoonHyuk Song¹; NaRa Park¹; WonTae Kim¹; JeHa Oh¹; JongDae Yoon²; GeeWon Kim²; DongChul Chung¹; ¹Korea Institute of Carbon Convergence; ²Rheoforge, Co., Ltd. P3-21: Effects of the Eutectic Silicon on Microstructure Mechanical Properties of Sand Casting Al-7Si-0.35Mg Alloy during Solution Treatment: Myounggyun Kim1; 1Research Institute of Industrial Science P3-22: In-situ Manufacturing Techniques for Aluminum Matrix Nanocomposites: Jeremy Fedors1; Eunkyung Lee1; Brajendra Mishra1; 1Worcester Polytechnic Institute ## Materials for Nuclear Applications and Extreme **Environments — Poster Session** Program Organizers: Cory Trivelpiece, Savannah River National Laboratory; Dev Chidambaram, University of Nevada, Reno; Raul Rebak, GE Global Research; Yutai Katoh, Oak Ridge National Laboratory; Jake Amoroso, Savannah River National Laboratory; Kevin Fox, Savannah River National Laboratory Tuesday PM Room: Hall A October 16, 2018 Location: Greater Columbus Convention Center 12:00 PM - 1:00 PM P2-26: Density Functional Theory Study of Tritium Solubility and Diffusivity in Lithium Aluminate and Lithium Zirconate Pellets: Hari Paudel1; Yueh-Lin Lee¹; Yuhua Duan¹; ¹National Energy Technology Lab P2-27: Microstructure Based Process Modeling and Integration of U-10%wt Mo Alloys: Chao Wang1; Zhijie Xu1; Xiaohua Hu1; William Frazier1; Ayoub Soulami¹; Xiaowo Wang²; Guang Cheng³; Vineet Joshi¹; ¹Pacific Northwest National Laboratory; ²Ansys Inc.; ³Independent Scholar ## **Materials Property Understanding through Characterization** — Poster Session Program Organizers: Indrajit Dutta, Corning Incorporated; Nicholas Smith, Corning Incorporated Tuesday PM Room: Hall A October 16, 2018 Location: Greater Columbus Convention Center 12:00 PM - 1:00 PM P2-38: Characterization of Mechanical Behavior High Strain Rate of Polymeric Foams: Khlif Mohamed¹; Hammami Dorra¹; Bradai Chedly²; ¹ENIS; ²Ecole Nationale D'Ingenieurs de Sfax P2-39: Characterization of Spacecraft Materials Using Reflectance Spectroscopy: Jacqueline Reyes1; 1University of Texas El Paso P2-40: Correlation of Physical and Mechanical Properties with Structural Changes curing Cold Deformation of 3rd Generation AHSS: Daniel Branagan¹; Andrew Frerichs¹; Brian Meacham¹; Sheng Cheng¹; Alla Sergueeva¹; ¹NanoSteel Company Inc P2-41: Development and Characterization of a Mouthguard (MG) Biocomposite Made from a Polymer and a Natural Fibre: Analysis of Mechanical, Physical and Antibacterial Properties: Alejandro Restrepo Carmona¹; Henry Colorado¹; ¹University of Antioquia P2-42: Dynamically Templated Acquisition of EDS X-ray Spectral Images Using Electron Image Contrast: Stephen Seddio1; 1Thermo Fisher Scientific P2-43: Effect of Basicity and Ferro-silicon Addition Matte Formation from Ge-copper Bearing Slag: Michel Kalenga Wa Kalenga¹; Junior Kayembe¹; Didier Nyembwe¹; ¹University of Johannesburg P2-44: First-Order-Reversal-Curve (FORC) Study of Magnetic Materials: Brad Dodrill¹; ¹Lake Shore Cryotronics P2-45: Investigation of Transformation Plasticity Peculiarities of Alloyed Steel: Rasa Kandrotaite Janutiene¹; Darius Mažeika¹; Arunas Baltušnikas²; ¹Kaunas University of Technology; ²Lithuanian Energy Institute P2-46: Neutron Irradiation Effect on 0.4t-CT Specimen of Alloy 690 Tested at Elevated Temperature: Joo-hag Kim¹; ¹Korea Atomic Energy Research Institute P2-47: Structural, Electronic and Magnetic Properties of Heusler Alloys under Pressure from a Theoretical Approach: Emilia Olivos¹; Navdeep Singh²; Gerardo Trápaga³; D. Altamirano-Juárez⁴; Raymundo Arroyave¹; ¹Texas A&M University; ²University Of Houston; ³CINVESTAV (on sabbatical leave at CIATEQ A.C.); ⁴Universidad Tecnológica del Centro de Veracruz P2-48: Synthesis, Characterization, and Performance of Transition Metal Sulfide-based Anodes in Electrochemical Cells: Amanda Gibson¹; William McCulloch²; Yiying Wu²; Vicky Doan-Nguyen³; ¹Ohio State University; ²Department of Chemistry, The Ohio State University; ³Department of Materials Science and Engineering, The Ohio State University ## **Mechanochemical Synthesis and Reactions in Materials** Science III — Poster Session Program Organizers: Antonio Fuentes. Cinvestav Unidad Saltillo: Laszlo Takacs, University of Maryland Baltimore County; Challapalli Suryanarayana, University of Central Florida; Huot Jacques, University Du Quebec A Trois Rivieres Tuesday PM Room: Hall A October 16, 2018 Location: Greater Columbus Convention Center 4:45 PM - 5:45 PM P3-24: Mechanical Activation Assisted Synthesis of Akermanite/Forsterite Nanocomposite: Fariborz Tavangarian¹; Sophia Novak¹; Camryn Shope¹; ¹Pennsylvania State University, Harrisburg P3-25: Microstructural Evolution of Metastable Mixed Oxides in the Bi2O3-Ta2O5 System Induced by Mechanical Alloying: Pee-Yew Lee¹; Pei-Hao Lin¹; ¹National Taiwan Ocean University P3-27: Synthesis and Characterization of Akermanite Powder by Mechanical Activation and Thermal Treatment: Fariborz Tavangarian¹; Caleb Zolko¹; ¹Pennsylvania State University, Harrisburg ## **Multifunctional Ceramic- and Metal-matrix Composites:** Processing, Microstructure, Properties and Performance — Poster Session Program Organizers: Martin Pech-Canul, Cinvestav IPN Saltillo; Golam Newaz, Wayne State University; Xiaoming Wang, Purdue University Tuesday PM Room: Hall A October 16, 2018 Location: Greater Columbus Convention Center 12:00 PM - 1:00 PM Session Chair: Xiaoming Wang, Purdue University **P2-49:** A Revamped Classification of Composite Materials: *Martin Pech-Canul*¹; Socorro Valdez²; Milka Acosta-Enríquez³; Héctor Hdz-García⁴; Eulices Acosta-Enriquez³; José Flores-García¹; ¹Cinvestav IPN Saltillo; ²UNAM; ³Universidad de Sonora; ⁴Corporación Mexicana de Investigación en Materiales (COMIMSA) P2-50: CNT/Cu Composite for Improved Functional and Structural Materials: Shengchen Xue1; Christopher Kovacs2; Michael Sumption2; Edward Collings2; CJ Thong³; John Phillips³; Michael Tomsic³; ¹Ohio State University; ²OSU; ³Hyper Tech Research, Inc. P2-51: Microstructure and Mechanical Properties of Coconut Shell Reinforced **Epoxy Composites**: Suleiman Hassan¹; *Johnson Agunsoye*¹; Sefiu Bello²; Adekunle Adebisi³; Joseph Agboola¹; ¹University of Lagos; ²Kwara State University; ³University of Ilorin P2-52: Updating Definitions and Concepts in the Discipline of Composite Materials: Martin Pech-Canul¹; Socorro Valdez²; Luis González¹; Golam Newaz³; Xiaoming Wang⁴; Carlos León-Patiño⁵; ¹Cinvestav IPN Saltillo; ²UNAM; ³Wayne State University; ⁴Purdue University; ⁵Universidad Michoacana ## Multiscale Modeling of Microstructure Deformation in Material Processing — Poster Session Program Organizers: Lukasz Madej, AGH University of Science and Technology; Krzysztof Muszka, AGH University of Science and Technology; Danuta Szeliga, AGH University of Science and Technology; Jaimie Tiley, Air Force Office of Scientific Research Tuesday PM Room: Hall A October 16, 2018 Location: Greater Columbus Convention Center 4:45 PM - 5:45 PM P3-28: Numerical Evaluation of Static Recrystallization Progress in Microalloyed Steels through Cellular Automata Model: Lukasz Madej¹; Mateusz Sitko¹; Krzysztof Muszka¹; Janusz Majta¹; ¹AGH University of Science and Technology ## **Neutron and Synchrotron Techniques for Advanced** Materials Characterization — Poster Session Program Organizers: Helen Playford, ISIS Facility; Lewis Owen, University of Cambridge Tuesday PM Room: Hall A October 16, 2018 Location: Greater Columbus Convention Center 12:00 PM - 1:00 PM P2-53: Characterizing Subsurface Dislocation Content Using Microlaue Diffraction and Frank-bilby Streak Analysis: Chen Zhang1; Shanoob Balachandran¹; Philip Eisenlohr¹; Martin Crimp¹; Carl Boehlert¹; Ruqing Xu²; Thomas Bieler¹; ¹Michigan State University; ²Argonne National Laboratory P2-54: In-situ 3D Mapping of Spatially Resolved Stress Fields Associated with Twinning in Bulk HCP Magnesium: M Arul Kumar¹; Bjorn Clausen¹; Laurent Capolungo¹; Rodney McCabe¹; W Liu²; J Tischler²; Carlos Tome¹; ¹Los Alamos National Laboratory; ²Argonne National Laboratory P2-55: In-situ Neutron Diffraction Investigation of Shear Deformation in IF and AHS Steel: Thomas Gnaupel-Herold¹; Justin Milner¹; ¹National Institute of Standards and Technology P2-56: Microstructural Evolution of Ti-7Al under Cyclic Loading: Rachel Lim¹; Darren Pagan²; Yufeng Shen¹; Vahid Tari¹; Joel Bernier³; Robert Suter¹; Anthony Rollett¹; ¹Carnegie Mellon University; ²Cornell High Energy Synchrotron Source; ³Lawrence Livermore National Laboratory P2-57: Texture Mapping in Electron Beam Welded Dissimilar Cu-SS Joints by Neutron Diffraction: Soumitra Dinda¹; Jyotirmaya Kar¹; Gour Gopal Roy¹; Prakash Srirangam²; Winfried Kockelmann³; ¹Indian Institute of Technology Kharagpur; ²University of Warwick; ³STFC-Rutherford Appleton Laboratory P2-58: X-ray Computed Tomography and Digital Volume Correlation: Revealing Hidden Failure Mechanisms of Composites in 3D: Brendan Croom¹; Xiaodong Li¹; ¹University of Virginia P2-59: X-ray Pair Distribution Function Analysis of the Chemically Induced Degradation in Alkali-activated Slags: Kai Gong¹; Claire E.
White¹; ¹Princeton University ## MS&T18 ## MATERIALS SCIENCE & TECHNOLOGY ## Next Generation Biomaterials — Poster Session *Program Organizers:* Roger Narayan, University of North Carolina; Vipul Davé, Johnson & Johnson; Mohan Edirisinghe, University College of London; Sanjiv Lalwani, Lynntech, Inc. Tuesday PM Room: Hall A October 16, 2018 Location: Greater Columbus Convention Center 12:00 PM -1:00 PM Session Chair: Roger Narayan, NC State University P2-1: Effects of Cold Swaging and Annealing on the Microstructures and Mechanical Properties of Biomedical Co-Cr-Mo Alloy Rods: Mori Manami¹; Nanae Sato¹; Kenta Yamanaka²; Kazuo Yoshida²; Koji Kuramoto³; Akihiko Chiba²; ¹National Institute of Technology, Sendai College; ²Tohoku University; ³Eiwa Co., Ltd. **P2-2:** Fabrication of Biocompatible Bijels-derived Hybrid Hydrogel Membranes for Growth Factor Delivery: Haoran Sun¹; *Min Wang*¹; ¹The University of Hong Kong P2-3: Use of Computational Tools in the Search for the Next Generation of Materials for Regenerative Medicine Applications: Felipe Fabricio Pacci Evaristo¹; Wolfgang Windl¹; ¹The Ohio State University ## Processing and Performance of Materials Using Microwaves, Electric and Magnetic Fields, Ultrasound, Lasers, and Mechanical Work – Rustum Roy Symposium — Poster Session Program Organizers: Morsi Mahmoud, King Fahd University of Petroleum and Minerals - KFUPM; Dinesh Agrawal, Pennsylvania State University; Guido Link, Karlsruhe Institute of Technology; Motoyasu Sato, Chubu University; Rishi Raj, University of Colorado; Victoria Blair, Army Research Laboratory Tuesday PM Room: Hall A October 16, 2018 Location: Greater Columbus Convention Center 4:45 PM - 5:45 PM **P3-30:** Structure and Properties of Induction Sintered Copper-based Powder Metal Parts: Christian Muth¹; *Kurt Diehl*¹; Daudi Waryoba¹; ¹Pennsylvania State University ## Semiconductor Heterostructures: Theory, Growth, Characterization, and Device Applications — Poster Session Program Organizers: John Ayers, University of Connecticut; Ganesh Balakrishnan, University of New Mexico; Phil Ahrenkiel, South Dakota School of Mines & Technology Tuesday PM Room: Hall A October 16, 2018 Location: Greater Columbus Convention Center 12:00 PM - 1:00 PM Session Chair: John Ayers, University of Connecticut P2-20: Carbon Doping of 2D Transition Metal Dichalcogenides by Plasma Enhanced CVD: Yanfu Lu¹; Susan Sinnott¹; ¹Penn State University P2-21: Comparison of Chirped and Unchirped Superlattices as Dislocation Filters for Metamorphic in GaAs/GaAs (001) Devices: Md Tanvirul Islam¹; Xinkan Chen¹; Minglei Cai¹; *Tedi Kujofsa*¹; John Ayers¹; ¹University of Connecticut **P2-22:** Plastic Flow in Lattice Mismatched III-V (001) Heterostructures: *Tedi Kujofsa*¹; John Ayers¹; ¹University of Connecticut ## Sintering and Related Powder Processing Science and Technologies — Poster Session Program Organizers: Ricardo Castro, University of California, Davis; Zachary Cordero, Rice University; Eugene Olevsky, San Diego State University; Wolfgang Rheinheimer, Purdue University Tuesday PM Room: Hall A October 16, 2018 Location: Greater Columbus Convention Center 4:45 PM - 5:45 PM P3-31: Microstructural Evolution of WE43 Powder Processed by Spark Plasma Sintering: *Julie Soderlind*¹; ¹Department of Materials Science and Engineering ## Small-scale Properties of Materials and Length-scale Phenomena — Poster Session Program Organizers: Meysam Haghshenas, University of North Dakota; Charles Lu, University of Kentucky; Finn Giuliani, Imperial College London Tuesday PM Room: Hall A October 16, 2018 Location: Greater Columbus Convention Center 12:00 PM - 1:00 PM **P2-60:** Effect of Sm on Mechanical Properties of Cu-Zr-Al Bulk Metallic Glasses: *Fatih Sikan*¹; Sila Atabay²; Sezer Özerinç¹; Ilkay Kalay³; Eren Kalay¹; ¹Middle East Technical University; ²McGill University; ³Cankaya University **P2-61:** In Situ Observation of Microbuckling Failure in Carbon Fibre Reinforced Polymers: *Giorgio Sernicola*¹; Mary Ryan¹; Finn Giuliani¹; ¹Imperial College London **P2-62: Measurement of Fiber-matrix Interface Strength by In-situ Push-out Tests**: *Eden Spencer*¹; Giorgio Sernicola¹; Finn Giuliani¹; Mary Ryan¹; ¹Imperial College London P2-63: Micropillar Compression Study of the Size and Internal Boundary Effects on the Strength of HT9 Tempered Martensitic Steel: Sangyeob Lim¹; Chansun Shin²; Hyung-Ha Jin¹; ¹Korea Atomic Energy Research Institute; ²Myongji University P2-65: Multi-Length Scale Measurements of Mechanical Properties of Age Hardened 18Ni (350) Maraging Steel: Sepideh Parvinian¹; Ali Khosravani¹; Hamid Garmestani¹; Surya Kalidindi¹; ¹Georgia Institute of Technology P2-66: Nanomechanically Supported Computational Modeling for Thermomechanical Property Design and Optimization in Small-scale Powder Metallurgy: Derek Tsaknopoulos¹; Bryer Sousa¹; Victor Champagne²; Danielle Cote¹; ¹Worcester Polytechnic Institute; ²Army Research Laboratory **P2-67:** Predicting the Shape Memory Response of New Alloys: *Richard Blocher*¹; Anindya Ghoshal²; Muthuvel Murugan²; Luis Bravo²; Peter Anderson²; ¹Ohio State University; ²Army Research Laboratory **P2-68:** The Limits of Delta-K Controlled Fatigue Crack Growth in Ultrathin Sheets: *Syed Javaid*¹; Wade Lanning¹; Christopher Muhlstein¹; ¹Georgia Institute of Tech ## Solid State Processing — Poster Session Program Organizers: Richard Fonda, Naval Research Laboratory; Simon Larose, National Research Council Canada Tuesday PM Room: Hall A October 16, 2018 Location: Greater Columbus Convention Center 4:45 PM - 5:45 PM P3-32: Smoothed Particle Hydrodynamics Simulation of Additive Friction Stir Manufacturing of Aluminum Alloy 6061: George Stubblefield¹; Kirk Fraser²; Paul Allison¹; Brian Jordon¹; ¹University of Alabama; ²National Research Council Canada ## Surface Properties of Biomaterials — Poster Session Program Organizers: Venu Varanasi, University of Texas at Arlington; Ryan Bock, Amedica Corporation; Jason Langhorn, DePuy Synthes Joint Reconstruction; Susmita Bose, Washington State University; Amit Bandyopadhyay, Washington State University Tuesday PM Room: Hall A October 16, 2018 Location: Greater Columbus Convention Center 12:00 PM - 1:00 PM P2-4: Controlled Release of Sodium Bicarbonate and Doxorubicin on Osteoblast and Osteosarcoma Cell Viability Using Polycaprolactone Coatings: Dishary Banerjee¹; Susmita Bose¹; Washington State University P2-5: Enhanced in Vivo Bone and Blood Vessel Formation by Iron and Silicon Doped 3D Printed Tricalcium Phosphate Scaffolds: Susmita Bose¹; *Dishary Banerjee*¹; Sam Robertson¹; ¹Washington State University **P2-6: Liposome Encapsulated Curcumin for Enhanced Bone Cell - Material Interactions Using Calcleium Phosphate Based Bone Grafts**: *Naboneeta Sarkar*¹; Susmita Bose¹; ¹Washington State University P2-7: Starch Hydroxyapatite Composite Scaffolds Utilizing a Slurry Based 3D Printer: Effects of Amylose Content on Compressive Strength: Caitlin Koski¹; Bonny Onuike¹; Amit Bandyopadhyay¹; Susmita Bose¹; ¹Washington State University ## Surface Protection and Spray Technology for Enhanced Materials Performance: Science, Technology, and Application — Poster Session Program Organizers: Kang Lee, NASA Glenn Research Center; Jun Song, McGill University; Yutaka Kagawa, The University of Tokyo; Dongming Zhu, NASA Glenn Research Center; Rodney Trice, Purdue University; Daniel Mumm, University of California, Irvine; Mitchell Dorfman, Oerlikon Metco (US) Inc.; Christian Moreau, Concordia University; Emmanuel Boakye, UES Inc.; Edward Gorzkowski, Naval Research Laboratory; Scooter Johnson, Naval Research Laboratory; Richard Chromik, McGill University; Stephen Yue, McGill University Tuesday PM Room: Hall A October 16, 2018 Location: Greater Columbus Convention Center 4:45 PM - 5:45 PM P3-33: Microstructural and Multiscale Tribological Properties of the Coldsprayed Ti2AlC MAX Phase Coating: Archana Loganathan¹; Ashutosh Sahu²; Chris Rudolf¹; Cheng Zhang¹; Sara Rengifo¹; Tapas Laha²; Benjamin Boesl¹; Arvind Agarwal¹; ¹Florida International University; ²Indian Institute of Technology, Kharagphur P3-34: Portable Device to Modify Rail Surface for Wear and Crack: Seky Chang¹; ¹Korea Railroad Research Institute ## Synthesis, Characterization, Modeling, Properties and Applications of Functional Porous Materials — Poster Session Program Organizers: Lan Li, Boise State University; Winnie Wong-Ng, National Institute of Standards and Technology; Kevin Huang, University of South Carolina Tuesday PM Room: Hall A October 16, 2018 Location: Greater Columbus Convention Center 4:45 PM - 5:45 PM Session Chair: Lan Li, Boise State University P3-35: Study on Anti-impact Performance of Closed Aluminum Foam Sandwich Panels: *Guo Qian*¹; Yao Wenjin¹; Li Wenbing¹; Tang Jun²; Wang Xiaoming¹; ¹Nanjing University of Science and Technology; ²Nanjing CEPREI Industrial Technology Research Institute Program Organizers: Ali Yousefiani, Boeing Research And Technology; Troy Topping, California State University, Sacramento; Robert Dillon, Jet Propulsion Laboratory; Linruo Zhao, NRC Aerospace Tuesday PM Room: Hall A October 16, 2018 Location: Greater Columbus Convention Center 4:45 PM - 5:45 PM P3-37: The Effect of Titanium on the Tungsten-free Cobalt-base Superalloys: Semanti Mukhopadhyay¹; Prafull Pandey²; Surendra Makineni³; Krishanu Biswas⁴; Dierk Raabe⁵; Kamanio Chattopadhyay²; ¹The Ohio State University; ²Indian Institute of Science Bangalore; ³Max-Planck-Institut für Eisenforschung GmbH; ⁴Indian Institute of Technology Kanpur; ⁵Max-Planck-Institut für Eisenforschung GmbH | A | Aguilar, E | Allan, S | |---|--|---| | 411 4 77 | Aguilar, L | Allard, L 29, 115 | | Abbasi, K | Aguilera, C | Allen, A 129 | | Abbott, A | Agunsoye, J 82, 139 | Allesina, G | | Abdelgalil, A | A Hackett, G 61 | Alleyne, A | | Abdeljawad, F 105, 108 | Ahearn, D |
Allison, J | | Abdi, F 47 | Ahlers, D | Allison, P 72, 141 | | Abe, O | Ahlfors, M | Al Majali, Y | | Abernathy, H 61, 78, 79, 86 | Ahmad, T | Alman, D 51, 83 | | Abe, S | Ahmadzadeh, M 27, 106, 131 | AlMangour, B | | Abhinay, S 60, 82 | Ahmed, S | Almansour, A | | Aboutalebi, M | Ahn, Y | Almeida Silva, A | | Abraham, S | Ahrenkiel, P | Al-Meshari, A | | Abrahams, R | Ahuja, N | Almirall, N | | Abubakar, F | Ai, B | Al-moussawi, M | | Abu-Mahfouz, I 29 | Aifantis, E | Alnaser, H | | Abusamha, M | Aifantis, K | Allobaid, B | | Acar, P | | Alonso, E | | Acharya, A | Aikin, N | | | Achuthankutty, A | Aitkaliyeva, A | Algarni, L | | Ackelid, U16, 17, 36, 37, 38, 57, 58, 59, | Ajiboye, S | Al-Qarni, L | | 75, 76, 99, 100, 118, 119, 129 | Ajjarapu, K | Alrehaili, H | | Acosta, C | Akanda, S | Alsahli, A | | Acosta-Enriquez, E | Akbar, S 18, 32, 69, 116 | Alsem, D | | - | Akinc, M 50 | Altamirano-Juárez, D 139 | | Acosta-Enríquez, M | Akin, I | Alvarez, A | | Adachi, H | Akinlabi, E 18, 39, 85, 117 | Alveroglu, E | | Adachi, K | Akinlabi, S 18, 39, 85 | Alves, A | | Adam, B | Akiyama, K | Alvin, M | | Adam, K | Akman, A | Alyousif, O | | Adams, D | Akram, J | Alzate-Vargas, L 111 | | Adcock, K | Akyuz, B21, 23, 34, 42, 43, 55, 62, 66, | Amador, U 90 | | Addamane, S 95, 116 | 81, 88, 104, 110, 122, 131, 132, 133 | Amanov, A | | Adebisi, A | Alabi, A | Amaya, H | | Adekola, F | Alam, F | Amerinatanzi, A | | Adeniyi, A | Alam, T | Amezawa, K 65 | | Adeosun, S | Alanis, D 20, 133, 134 | Amilkanthwar, C | | Adewumi, O | Alapati, S | Aminirastabi, H | | Adkins, N 15, 90 | Al-Aqeeli, N | Amir, A | | Adkison, K | Aldaz-Cervantes, M 81 | Amirkhiz, B | | Adler, D | Alderson, T 126 | Amleh, A | | Aga, R | Alem, N | Amleha, A | | Agarwal, A 52, 53, 113, 135, 136, 141 | Ales, T 43, 91 | Amoroso, J 27, 28, 49, 67, 89, 111, 138 | | Agarwal, G | Alexander, C | Anameric, B | | Agarwal, K | Alexander, D | Anantharaman, S | | Agboola, J | Alexandrov, B26, 47, 48, 65, 66, 86, 87, | Anant, R | | Agbo, S | 109, 124, 135 | Anderko, A | | Aggarwal, I | Al-Hashem, H | Anderson, C | | Aghaie, E | Al-Hashem, M 69 | Anderson, E | | Aghasibeig, M | Alhuzaim, A | | | Agnew, S | | Anderson, I 18, 19, 40, 51, 59 | | Agrawal, D | Allers S | Anderson, K 26, 33, 115 | | Agrawal, P 67 | Alkan, S | Anderson, M | | Agudelo-Buitrago, G | Allaire, D | Anderson, N 91 | | rigadelo Dalitiago, G | | | ## MS&T18 MATERIALS SCIENCE & TECHNOLOGY | Anderson, P 76, 77, 83, 93, 141 | |---| | Anderson, R | | Anderson, T | | Andrade, M 40 | | Andreola, F | | Andrew, J | | Andrews, R | | Andring, J | | Anene, A | | Aneziris, C92 | | Angelopoulos, A 67 | | Angeltveit, M | | Ansari, F | | Antolin, N | | Antonick, P | | Antonysamy, A | | Aoki, Y | | | | Applett, A. 15, 27, 28, 35, 56, 74, 75, 133 | | Apetre, N | | Apostolov, Z | | Appel, C | | Apua, M | | Arafin, M | | Aranas, C | | Arenas-Serrano, A | | Arfaei, B | | Argade, G | | Arkenberg, G 60, 102 | | Armstrong, A | | Árnadóttir, L 25 | | Arnold, A | | Arnold, B | | Arora, H | | Arroyave, R31, 51, 70, 75, 77, 94, 115, | | 139 | | Arul Kumar, M 90, 139 | | Arvind, S | | Asadikiya, M | | Asahara, Y | | A Salvador, P 61 | | _ | | Asbani, B | | Asfahani, R | | Ashbee, T | | Ashby, M | | Ashcroft, I | | Ashida, H | | Askari, H | | Askins, C | | Aslla Quispe, A | | Asmussen, M 32, 52, 67, 71, 132 | | Asphahani, R | | Asthana, R 15, 35, 56, 74, 133 | | | | Aswathanarayanaswamy, R 76 | |--| | Aswath, P | | Atabay, S | | Atallah, M | | Atre, S | | Atta-Fynn, R | | Attallah, M 15, 16, 58, 75, 76, 90 | | Attard, B | | Attarian Shandiz, M | | Aubry, P | | Auliff, J | | Averion, R | | Avery, D | | Awadallah, O | | Awad, K | | Awasthi, S | | Aydogmus, D | | Ayers, J 95, 116, 140 | | Ayers, T | | Ayon, S | | Ayyagari, A | | Azami Ghadkolai, M | | Azer, M | | Azimaie, T | | Azzam, M | | _ | | В | | Baba, A | | Babu, S. 16, 17, 19, 26, 36, 37, 38, 57, 58, | | 59, 75, 76, 99, 100, 118, 119, 120, 129 | | Babu S M, J | | Backman, L | | Bäckström, M | | Bacroix, B | | Badgley, P | | ě , | | Bae, C | | Bae, H | | Bafana, A | | Bagheripoor, M | | Bagnall, C | | Bahbou, F | | Bahramibabamiri, B 77 | Bahr, D. 29, 71, 96 Bailey, B. 29 Bailey, N. 37 Bailey, R. 22 Baishnab, N. 73, 97 Bai, Y. 16, 86 Baker, A. 52 Baker, C. 21 Baker, D. 40, 120 Baker, E. 61 | Baker, I | |--| | Bäker, M 48 | | Baker, S | | Bakir, M | | Bakst, I | | Balachandran, B 83 | | Balachandran, S 106, 139 | | Balachandran, U | | Balakrishnan, G 95, 116, 146 | | Balani, K | | Balasundar, I | | Bal, B | | Baldwin, K | | Baldwin, L | | | | Bale, C | | Bale, H | | Balk, T | | Balla, V | | Ballor, J 8 | | Balonis, M 4 | | Baltisberger, J | | Baltušnikas, A | | Bandyopadhyay, A 30, 33, 54, 14 | | Bandyopadhyay, T | | Banerjee, D 28, 33, 62, 14 | | Banerjee, P | | Banerjee, R | | Banker, M | | Banner, J | | Bansal, A | | Bansal, N 24, 25, 46, 47, 64, 131, 132 | | Banu, M | | BaoYu, G 5 | | | | Barbati, A | | Barber, G | | Barbieri, L | | Barborak, D 26, 47, 48, 65, 66, 86, 87 | | 109, 124, 13 | | Barnes, J | | Barnett, S | | Barnoush, A 71, 96, 100 | | Barnsley, K 2 | | Baron, C | | Baron, R | | Barr, A | | Barr, C 83, 100 | | Barrett, C 16, 119, 124 | | Barrick, E | | Barr, J | | Barry, D | | Bartel, C | | | | Bartlett, J | | Bartlett, L | 123, 131, 133 | Blanco, C | |---|---|---| | Bartolucci, S 50 | Bernier, J | Blázquez, J | | Bartsch, C | Berrigan, J | Blendell, J19, 24, 46, 59, 64, 85, 108, | | Baruffi, C | Berthier, L | 124, 135 | | Bastidas, D | Bertsch, K 63, 98 | Blinn, K | | Bastos, F 68 | Besmann, T 67 | Blocher, R | | Basu, D | Betal, S 41, 60, 133 | Blond, E | | Basu, J | Beuth, J 16, 18, 37, 56, 58, 76, 99, 100 | B Menasche, D | | Basu, S 16, 28, 50, 78, 79, 118, 121 | Bevan, W | Boakye, E | | Batakis, A | Beyerlein, I | Bobbio, L | | Batchelor, A | Bhaduri, S 69, 125 | Bobbitt, J | | Bateman, A | Bhagavatam, A | Boccaccini, A 84, 106, 123, 131 | | Bates, B | Bhalla, A 19, 20, 41, 60, 133, 134 | Bocklund, B 16, 94, 115 | | Bathula, V | Bharath, K | Bock, R | | Battle, B | Bhardwaj, D | Bodnar, R | | Bauchy, M 23, 44, 49, 67, 80, 87, 104, | Bhartiya, S 60, 102 | Boechler, N | | 121, 130 | Bhatia, V | Boehlert, C22, 43, 62, 72, 81, 83, 123, | | Bauer, T | Bhattacharjee, A | 134, 139 | | Baur, J | Bhattacharya, A 108 | Boesenberg, A | | Bautmans, L | Bhattacharya, S | Boesl, B 52, 53, 113, 135, 136, 141 | | Bawane, K | Bhattacharyya, J | Boettcher, E 65 | | Baxter, G | Bhatt, R 47 | Bogan, J | | Bayatimalayeri, P 77, 78, 119 | Bhowmick, S | Bohn, K 82 | | Bayya, S 21, 42, 120 | Bhowmik, S | Boileau, J 50 | | Bazzi, K | Bhusal, S | Böke, Y | | Beabout, D | Bian, L | Bokisa, G | | Beal, R 63 | Bichler, L 26, 27, 32, 56, 89, 95, 111 | Bolsoni Falcão, R 57 | | Bean, G | Bidare, P | Bomarito, G | | Beavers, J | Bieler, T18, 22, 44, 47, 59, 63, 83, 105, | Bonanno, E | | Beck, A | 106, 122, 123, 124, 139 | Bondarchuk, V | | Becker, M | Biermann, H | Bond, C 84 | | Beck, M 29, 108 | Biernacki, J | Bonewald, L | | Beckman, S 20, 42, 61, 134 | Bie, X | Bonnett, J | | Beckwith, A | Bilal, F | Bono, E | | Beese, A 16, 36, 37, 64, 70 | Billinge, S | Boona, I | | Behera, A | Bindas, E | Boondaeng, A | | Behera, R | Bini, R | Boonyarit, J | | Behler, K | Binns, J | Boostani, A | | Bei, H | Binns, W | Boratav, O | | Bell, A | Birbilis, N | Bordeenithikasem, P | | Bellhouse, E 41, 101, 135 | Bird, V | Bordia, R | | Bello, S | Biro, E | Borghi, A | | Benac, D | Bishop, J | Borgonia, J | | Benafan, O | Bishop, R | Boschetto, F | | Bencan, A | Biswas, K | Bose, A | | Benefan, O | Biswas, P | Bose, S | | Benn, E | Bitharas, I | Botero, C | | Bennett, J | Bittner, F | Bottaro, F | | Benoit, M | Black, A | Botta, W 80 | | Bergeson, A | Blair, R 90 | Boudreaux, R | | Bernardo, E15, 35, 56, 69, 74, 84, 106, | Blair, V 30, 42, 51, 61, 69, 137, 140 | Bougherara, H | | | , | | ### MS&T18 | Bourdon A. 65 Brum. J. 111 Callaway, B. 4.7 Bovec, M. 377 Brunke, F. 29 Callaway, E. 4.7 Bovec, M. 377 Brunke, F. 48 Calla, N. 3, 63, 37, 100 Bowers, M. 1111 Brushett, F. 55 Calvert, K. 22, 43, 62, 81, 134 Bowman, S. 42 Buck, E. 103 Cameron, B. 62, 81, 134 Boyman, S. 42 Buck, E. 103 Cameron, B. 63, 85, 89 Boyee, B. 105 Bufford, D. 106 Campbell, G. 107, 116, 124 Boyd, D. 211 Bugnet, M. 68 Campillo, B. 99, 90 Bradshaw, S. 66 Bullard, J. 87 Campion, I. 317 Bradshaw, S. 66, 98 Buldsta, A. 43 Canfield, N. 79 Braginsky, M. 68, 59 Brainini, S. 23, 44, 63, 106 Brahimi, S. 23, 44, 63, 106 Brahimi, S. 23, 44, 63, 106 Brand, M. 82 Bund, P. 29, 129 Branagan, D. 90, 116, 138 Buntain, R. 1214 Brand, M. 16, 37 Burch, A. 71 Cao, T. Cao, M. 19, 139 Branagan, D. 91, 16, 138 Burth, A. 71 Brand, M. 16, 37 Burch, 18, 52 Burl, B. 20 Brand, M. 18, 52 Burl, B. 20 | Douglas A | D | Callaryay D |
--|--|-----------------|--| | Bovee, M. 137 Brunke, F. 48 Calta, N. 3,3,7,100 | | | • | | Bowers, M. | | | | | Bowman, E. 1.14 Bryan, C. 44,109 Campron, B. 6.3 Bowce, B. 105 Bufford, D. 106 Campbell, C. 31,36,58,94 Boyd, D. 21 Bugnet, M. 68 Campbell, G. 107,116,124 Bryad, M. 18,52 Bullard, J. 87 Campton, I. 137 Bradishaw, S. 60 Bullstuz, A. 43 Campton, I. 137 Braginsky, M. 65,98 Bullstuz, A. 43 Canfield, N. 79 Bramide, M. 8.2 Bunn, J. 29,219 Cao, F. 53 Bramagan, D. 90,116,138 Buntain, R. 124 Cao, L. 62,82,104 Brandel, W. 69,93 Burdick, J. 17 Cao, Y. 80,104 Brander, W. 69,93 Burdick, J. 17 Cao, Y. 80,104 Bratasz, L. 79 Burgess, J. 124 Cao, Y. 80,104 Bratasy, L. 19 Burgess, J. 124 Capone, J. 18 | | | | | Bowman, S. 4.2 Buck, E. 103 Campbell, C. 31,36,58,94 Boyce, B. 105 Bufford, D. 106 Campbell, G. 107,116,124 Boyd, D. 21 Bugnet, M. 68 Campbell, G. 107,116,124 Bradshaw, S. 60 Bullard, J. 87 Campbell, G. 107,116,124 Brady, M. 18,52 Bull, S. 53,116 Camfield, N. 79 Brainisky, M. 65,98 Bulutsuz, A. 43 Canfield, P. 96 Brainisky, M. 68,98 Bulutsuz, A. 43 Canfield, P. 96 Brainisky, M. 69,98 Burbarder, C. 25,88 Cann D. 8.7 Brameld, M. 616,37 Burn, J. 29,129 Cao, F. 53 Brandagh, D. 90,116,138 Burtain, R. 124 Cao, L. 62,82,104 Brand, M. 616,37 Burch, A. 71 Cao, L. 90,139 Bratas, L. 79 Burdick, C. 82 Cappling, D. < | | | | | Boyce, B | | • | | | Boyd, D. 21 Bugnet, M. 68 Campillo, B. 90 Bradshaw, S. 60 Bullard, J. 87 Campioni, I. 137 Brady, M. 18,52 Bull, S. 53,116 Canfield, N. 79 Braginsky, M. 66,98 Bulutsuz, A. 43 Canfield, P. 96 Brahimi, S. 23,46,3,106 Bumgardner, C. 25,88 Cann, D. 87 Brameld, M. 82 Bum, J. 29,129 Cao, F. 53 Branagan, D. 90,16,138 Buntain, R. 124 Cao, L. 6,28,2,10 Branale, M. 16,37 Burch, A. 71 Cao, Y. 80,104 Brantley, W. 69,33 Burda, C. 82 Caplins, B. 67 Braroo, S. 105 Burdick, J. 17 Capolungo, I. 90,139 Bratasz, J. 79 Burgess, J. 124 Capone, J. 190,139 Bratasz, J. 79 Burgess, J. 124 Capone, J. 190,139 Bratasz, J. 79 Burgess, J. 124 Capone, J. 180 Braw, P. 101 Burke, P. 60 Caponetti, E. 84 Bravo, L. 141 Burke, T. 69 Caprio, L. 90,139 Bredish, M. 83 Burns, M. 58,76 Caprio, L. 99 Brechtl, J. 54 Burns, P. 67 Caputo, M. 74,77,78,119 Brehm, J. 45 Burry, T. 102 Carazzone, R. 53 Brennan, P. 18 Bustillos, J. 13,135 Carey, A. 80,119 Brennan, P. 18 Bustillos, J. 13,135 Carey, A. 80,119 Brenner, F. 100 Bute, S. 41 Carini, M. 4,7 Brewer, B. 35 Butler, B. 15,118 Caris, J. 88 Brewer, G. 34 Butler, T. 99 Carlon, K. 27,97,31,107 Brewster, M. 107 Butt, D. 27 Carmichael, C. 64 Bridges, D. 86 Butt, M. 13,121 Carney, C. 89,111 Brigh, Y. 100 Buzolin, R. 27 Carney, L. 21 Brigden, K. 58, Buzzo, B. 136 Carrichael, C. 64 Bridges, D. 186 Brown, C. 34 Cai, M. 95,140 Brotto, M. 17, 20, 26, 26, 37, 47, 48, 59, 63, 41, 48, 59, 63, 67, 78, 87, 71, 79, 79 Brotto, M. 34, 54 Cai, M. 95,140 Brown, B. 135, Cai, M. 95,140 Brown, B. 135, Cai, M. 95,140 Brown, B. 136, Cai, M. 95,140 Brown, B. 137, 57, 62 Brown, B. 137, 57, 62 Brown, B. 138 Brown, C. 34 Calderoni, P. 89 Brown, R. 8, 7, 62 Calderoni, P. 89 Brown, R. 18 Brower, G. 34 Calderoni, P. 89 Brown, R. 8, 18 Calloun, C. 29 Calege, K. 5, 54 Cebe, T. 5, 54 | | | | | Bradshaw, S. 60 Bullard, J. 87 Campjoni, I. 137 Brady, M. 18.52 Bull, S. 53,116 Canfield, N. 79 Braginsky, M. 65,98 Bulutsuz, A. 43 Canfield, P. 96 Brahimi, S. 23,44,63,106 Bumgardner, C. 25,88 Cann, D. 87 Brameld, M. 82 Bunn, J. 29,129 Cao, F. 53 Branagam, D. 90,116,138 Buntain, R. 124 Cao, L. 62,82,104 Brand, M. 16,37 Burch, A. 71 Cao, Y. 80,104 Brand, M. 69,93 Burda, C. 82 Caplins, B. 67 Branco, S. 105 Burdick, J. 17 Capolungo, L. 90,139 Bratasz, L. 79 Burgess, J. 124 Capone, J. 18 Braun, P. 101 Burke, P. 60 Caponetti, E. 84 Bravo, L. 1411 Burke, P. 60 Caponetti, E. 84 Bravo, L. 1411 Burke, P. 67 Caputo, M. 74, 77, 78, 119 Brecht, J. 54 Burns, M. 58,76 Caprio, L. 99 Brechtl, J. 54 Burns, P. 67 Caputo, M. 74, 77, 78, 119 Brennan, M. 37 Busse, L. 21 Carden, W. 55 Brennan, P. 18 Bustillos, J. 113, 135 Carey, A. 80, 119 Brenne, F. 100 Butee, S. 41 Carini, M. 47 Brewer, B. 35 Butler, B. 15, 118 Caris, J. 88 Brewer, G. 34 Butler, T. 99 Carlson, K. 27, 69, 73, 107 Brewster, M. 107 Butt, D. 27 Carnichael, C. 64 Bridges, D. 86 Butt, M. 13, 121 Britton, T. 72 Bridges, D. 86 Butt, M. 13, 121 Britton, T. 73 Brosnan, K. 15, 61 Brittan, A. 111 Britton, T. 73 Brosnan, K. 15, 61 Brittan, A. 111 Britton, T. 73 Brosnan, K. 15, 61 Brittan, A. 117 Brown, C. 34, 34, 54 Brown, D. 34, 54 Brown, C. 34, 34, 54 Brown, C. 34, 54 Brown, C. 34, 54 Brown, C. 34, 54 Brown, D. 37, 57, 62 Brownin, P. 79 Brown, R. 87 Brownin, P. 79 Brown, R. 87 Brownin, P. 79 Brown, R. 87 Brownin, P. 79 Brown, R. 88 Brower, G. 16 Browck, C. 43 Caligaris, M. 44 Caligaris, M. 44 | | | * | | Brady, M. 1.8.52 Bull, S. 53.116 Canfield, N. 7.99 Braginsky, M. 6.5,98 Bulusuz, A. 4.3 Canfield, P. 96 Bramid, S. 2.3,44,63,106 Bumgardner, C. 2.58.8 Cann, D. 87 Brameld, M. 8.2 Bunn, J. 29,129 Cao, F. 5.3 Brand, M. 16,37 Burch, A. 7.1 Cao, Y. 80,104 Brand, M. 16,37 Burch, A. 7.1 Cao, Y. 80,104 Brand, M. 16,37 Burdick, J. 17 Capolungo, I. 90,139 Brardo, S. 105 Burdick, J. 17 Capolungo, I. 90,139 Bratasz, L. 79 Burgess, J. 124 Capone, J. 1.8 Braun, P. 101 Burke, T. 60 Caponeti, E. 84 Bray, L. 141 Burke, T. 60 Caponeti, E. 84 Bray, L. 145 Burns, M. 58,76 Caprio, L. 9.9 | | | * | | Braginisky, M 65, 98 Rultsuz, A 43 Canfield, P 96 Branimis, S 23, 44, 63, 106 Bumgardner, C 25, 88 Cann, D 87 Branad, M 82 Bunn, J 29, 129 Cao, F 53 Branagan, D 90, 116, 138 Burtain, R 124 Cao, L 62, 82, 104 Brand, M 16, 37 Burdick, J 71 Cao, Y 80, 104 Brand, W 69, 93 Burda, C 82 Caplins, B 67 Braoo, S 105 Burdick, J 17 Capoung, L 90, 139 Bratasz, L 79 Burgess, J 124 Capone, J 18 Braun, P 101 Burke, P 60 Caponetti, E 84 Brayo, L 141 Burke, P 60 Caponetti, E 84 Brayo, L 141 Burke, P 67 Caputo, M 74, 77, 78, 119 Breachtl, J 54 Burns, M 58. 76 Caputo, M 74, 77, 78, 119 < | · | | * | | Brahlmin, S. 23, 44, 63, 106 Bumngardner, C. 25, 88 Cann, D. 87 Brameld, M. 82 Bunn, J. 29, 129 Cao, F. 53 Branagan, D. 90, 116, 138 Buntain, R. 124 Cao, F. 53 Branday, M. 16, 37 Burch, A. 71 Cao, Y. 80, 104 Branday, M. 69, 93 Burda, C. 82 Capling, B. 67 Braroo, S. 105 Burdick, J. 17 Capolungo, L. 90, 139 Bratusz, L. 79 Burgess, J. 124 Capone, J. 18 Braun, P. 101 Burke, T. 60 Capolungo, L. 90, 139 Bravich, M. 83 Burns, P. 60 Capone, J. 18 Braylich, M. 83 Burns, P. 60 Capuci, S. 136 Braylich, M. 83 Burns, P. 67 Capuco, J. 14 Brechtl, J. 54 Burns, P. 67 Caprio, M. 74, 77, 78, 119 <tr< td=""><td>•</td><td></td><td></td></tr<> | • | | | | Brameld, M. 82 Bunn, J. 29, 129 Cao, F. 53 Branagan, D. 901, 16, 138 Buntain, R. 124 Cao, L. 62, 82, 104 Brand, M. 16, 37 Burch, A. 71 Cao, L. 62, 82, 104 Brand, W. 69, 93 Burda, C. 82 Caplins, B. 67 Bravo, S. 105 Burdisk, J. 17 Capoling, L. 90, 139 Bratasz, L. 79 Burgess, J. 124 Capone, J. 18 Bravo, I. 141 Burke, P. 60 Caponetti, E. 84 Bravo, I. 141 Burke, P. 60 Caponetti, E. 84 Brave, I. 141 Burke, P. 60 Caponetti, E. 84 Brave, I. 141 Burke, P. 60 Caponetti, E. 84 Brave, I. 145 Burke, P. 60 Caputo, M. 74, 77, 78, 119 Brewthil, J. 45 Burye, T. 102 Carden, W. 5.5 B | | | | | Branagan D 90, 116, 138 Burtain, R 124 Cao, L 62, 82, 104 Brand, M 16, 37 Burch, A 71 Cao, Y 80, 104 Brandey, W 69, 93 Burda, C 82 Caplins, B 67 Braoo, S 105 Burdick, J 17 Capolungo, L 90, 139 Bratasz, I. 79 Burgess, J 124 Caponetti, E 84 Braun, P 101 Burke, P 60 Caponetti, E 84 Bray, L 141 Burke, T 69 Cappuci, S 136 Braydich, M 83 Bury, T 60 Caprocit, L 99 Brechtl, J 54 Bury, T 102 Carazzone, R 35 Brenh, J 45 Burye, T 102 Carazzone, R 53 Brennan, P 18 Bustillos, J 113, 135 Carey, A 80, 119 Brenne, F 100 Bute, B 15, 118 Caris, J 88 Brewer, G 34 <td></td> <td></td> <td></td> | | | | | Brand M. 16, 37 Burch, A 71 Cao, Y. 80, 104 Brandley, W. 69, 93 Burda, C. 82 Caplins, B. 67 Braroo, S. 105 Burdick, J. 17 Capolungo, L. 90, 139 Bratasz, I. 79
Burgess, J. 124 Capone, J. 18 Braun, P. 101 Burke, P. 60 Caponetti, E. 84 Bray, L. 141 Burke, P. 60 Caporti, L. 99 Brechtl, J. 54 Burns, P. 67 Caprio, L. 99 Brechtl, J. 54 Burns, P. 67 Caprio, L. 99 Brechtl, J. 54 Burs, P. 67 Caprio, L. 99 Brechtl, J. 54 Burs, P. 67 Caprio, L. 90 Brenan, P. 18 Burs, D. 67 Caprio, L. 90 Brennan, M. 37 Bustes, L. 21 Carden, W. 55 Brennan, P. 108 <t< td=""><td></td><td></td><td></td></t<> | | | | | Brantley, W. 69, 93 Burda, C. 82 Caplins, B. 67 Braroo, S. 105 Burdick, J. 17 Capolungo, L. 99, 139 Bratasz, L. 79 Burgess, J. 124 Capone, J. 18 Braun, P. 101 Burke, P. 60 Caponetti, E. 84 Brao, L. 141 Burke, P. 60 Caponetti, E. 84 Braydich, M. 83 Burns, M. 58, 76 Caprio, L. 99 Brechtl, J. 54 Burne, P. 67 Caputo, M. 74, 77, 78, 119 Brehm, J. 45 Burye, T. 102 Carazzone, R. 53 Brennan, P. 18 Bustillos, J. 113, 135 Carey, A. 80, 119 Brewer, B. 35 Butlee, S. 41 Carini, M. 47 Brewster, M. 107 Butt, D. 27 Carison, K. 27, 69, 73, 107 Bridges, D. 86 Butt, D. 27 Carison, K. 27, 69, 793, 107 | ě | | | | Bratos, S. 105 Burdick, J. 17 Capolungo, L. 90, 139 Bratasz, L. 79 Burgess, J. 124 Capone, J. 18 Bravo, L. 141 Burke, P. 60 Caponetti, E. 84 Bravo, L. 141 Burke, T. 69 Cappucci, S. 136 Braydich, M. 83 Burns, P. 67 Caputo, M. 74,77,78,119 Brenhan, J. 45 Burns, P. 102 Carazzone, R. 53 Brennan, P. 18 Bustillos, J. 113,135 Carey, A. 80,119 Brewer, B. 35 Butler, B. 15,118 Caris, M. 47 Brewer, G. 34 Butler, T. 99 Carlson, K. 27,69,73,107 Brewster, M. 107 Butt, D. 27 Carmichael, C. 64 Bridges, D. 86 Butt, M. 131,121 Carney, L. 22,1 Briggs, S. 106 Byzzynski, G. 136 Carrent, L. 15,87,610 <t< td=""><td></td><td></td><td></td></t<> | | | | | Bratasz, L. 79 Burgess, J. 124 Capone, T. 18 Braun, P. 101 Burke, P. 60 Caponetti, E. 84 Braydich, M. 83 Burns, M. 58, 76 Caprio, L. 99 Brechtl, J. 54 Burns, M. 58, 76 Caprio, L. 99 Brechtl, J. 54 Burns, P. 67 Caputo, M. 74, 77, 78, 119 Brenhan, J. 445 Burye, T. 102 Carazone, R. 53 Brennan, M. 37 Busse, L. 21 Carden, W. 55 Brennan, P. 18 Bustillos, J. 113,135 Carey, A. 80,119 Brenne, F. 100 Bute, S. 41 Carini, M. 47 Brewer, B. 35 Butler, B. 15,118 Caris, J. 88 Brewer, G. 34 Butler, T. 99 Carlson, K. 27,69,73,107 Brewer, B. 35 Butler, T. 99 Carlson, K. 27,69,73,107 | • | | | | Braun, P 101 Burke, P 60 Caponetti, E 84 Bravo, L 141 Burke, T 69 Cappucci, S 136 Braydich, M 83 Burns, M 58,76 Caputo, M 74,77,78,119 Brehn, J 45 Burns, P 67 Caputo, M 74,77,78,119 Brennan, M 37 Busse, L 21 Carden, W 55 Brennan, P 18 Bustillos, J 113,135 Carey, A 80,119 Brewer, F 100 Bute, S 41 Carini, M 47 Brewer, G 34 Butler, T 99 Carlson, K 27, 69,73,107 Breswer, M 107 Butl, D 27 Carmichael, C 64 Bridges, D 86 Butt, M 113,212 Carney, L 27,69,73,107 Bresgs, S 106 Buzzo, B 136 Carmey, L 27,69,73,107 Briggs, S 106 Butt, M 113,212 Carney, L 21 Brigden, K | | | 1 0 | | Bravo, L. 141 Burke, T. 69 Cappuci, S. 136 Braydich, M. 83 Burns, M. 58, 76 Caprio, L. 99 Brechtl, J. 54 Burns, P. 67 Caputo, M. 74, 77, 78, 119 Brehm, J. 45 Burye, T. 102 Carazzone, R. 53 Brennan, M. 37 Busse, L. 21 Carden, W. 55 Brennan, P. 18 Bustillos, J. 113, 135 Carey, A. 80, 119 Brennar, P. 100 Bute, S. 41 Carini, M. 47 Brennar, P. 18 Bustillos, J. 113, 135 Carey, A. 80, 119 Brennar, P. 100 Bute, S. 41 Carini, M. 47 Brennar, P. 100 Bute, S. 41 Carini, M. 47 Brewer, G. 34 Butler, T. 99 Carlson, K. 27, 69, 73, 107 Bridges, D. 86 Butt, M. 113, 121 Carric, C. 89, 111 | | C 1 | | | Braydich, M 83 Burns, M 58, 76 Caprio, L 99 Brechtl, J 54 Burns, P 67 Caputo, M 74, 77, 78, 119 Brehm, J 45 Burye, T 102 Carazzone, R 53 Brennan, M 37 Busse, L 21 Carden, W 55 Brennan, P 18 Bustillos, J 113, 135 Carey, A 80, 119 Brenner, F 100 Butes, S 41 Carrini, M 47 Brewer, B 35 Butler, B 15, 118 Carris, J 88 Brewer, G 34 Butler, T 99 Carlson, K 27, 69, 73, 107 Brewster, M 107 Butt, D 27 Carmichael, C 64 Bridges, D 86 Butt, M 113, 121 Carney, L 27, 69, 73, 107 Bridges, D 86 Butz, M 113, 121 Carney, L 21 Bridges, S 106 Byczynski, G 136 Carpet, J 16, 37, 97, 18 Br | Braun, P | Burke, P 60 | Caponetti, E | | Brechtl, J. 54 Burns, P. 67 Caputo, M. 74, 77, 78, 119 Brehnan, J. 45 Burye, T. 102 Carazzone, R. 53 Brennan, M. 37 Busse, L. 21 Carden, W. 55 Brennan, P. 18 Bustillos, J. 113, 135 Carey, A. 80, 119 Brenner, F. 100 Butee, S. 41 Carini, M. 47 Brewer, G. 34 Butler, B. 15, 118 Caris, J. 88 Brewster, M. 107 Butt, D. 27 Carmichael, C. 64 Bridges, D. 86 Butt, M. 113, 121 Carney, C. 89, 111 Brigden, K. 58 Buzzo, B. 136 Carney, L. 21 Brigges, S. 106 Byczynski, G. 136 Carreney, L. 21 Bristow, D. 18 Byczynski, G. 136 Carreacy, C. 89, 111 Britton, T. 72 Carter, L. 15, 58, 76, 100 Carter, L. 15, 58, 76, 100 | Bravo, L | Burke, T 69 | Cappucci, S | | Brehm, J 45 Burye, T 102 Carazzone, R 53 Brennan, M 37 Busse, L 21 Carden, W 55 Brennan, P 18 Bustillos, J 113,135 Carey, A 80,119 Brenne, F 100 Butee, S 41 Carrin, M 47 Brewer, B 35 Butler, B 15,118 Carini, M 47 Brewer, G 34 Butler, T 99 Carlson, K 27,69,73,107 Brewer, G 34 Butt, D 27 Carrison, K 27,69,73,107 Brewer, G 34 Butt, D 27 Carrison, K 27,69,73,107 Brewer, G 34 Butt, D 27 Carrison, K 27,69,73,107 Brewer, G 34 Butt, D 27 Carrison, K 27,69,73,107 Brewiter, M 100 Butt, D 27 Carrison, K 27,69,73,107 Bridges, D 86 Butt, M 113,121 Carrey, C 89,111 Brigges, S <td>Braydich, M 83</td> <td>Burns, M 58, 76</td> <td>Caprio, L</td> | Braydich, M 83 | Burns, M 58, 76 | Caprio, L | | Brennan, M 37 Busse, L 21 Carden, W 55 Brennan, P 18 Bustillos, J 113, 135 Carey, A 80, 119 Brenne, F 100 Butee, S 41 Carini, M 47 Brewer, B 35 Butler, B 151, 18 Caris, J 88 Brewer, G 34 Butler, T 99 Carlson, K 27, 69, 73, 107 Breidges, D 86 Butt, M 113, 121 Carney, C 89, 111 Briggs, S 106 Buzolin, R 27 Carney, C 89, 111 Briggs, S 106 Buzzol, B 136 Carpenter, J 16, 37, 97, 118 Brigss, S 106 Byczynski, G 136 Carradero-Santiago, C 16 Brittan, A 111 Cabrera, G 21 Cartier, L 15, 58, 76, 100 Brittan, A 111 Cabrera, G 21 Carter, W 99 Brochu, M. 17, 20, 26, 36, 37, 47, 48, 59, 61 Cai, G 21 Carter, W 9.9 < | Brechtl, J 54 | Burns, P 67 | Caputo, M | | Brennan, P 18 Bustillos, J 113, 135 Carey, A 80, 119 Brenne, F 100 Butee, S 41 Carini, M 47 Brewer, B 35 Butler, B 15, 118 Caris, J 88 Brewer, G 34 Butler, T 99 Carlson, K 27, 69, 73, 107 Brewster, M 107 Butt, D 27 Carmichael, C 64 Bridges, D 86 Butt, M 113, 121 Carney, C 89, 111 Brigden, K 58 Buzzo, B 136 Carpenter, J 16, 37, 97, 118 Brigges, S 106 Byczynski, G 136 Carpenter, J 16, 37, 97, 118 Brigges, S 106 Byczynski, G 136 Carradero-Santiago, C 16 Brinkman, K 67, 121 C Carter, W 99 Brittan, A 111 Cabrera, J 62 Carter, W 99 Brittan, A 121 Cabrera, J 63, 67, 68, 87, 109, 124, 135 64 Carter, W 99 <td>Brehm, J</td> <td>Burye, T</td> <td>Carazzone, R</td> | Brehm, J | Burye, T | Carazzone, R | | Brenne, F 100 Butee, S 41 Carini, M 47 Brewer, B 35 Butler, B 15, 118 Carris, J 88 Brewer, G 34 Butler, T 99 Carlson, K 27, 69, 73, 107 Brewster, M 107 Butt, D 27 Carmichael, C 64 Bridges, D 86 Butt, M 113, 121 Carney, C 89, 111 Brifger, Y 100 Buzzo, B 136 Carpenter, J 16, 37, 97, 118 Briggs, S 106 Byczynski, G 136 Carpenter, J 16, 37, 97, 118 Brittsow, D 18 C Carrizo, P 79, 80, 103 Brittan, A 111 Cabrera, C 21 Carter, W 99 Britton, T 7 22 Cabrera, J 68 Cartry, W 24, 33, 43, 68, 80, 92, 103 Brodusch, N 7, 2 Cabrera, J 68 Carty, W 24, 33, 43, 68, 80, 92, 103 Brodusch, N 3, 5 4 4 Casem, D 50 < | Brennan, M | Busse, L | Carden, W | | Brewer, B 35 Butler, B 15, 118 Caris, J 88 Brewster, G 34 Butler, T 99 Carlson, K 27, 69, 73, 107 Brewster, M 107 Butt, D 27 Carmichael, C 64 27, 69, 73, 107 Brewster, M 107 Butt, D 27 Carmichael, C 69, 73, 107 Brewster, M 107 Butt, D 27 Carmichael, C 64 67, 107 Bridges, D 86 Butt, D 27 Carmichael, C 89, 111 Bridges, D 86 Butt, D 27 Carmichael, C 89, 111 Bridges, S 106 Buzolin, R 27 Carney, C 89, 111 Brigges, S 106 Buzolin, R 27 Carney, L 21 Brigges, S 106 Buzzo, B 136 Carrenter, J 16, 37, 97, 118 Brigges, S 108 Buzzo, B 136 Carrenter, J 16, 37, 97, 118 Brigges, S 108 C Carter, L 15, | Brennan, P | Bustillos, J | Carey, A 80, 119 | | Brewer, G 34 Butler, T 99 Carlson, K 27, 69, 73, 107 Brewster, M 107 Butt, D 27 Carmichael, C 64 Bridges, D 86 Butt, M 113, 121 Carney, C 89, 111 Briff, Y 100 Buzzo, B 136 Carpenter, J 16, 37, 97, 118 Brigges, S 106 Byczynski, G 136 Carradero-Santiago, C 16 Brinkman, K 67, 121 C Carrizo, P 79, 80, 103 Brittan, A 111 Cabrera, C 21 Carter, L 15, 58, 76, 100 Brittan, A 111 Cabrera, C 21 Carter, W 99 Britton, T 72 Carrizo, P 79, 80, 103 Carter, L 15, 58, 76, 100 Brittan, A 111 Cabrera, C 21 Carter, W 99 Britton, M 17, 20, 26, 36, 37, 47, 48, 59, 67, 48, 59, 66, 66, 76, 86, 87, 109, 124, 135 Cack Carter, L 15, 58, 76, 100 Brown, S 15, 61 Cai, M 79 Caspera | Brenne, F | Butee, S | Carini, M | | Brewster, M 107 Butt, D 27 Carmichael, C 64 Bridges, D 86 Butt, M 113, 121 Carney, C 89, 111 Brif, Y 100 Buzolin, R 27 Carney, L 21 Brigden, K 58 Buzzo, B 136 Carpenter, J 16, 37, 97, 118 Briggs, S 106 Byczynski, G 136 Carradero-Santiago, C 16 Brinkman, K 67, 121 C Carrizo, P 79, 80, 103 Brittan, A 111 Cabrera, C 21 Carter, L 15, 58, 76, 100 Brittan, A 111 Cabrera, J 68 Carty, W 24, 33, 43, 68, 80, 92, 103 Brittan, D 24 Cacciotti, I 137 Carty, W 24, 33, 43, 68, 80, 92, 103 Brittan, D 24 Cacciotti, I 137 Carty, W 24, 33, 43, 68, 80, 92, 103 Brochu, M 17, 20, 26, 36, 37, 47, 48, 59, 65, 66, 76, 86, 87, 109, 124, 135 Cai, A 79 Caspany Toroker, M 21, 95, 108 Brodusch, N 135 | Brewer, B | Butler, B | Caris, J | | Bridges, D. 86 Butt, M. 113, 121 Carney, C. 89, 111 Brif, Y. 100 Buzolin, R. 27 Carney, L. 21 Brigden, K. 58 Buzzo, B. 136 Carpenter, J. 16, 37, 97, 118 Briggs, S. 106 Byczynski, G. 136 Carradero-Santiago, C. 16 Bristow, D. 18 C Carter, U. 79, 80, 103 Brittan, A. 111 Cabrera, J. 68 Carter, W. 99 Britz, D. 24 Cabrera, J. 68 Carty, W. 24, 33, 43, 68, 80, 92, 103 Brodusch, N. 173 Cacciotiti, I. 137 Casem, D. Casem, D. Casem, D. Caspary Toroker, M. 21, 95, 108 Brotto, L. 34, 54 Brotto, L. 34, 54 41 Caspary Toroker, M. 21, 95, 108 Brown, B. 135 Cai, M. 95, 140
Castaneda, H. 23, 44, 63, 106 Brown, D. 37, 57, 62 Growning, P. 79 Cakmak, E. 52 Catalac-Civera, J | Brewer, G | Butler, T | Carlson, K 27, 69, 73, 107 | | Brif, Y 100 Buzolin, R 27 Carney, L 21 Brigden, K 58 Buzzo, B 136 Carpenter, J 16, 37, 97, 118 Briggs, S 106 Byczynski, G 136 Carredero-Santiago, C 16 Brinkman, K 67, 121 C Carrizo, P 79, 80, 103 Brittow, D 18 C Carter, L 15, 58, 76, 100 Britton, T 72 Cabrera, C 21 Carter, W 99 Britton, T 72 Cabrera, J 68 Carty, W 24, 33, 43, 68, 80, 92, 103 Brochu, M 17, 20, 26, 36, 37, 47, 48, 59, 65, 66, 76, 86, 87, 109, 124, 135 Cacciotti, I 137 Carter, W 99 Brodusch, N 73 Gai, A 79 Caspary Toroker, M 21, 95, 108 Brotto, L 34, 54 Gai, B 41 Cassar, D Cassar, D Cassar, D Cassar, D Casi, M Casi, M 95, 140 Castro-Sánchez, G 48 Brown, C 34 34, 54 Cai, Z 60, 135 | Brewster, M | Butt, D | | | Brigden, K 58 Buzzo, B 136 Carpenter, J 16, 37, 97, 118 Briggs, S 106 Byczynski, G 136 Carradero-Santiago, C 16 Brinkman, K 67, 121 C Carrizo, P 79, 80, 103 Brittow, D 18 C Carter, L 15, 58, 76, 100 Brittan, A 111 Cabrera, C 21 Carter, W 99 Britz, D 24 Cabrera, J 68 Carty, W 24, 33, 43, 68, 80, 92, 103 Brochu, M 17, 20, 26, 36, 37, 47, 48, 59, 65, 66, 76, 86, 87, 109, 124, 135 Caciotti, I 137 Caruso, A 45 Godis, A 79 Casem, J Casem, D 50 Cai, A 79 Caspary Toroker, M 21, 95, 108 Cai, B 41 Caspary, Toroker, M 21, 95, 108 Brotto, L 34, 54 Cai, J Cai, J Caston, G Castron, R33, 53, 63, 71, 95, 115, 124, 140 Brown, B 135 Cai, M 95, 140 Castron, R33, 53, 63, 71, 95, 115, 124, 140 Cai, Z Cai, Z Catalan-Civera, J 123 Brown, C 34 Cai, Z< | Bridges, D | Butt, M | Carney, C 89, 111 | | Briggs, S 106 Byczynski, G 136 Carradero-Santiago, C 16 Brinkman, K 67, 121 C Carrizo, P 79, 80, 103 Bristow, D 18 C Carter, L 15, 58, 76, 100 Brittan, A 111 Cabrera, C 21 Carter, W 99 Britz, D 24 Caciotti, I 137 Caruso, A 24, 33, 43, 48, 80, 92, 103 Brodusch, N 73 Casi, A 79 Casem, D Casem, D Casem, D 50 Brotto, L 34, 54 Cai, B 41 Cassar, D Cassar, D 63 Brown, B 135 Cai, M 95, 140 Castaneda, H 23, 44, 63, 106 Carruso, A 41 Casem, D Cosem, D 50 Casi, A 79 Casi, B 41 Cassar, D Cassar, D 63 63 Browto, L 34, 54 Gai, M 95, 140 Castro-Sanchez, G 48 Brown, B 135 Cai, X 59 Catala-Civera, J 123 Catala-Civera, J 123 Brown, C 34 Calleroni | | Buzolin, R | Carney, L | | Brinkman, K. 67, 121 C Carrizo, P 79, 80, 103 Bristow, D. 18 C Carter, L 15, 58, 76, 100 Brittan, A 111 Cabrera, C 21 Carter, W 99 Britton, T 72 Cabrera, J 68 Carty, W 24, 33, 43, 68, 80, 92, 103 Brochu, M. 17, 20, 26, 36, 37, 47, 48, 59, Cacciotti, I 137 Caruso, A 45 G5, 66, 76, 86, 87, 109, 124, 135 Cai, A 79 Caspary Toroker, M 21, 95, 108 Brodusch, N 73 Cai, B 41 Caspary Toroker, M 21, 95, 108 Brosnan, K 15, 61 Cai, J 135 Cassar, D 63 Brotto, L 34, 54 Cai, M 95, 140 Castaneda, H 23, 44, 63, 106 Brown, B 135 Cai, X 59 Castor, S3, 53, 63, 71, 95, 115, 124, 140 Brown, C 34 Cai, Z 60, 135 Catala-Civera, J 123 Brown, B 135 Cakmak, E 52 Catalanotto, A 25 | | | | | Bristow, D. 18 C Carter, L 15, 58, 76, 100 Brittan, A 111 Cabrera, C 21 Carter, W 99 Britton, T 72 Cabrera, J 68 Carty, W 24, 33, 43, 68, 80, 92, 103 Britz, D 24 Cacciotti, I 137 Caruso, A 45 Brochu, M17, 20, 26, 36, 37, 47, 48, 59, 65, 66, 76, 86, 87, 109, 124, 135 Cai, A 79 Casem, D 50 Brodusch, N 73 Cai, A 79 Caspary Toroker, M 21, 95, 108 Brosnan, K 15, 61 Cai, J 135 Cassar, D 63 Brotto, L 34, 54 Cai, J 135 Castaneda, H 23, 44, 63, 106 Brown, B 135 Cai, M 95, 140 Castro, R33, 53, 63, 71, 95, 115, 124, 140 Brown, C 34 Cai, Z 60, 135 Catalanctic, A 25 Browning, P 79 Calderoni, P 89 Catalanotto, A 25 Brown, K 87 Caley, W 127 Catoledge, K 52 Brown, R 18 Calloun, C 29 Cacottes, S </td <td>66</td> <td>Byczynski, G</td> <td></td> | 66 | Byczynski, G | | | Brittan, A | | | Carrizo, P | | Britton, T 72 Cabrera, J 68 Carty, W 24, 33, 43, 68, 80, 92, 103 Brochu, M. 17, 20, 26, 36, 37, 47, 48, 59, 65, 66, 76, 86, 87, 109, 124, 135 Cacciotti, I 137 Casem, D 50 Brodusch, N 73 Cai, A 79 Caspary Toroker, M 21, 95, 108 Brosnan, K 15, 61 Cai, J 135 Caspary Toroker, M 21, 95, 108 Brotto, L 34, 54 Cai, J 135 Cassar, D 63 Cai, J 135 Castaneda, H 23, 44, 63, 106 Brown, B 135 Cairney, J 29 Castro, R33, 53, 63, 71, 95, 115, 124, 140 Cai, X 59 Castro-Sánchez, G 48 Brown, D 37, 57, 62 Cakmak, E 52 Catala-Civera, J 123 Brown, K 87 Calderoni, P 89 Cataldo, J 57 Cakmak, E 52 Cataldo, J 57 Caldege, K 52 Brown, R 18 Calderoni, P 89 Cataldo, J 57 Caledege, K 52 Caledege, K 52 <t< td=""><td></td><td>C</td><td></td></t<> | | C | | | Britton, T 72 Cabrera, J 68 Carty, W 24, 33, 43, 68, 80, 92, 103 Brochu, M. 17, 20, 26, 36, 37, 47, 48, 59, 65, 66, 76, 86, 87, 109, 124, 135 Cacciotti, I 137 Casem, D 50 Brodusch, N 73 Cai, A 79 Caspary Toroker, M 21, 95, 108 Brosnan, K 15, 61 Cai, B 41 Caspi, E 57 Brotto, L 34, 54 Cai, M 95, 140 Castaneda, H 23, 44, 63, 106 Brown, B 135 Cai, X 59 Castro, R33, 53, 63, 71, 95, 115, 124, 140 Castro, R33, 53, 63, 71, 95, 115, 124, 140 Castro, R33, 53, 63, 71, 95, 115, 124, 140 Castro, R33, 53, 63, 71, 95, 115, 124, 140 Castro, R33, 53, 63, 71, 95, 115, 124, 140 Catala-Civera, J 123 Brown, D 37, 57, 62 Cakmak, E 52 Catalanotto, A 25 Brown, K 87 Calderoni, P 89 Cataldo, J 57 Cateldege, K 52 Cateldege, K 52 Calloun, C 29 Capete, T 54 Callourié, F 104 | | Cabrera C 21 | | | Britz, D. 24 Cacciotti, I 137 Caruso, A 45 Brochu, M. 17, 20, 26, 36, 37, 47, 48, 59, 65, 66, 76, 86, 87, 109, 124, 135 Caha, I 114 Casem, D 50 Brodusch, N. 73 Cai, A 79 Caspary Toroker, M. 21, 95, 108 Brosnan, K. 15, 61 Cai, B 41 Caspary, E. 57 Brotto, L. 34, 54 Cai, J. 135 Cassar, D. 63 Brotto, M. 34, 54 Cai, M. 95, 140 Castaneda, H 23, 44, 63, 106 Brown, B. 135 Cainey, J. 29 Castro, R33, 53, 63, 71, 95, 115, 124, 140 Cai, X. 59 Castro-Sánchez, G. 48 Cai, Z. 60, 135 Catala-Civera, J. 123 Brown, D. 37, 57, 62 Cakmak, E. 52 Cataldo, J. 57 Brown, K. 87 Calderoni, P. 89 Cataldo, J. 57 Brown, R. 18 Calloun, C. 29 Cazottes, S. 68 Calligaris, M. 44 Celeptif E. Celeptif E. | | | Carty, W 24, 33, 43, 68, 80, 92, 103 | | Brochu, M. 17, 20, 26, 36, 37, 47, 48, 59, 65, 66, 76, 86, 87, 109, 124, 135 Çaha, I 114 Casem, D 50 Brodusch, N 73 Cai, A 79 Caspary Toroker, M 21, 95, 108 Brosnan, K 15, 61 Cai, B 41 Caspi, E 57 Brotto, L 34, 54 Cai, J 135 Cassar, D 63 Brotto, M 34, 54 Cai, M 95, 140 Castaneda, H 23, 44, 63, 106 Brown, B 135 Cairney, J 29 Castro, R33, 53, 63, 71, 95, 115, 124, 140 Brown, C 34 Cai, Z 60, 135 Catala-Civera, J 123 Brown, D 37, 57, 62 Cakmak, E 52 Catalanotto, A 25 Browning, P 79 Calderoni, P 89 Cataldo, J 57 Brown, K 87 Caley, W 127 Catledge, K 52 Brown, R 18 Calhoun, C 29 Cazottes, S 68 Caligaris, M 44 Cebe, T 54 | Britz, D | | Caruso, A | | 65, 66, 76, 86, 87, 109, 124, 135 Cai, A 79 Caspary Toroker, M 21, 95, 108 Brodusch, N 73 Cai, B 41 Caspi, E 57 Brosnan, K 15, 61 Cai, J 135 Cassar, D 63 Brotto, L 34, 54 Cai, M 95, 140 Castaneda, H 23, 44, 63, 106 Brown, B 135 Cai, X 59 Castro, R33, 53, 63, 71, 95, 115, 124, 140 Cai, X 59 Castro-Sánchez, G 48 Cai, Z 60, 135 Catala-Civera, J 123 Brown, D 37, 57, 62 Cakmak, E 52 Catalanotto, A 25 Brown, K 87 Calderoni, P 89 Cataldo, J 57 Caley, W 127 Catledge, K 52 Caley, W 127 Calededge, K 52 Capottes, S 68 Brozek, C 43 Caligaris, M 44 Cebe, T 54 | Brochu, M17, 20, 26, 36, 37, 47, 48, 59, | · | Casem, D 50 | | Brodusch, N .73 Cai, B .41 Caspi, E .57 Brosnan, K .15, 61 Cai, J .135 Cassar, D .63 Brotto, L .34, 54 Cai, M .95, 140 Castaneda, H .23, 44, 63, 106 Brown, B .135 Cairney, J .29 Castro, R33, 53, 63, 71, 95, 115, 124, 140 Brown, C .34 Cai, X .59 Castro-Sánchez, G .48 Cai, Z .60, 135 Catala-Civera, J .123 Brown, D .37, 57, 62 Cakmak, E .52 Catalanotto, A .25 Brown, K .87 Calderoni, P .89 Catledge, K .52 Brown, R .18 Calhoun, C .29 Cazottes, S .68 Cabrock, C .43 Caligaris, M .44 Célorié F .54 | 65, 66, 76, 86, 87, 109, 124, 135 | , | Caspary Toroker, M 21, 95, 108 | | Brosnan, K 15, 61 Cai, J 135 Cassar, D 63 Brotto, L 34, 54 Cai, M 95, 140 Castaneda, H 23, 44, 63, 106 Brown, B 135 Cairney, J 29 Castro, R33, 53, 63, 71, 95, 115, 124, 140 Brown, C 34 Cai, X 59 Castro-Sánchez, G 48 Cai, X 59 Catala-Civera, J 123 Cakmak, E 52 Catalanotto, A 25 Cakmak, E 52 Catalanotto, A 25 Calderoni, P 89 Catledge, K 52 Calledge, K 52 Calloun, C 29 Cazottes, S 68 Cebe, T 54 Caligaris, M 44 Célorió F 104 | Brodusch, N | | Caspi, E | | Brotto, L 34, 54 Cai, M 95, 140 Castaneda, H 23, 44, 63, 106 Brown, B 34, 54 Cairney, J 29 Castro, R33, 53, 63, 71, 95, 115, 124, 140 Brown, C 34 Cai, X 59 Castro-Sánchez, G 48 Cai, Z 60, 135 Catala-Civera, J 123 Brown, D 37, 57, 62 Cakmak, E 52 Catalanotto, A 25 Brown, K 87 Calderoni, P 89 Catledge, K 52 Caley, W 127 Catledge, K 52 Calhoun, C 29 Cazottes, S 68 Cebe, T 54 Colligaris, M 44 Collegid F 104 | Brosnan, K | | Cassar, D | | Brotto, M 34, 54 Cairney, J 29 Castro, R33, 53, 63, 71, 95, 115, 124, 140 Brown, B 135 Cai, X 59 Castro-Sánchez, G 48 Brown, C 34 Cai, Z 60, 135 Catala-Civera, J 123 Brown, D 37, 57, 62 Cakmak, E 52 Catalanotto, A 25 Brown, K 87 Calderoni, P 89 Cataldo, J 57 Caley, W 127 Catledge, K 52 Calhoun, C 29 Cazottes, S 68 Cebe, T 54 Collogrif, F 104 | Brotto, L | | Castaneda, H 23, 44, 63, 106 | | Brown, B. 135 Cai, X 59 Castro-Sanchez, G 48 Brown, C. 34 Cai, Z 60, 135 Catala-Civera, J 123 Brown, D. 37, 57, 62 Cakmak, E 52 Catalanotto, A 25 Brown, K. 87 Calderoni, P 89 Cataldo, J 57 Caley, W 127 Catledge, K 52 Calley, W 127 Cazottes, S 68 Calhoun, C 29 Cebe, T 54 Caligaris, M 44 Célorié F 104 | Brotto, M | | Castro, R33, 53, 63, 71, 95, 115, 124, 140 | | Brown, C. 34 Cai, Z. 60, 135 Catala-Civera, J. 123 Brown, D. 37, 57, 62 Cakmak, E. 52 Catalanotto, A. 25 Browning, P. 79 Calderoni, P. 89 Cataldo, J. 57 Caley, W. 127 Catledge, K. 52 Calley, W. 127 Cazottes, S. 68 Calloun, C. 29 Cebe, T. 54 Caligaris, M. 44 Célorié F. 104 | Brown, B | | Castro-Sánchez, G | | Brown, D 37, 57, 62 Cakmak, E 52 Catalanotto, A 25 Browning, P 79 Calderoni, P 89 Cataldo, J 57 Brown, K 87 Caley, W 127 Catledge, K 52 Brozek, C 43 Calhoun, C 29 Cazottes, S 68 Caligaris, M 44 Cebe, T 54
Collegid F 104 | Brown, C | | Catala-Civera, J 123 | | Browning, P 79 Calderoni, P 89 Cataldo, J 57 Brown, K 87 Calley, W 127 Catledge, K 52 Brow, R 18 Calhoun, C 29 Cazottes, S 68 Colligaris, M 44 Cebe, T 54 Collegid F 104 | Brown, D | | Catalanotto, A 25 | | Brown, K. 87 Calderoll, F. 39 Catledge, K. 52 Brow, R. 18 Caley, W. 127 Cazottes, S. 68 Brozek, C. 43 Caligaris, M. 29 Cebe, T. 54 Collegians, M. 44 Collegians, M. 54 64 | | | | | Brow, R. 18 Calley, W. 127 Cazottes, S. 68 Brozek, C. 43 Calloun, C. 29 Cebe, T. 54 Colligaris, M. 44 Collegité F. 104 | ě | | | | Brozek, C | | · | • | | Caligaris, Wi | | | | | Санапап, J | | | | | | | Cananan, J | | | Celik, E | Chen, C | Cho, G | |--|--|------------------------------------| | Centeck, K | Chen, D 80 | Cho, H 60 | | Cerreta, E 62 | Chen, F | Choi, B | | Cesarano, J | Chen, G | Choi, D | | Cetinkaya, C | Cheng, B | Choi, H | | Cha, B | Cheng, C | Choi, I | | Chae, J | Cheng, F | Choi, J | | Chafle, R | Cheng, G 60, 138 | Choi, K | | Chai, F | Cheng, H 107 | Choi, S 25, 40, 47, 64, 65, 132 | | Chaiko, D | Cheng, J | Choi, Y | | Chaim, R | Cheng, L | Cho, J | | Chakrabarti, A | Cheng, R | Chojecki, G | | Chakrabarti, D 78, 84, 85, 91 | Cheng, S | Choju, K | | Chakrabarty, R | Cheng, Y | Cho, K | | Chakraborty, P | Cheng, Z 24, 121, 134 | Chollakup, R 135, 136, 137 | | Chakraborty, S | Chen, H | Chong, X | | Chakravarty, H | Chen, I | Choquette, S | | Chalavadi, P | Chen, J | Chornobuk, S | | Champagne, Jr., V | Chen, L | Chorpening, B | | Champagne, V 17, 96, 115, 126, 141 | Chen, M | Choudhary, S 60 | | Chan, C | Chen, N | Choudhuri, D 62, 91, 118 | | Chandran, K | Chen, R 53 | Chouhan, H | | Chandran, R 57 | Chen, S | Chou, K 17, 57, 113, 136, 137, 138 | | Chandrasekar, S | Chen, T | Chou, T | | Chang, C 86, 101, 137 | Chen, W 40, 107 | Chou, Y | | Chang, j | Chen, X16, 33, 44, 59, 78, 93, 95, 112, | Cho, W | | Chang, L | 120, 140 | Chowdhury, S 80, 112 | | Chang, S | Chen, Y 34, 60, 78, 79, 123, 124, 136 | Christe, D | | Chang, Y | Chen, Z | Christodoulou, P | | Chan, H 98, 108, 115 | Cheong, D | Christofidou, K 29 | | Chapman, H | Cheon, J | Chromik, R 73, 97, 117, 141 | | Chaput, H | Cherolis, N | chrominski, w | | Chaput, K | Chesser, I | Chueh, W 25, 47, 65, 86 | | Charbonneau, P | Chetri, S | Chun, C | | Chason, E 59 | Chevallier, G | Chung, D 37, 39, 75, 120, 138 | | Chaswal, V | Chiang, R | Chung, G | | Chatain, D . 24, 46, 64, 85, 108, 124, 135 | Chiang, S | Chung, K | | Chatterjee, A | Chiba, A | Chung, S | | Chattopadhyay, K 90, 142 | Chidambaram, D 27, 49, 67, 89, 111, 138 | Chu, X | | Chatzistavrou, X 69, 125 | Chien, S | Chu, Y | | Chaudhary, R | Chin, E | Ciesla, F | | Chaudhury, P | Chinella, J | Cigno, P | | Chauhan, M | Ching, W | Cinibulk, M 24, 25, 56, 65 | | Chauhan, V | Chitrakar, T | Cinkilic, E | | Chauke, N | Chiu, M | Ciocoiu, A | | Charlie I | Chrisha M. 20.77, 101, 119, 110, 120 | Cischke, J | | Chedly R | Chmielus, M39, 77, 101, 118, 119, 129, 133 | Cissel, K | | Chedly, B 138 Cheekatamarla, P 102 | Chniouel, A | Clark, D | | Cheeseman, B 40 | Choa, F | Clarke, A | | Che, H | Chockalingam, R | Clarke, K | | Chen, B 42, 54, 93, 102, 136 | Chockalingam, S | Clark, W | | 011011, 10 | 0110 CRu11115 u1111, 0 | Cimin, 11 | ### MSaT18 | Clausen, B | Cortes, P | Dale, T | |---|-----------------------------------|---------------------------------------| | Clauser, A | Coryell, B | Dalgaard, E 84, 107 | | Clauser, C | Costa, C | Dalley, A | | Clemente, M | Costa, I | Dalton, M | | | | | | Clinning, E | Costello, S | Damjanovic, D | | Clough, E | Cote, D 17, 77, 96, 115, 126, 141 | Dam-Johansen, K 137 | | Clough, H | Cotica, L | Damø, A | | Cobb, G | Cótica, L | Danard, Y | | Coble, J | Coton, N | Dandeneau, C 49 | | Cockayne, E | Cotts, E | Dangwal, S 62 | | Coe, H | Couch, H | Dankwah, J | | Cohen, S | Coughlan, A | Danoix, F | | Cola, G | Coughlin, D | Dapino, M | | | | - | | Cole, D | Coury, F | Darling, K | | Cole, E | Couvertier-Santos, G 105 | Darvish, S | | Coleman, S | Couzinie, J | Dary, F | | Collings, E | Cox, B | Das, A | | Collins, B | Cox, C | Dasan, A | | Collins, J | Cox, S | Das, G | | Collins, L | Crawford, G | Dashairya, L | | Collins, P 43, 58, 67, 91 | Creager, S | Da Silva, A | | Collins, S | Cresko, J | Das, M | | Colorado, H79, 84, 106, 123, 129, 131, | Creuziger, A | Das, S | | 138 | Crimone, J | Das, T | | | | | | Colosimo, B | Crimp, M 83, 139 | Daugherty, T | | Compson, C | Criner, A | Daughton, D | | Compton, C | Croom, B 17, 25, 88, 139 | Daun, K | | Conde, A | Cross, W | Davé, V 30, 50, 69, 93, 114, 125, 140 | | Conde, C | Croteau, J | David, C | | Connelly, M | Cruchley, S | Davidson, M | | Conner, B. 16, 17, 26, 110, 129, 135, 137 | Crum, J | Davis, C | | Conover, D | Cruvinel de Oliveira, R | Davis, J | | Constant, K | Cruz, V | Davis, M | | Contopoulos, I | Cui, B | Davis, T | | • | Culbertson, E | Davicke, D | | Conversano, R | | | | Cook-Chennault, K | Cullen, D | Daye, W | | Cooke, S | Cullum, B | Day, R | | Cook, J | Culp, J | De, A | | Cook, L | Cunningham, R 17, 61, 100, 107 | Deacon, R | | Cook, R | Cwajna, J | Deardo, A | | Cooley, J | Cyr, E | DeArdo, A | | Cooper, C | · | De Bilbao, E | | Cooper, L | D | De Boer, M | | Cooper, R | - 1 11 | DeCarlo, K | | Coquoz, P | Dachepalli, R | De Castro, D | | Cordero, Z 25, 33, 53, 71, 74, 95, 140 | Daehn, G 15, 65, 66, 109 | DeCost, B | | | Daemen, L | | | Cordill, M | Dahiya, V | Decterov, S | | Cormack, A | Dahmen, K | Deen, K | | Corns, R | Dahotre, N | DeGraef, M | | Cornwell, P | Dahoumane, S | De Guire, M | | Corpus, A 57 | Dai, J | Dehghan, A | | C M 120 | <u> </u> | | | Correa, M | Dalai, B | Dehghanghadikolaei, A | | Dehm, G | Dickerson, M 24, 25, 56 | Dorris, S | |---|---|--| | Dehnavi, V | Dickey, E | Doude, H | | Dehoff, R | Dickinson, C | Downing, G | | Deibler, L | Diehl, K | Drabold, D | | Dein, E | Dighe, A | Draper, J 69 | | Deitz, J | DiGiovanni, A 42 | Draper, S | | Delanty, B | DiGiovanni, C 20 | Drazic, G | | Delaunois, F | Dikici, B | Drazin, J | | De Leeuw, N | Diky, V | Drew, A 48 | | de los Santos Guerra, J 20, 133, 134 | Dileep Kumar, C | Drieling, A 16, 17 | | Del-Rio, E | Dillard, G | D Rollett, A 61 | | Del Rose, T | Dillinger, B | Droste, M | | DeMange, J | Dillon, R 16, 74, 98, 117, 127, 142 | Drozd, V | | Demarest, C | Dillon, S.24, 46, 63, 64, 83, 85, 105, 108, | Drtina, T | | Demeter, E | 122, 124, 135 | Drum, M | | Demir, A | Dinda, G 77, 100 | Drummond-Brydson, R 120 | | Demkowicz, M | Dinda, S | Dryepondt, S 18, 71 | | De Moor, E19, 40, 60, 68, 78, 90, 101, | Ding, D | Duan, J 60 | | 112, 120, 130, 132 | Ding, J | Duan, R | | Demoulin, K | Dippenaar, R | Duan, Y 67, 86, 119, 138 | | Dempsey, R | Dixit, G | Dube, T | | Deng, B | Dixit, K 84 | Dubinskiy, M 21, 42, 61, 130 | | Deng, C | Dixit, P | Dubon, O | | Deng, L | Djikeng, A | Du, C | | Deng, Y | Dlouhy, I 84, 106, 123, 131 | Duch, J | | Dennies, D. 23, 45, 64, 85, 108, 122, 134 | Doak, J | Ducman, V 84, 106, 123, 131 | | Dent, R 42, 134 | Doane, B | Dudney, N | | D'Entremont, A | Doan-Nguyen, V 97, 139 | Duffield, A | | Depond, P | Dobbs, J | Duh, J | | Deschamps, J | Doddamani, M | Du, J 23, 63, 73, 81, 97, 104 | | Deshpande, A96 | Dodds, C | Dull, R | | Desideri, D | Dodrill, B | Dunand, D 39, 49, 70, 74, 118 | | de Souza, R | Dogan, Ö | Duncan, A | | De Souza, R | Dogdibegovic, E | Dunn, R | | Dessouky, S | Do, J | Dunstan, M | | Detrois, M | Doja, S | Duong, M | | Deubzer, O | Dolan, J | DuPont, J 26, 66, 87, 109, 124 | | Devkota, J | Dolman, K | Dupont, P21, 22, 34, 42, 55, 62, 66, 81, | | DeWitt, S | Dombrowski, D 89 Domfang, J 118 | 88, 104, 110, 122, 131, 132, 133 | | Dexter, M | | Duquette, D | | Dey, M | Domnich, V | Durygin, A | | De Zanet, S | Dong, L | Dussubieux, L 80 | | D. Gabbardo, A | Dong, P | Du, T 67 | | Dhakar, K | Dong, S | Dutta, I | | Dhal, K | Dong, X | Dutta, M | | Dhamade, H | Dong, Y | Dutta, P | | Dharmawardhana, C | Donnelly, S | Du, Y | | DiAntonio, C | Dooryhee, E | Dvivedi, A | | Diao, H | Dorari, E | Dvornak, M | | Dias, G | Dorfman, M | Dyer, M | | Diaz, A | Dorra, H | Dzik, E 67 | | , | ., | , | ## MS&T18 | E | |--| | Eagle, L | | Earlam, M | | Earthman, J 50 | | Easley, T | | Eastman, C | | Easton, M | | Eberhart, M | | Ebin, B | | Ebrahimi, N | | Echempati, R | | Eckert, H 69 | | Eckert, J | | Edirisinghe, M 30, 46, 50, 69, 93, 114, | | 125, 140 | | Edmonds, D | | Edmondson, P 27, 49, 67 | | Edwards, R | | Eff, M | | Efthimiopoulos, I | | Egami, T | | Egan, A | | Egan, G | | Eggert, R | | Ehlers, M | | Ehteshami, H 94 | | Eisenlohr, P 83, 139 | | Eklund, A | | Elahinia, M. 39, 76, 77, 78, 101, 119, 133 | | Elemuren, R | | El-Garaihy, W | | Eliseeva, O | | El Kadiri, H 22, 124 | | ElKadiri, H | | Elkholy, A | | Elliott, A | | El Marssi, M | | Elmi Hosseini, S 125 | | Elmustafa, A | | Elsayed, A | | Elsayed, H | | Elsen, A | | El-Shater, A | | Elstermeyer, O | | Elwany, A | | Emery, J | | Emley, B | | | | Endo, H | | Englund, M | | Enneking, J | | Limeking, J | | Enoki, M 67 | |---| | Enos, J | | Enriquez, R | | Eppell, S | | Epting, W 61, 78 | | Erb, D 82 | | Erb,
R | | Erdeniz, D | | Eremin, K 80 | | Ergun, C | | Erickson, J 80 | | Eriksson, G | | Erni, R | | Ernst, F | | Eschbach, P 87 | | Eshraghi, M 124, 135 | | Eskelsen, J 28, 131 | | Eslamimanesh, A94 | | Espinal, L | | Espy, M | | Esquivel, J | | Estournes, C | | Estrada, F 60 | | Estrada, M | | Ettie, D | | Evans, C | | Evans, K | | | | Hyane I II3 | | Evans, T | | Evans, W | | | | Evans, W | | Evans, W | | Evans, W | | Evans, W | | Evans, W. 48, 127 Evitts, R. 32 F 32 Faber, K. 110 Fabrègue, D. 68 Fadavi Boostani, A. 22 | | Evans, W. 48, 127 Evitts, R. 32 F 32 Faber, K. 110 Fabrègue, D. 68 Fadavi Boostani, A. 22 Fadgen, W. 135 | | Evans, W. 48, 127 Evitts, R. 32 F 32 Faber, K. 110 Fabrègue, D. 68 Fadavi Boostani, A. 22 Fadgen, W. 135 Fahey, Z. 79 | | Evans, W. 48, 127 Evitts, R. 32 F Faber, K. 110 Fabrègue, D. 68 Fadavi Boostani, A. 22 Fadgen, W. 135 Fahey, Z. 79 Fahimi, B. 106 | | Evans, W. 48, 127 Evitts, R. 32 F Faber, K. 110 Fabrègue, D. 68 Fadavi Boostani, A. 22 Fadgen, W. 135 Fahey, Z. 79 Fahimi, B. 106 Fahrenholtz, W. 87, 110 | | Evans, W. 48, 127 Evitts, R. 32 F Faber, K. 110 Fabrègue, D. 68 Fadavi Boostani, A. 22 Fadgen, W. 135 Fahey, Z. 79 Fahimi, B. 106 Fahrenholtz, W. 87, 110 Fakayode, O. 136 | | Evans, W. 48, 127 Evitts, R. 32 F Faber, K. 110 Fabrègue, D. 68 Fadavi Boostani, A. 22 Fadgen, W. 135 Fahey, Z. 79 Fahimi, B. 106 Fahrenholtz, W. 87, 110 Fakayode, O. 136 Falkowski, D. 36 | | Evans, W. 48, 127 Evitts, R. 32 F Faber, K. 110 Fabrègue, D. 68 Fadavi Boostani, A. 22 Fadgen, W. 135 Fahey, Z. 79 Fahimi, B. 106 Fahrenholtz, W. 87, 110 Fakayode, O. 136 | | Evans, W. 48, 127 Evitts, R. 32 F Faber, K. 110 Fabrègue, D. 68 Fadavi Boostani, A. 22 Fadgen, W. 135 Fahey, Z. 79 Fahimi, B. 106 Fahrenholtz, W. 87, 110 Fakayode, O. 136 Falkowski, D. 36 Fallahdoost, H. 19 Faller, R. 124 | | Evans, W. 48, 127 Evitts, R. 32 F Faber, K. 110 Fabrègue, D. 68 Fadavi Boostani, A. 22 Fadgen, W. 135 Fahey, Z. 79 Fahimi, B. 106 Fahrenholtz, W. 87, 110 Fakayode, O. 136 Falkowski, D. 36 Fallahdoost, H. 19 | | Evans, W. 48, 127 Evitts, R. 32 F Faber, K. 110 Fabrègue, D. 68 Fadavi Boostani, A. 22 Fadgen, W. 135 Fahey, Z. 79 Fahimi, B. 106 Fahrenholtz, W. 87, 110 Fakayode, O. 136 Falkowski, D. 36 Fallahdoost, H. 19 Faller, R. 124 Fancher, C. 29 Fan, F. 71 | | Evans, W. 48, 127 Evitts, R. 32 F Faber, K. 110 Fabrègue, D. 68 Fadavi Boostani, A. 22 Fadgen, W. 135 Fahey, Z. 79 Fahimi, B. 106 Fahrenholtz, W. 87, 110 Fakayode, O. 136 Falkowski, D. 36 Fallahdoost, H. 19 Faller, R. 124 Fancher, C. 29 Fan, F. 71 Fang, M. 138 | | Evans, W. 48, 127 Evitts, R. 32 F Faber, K. 110 Fabrègue, D. 68 Fadavi Boostani, A. 22 Fadgen, W. 135 Fahey, Z. 79 Fahimi, B. 106 Fahrenholtz, W. 87, 110 Fakayode, O. 136 Falkowski, D. 36 Fallahdoost, H. 19 Faller, R. 124 Fancher, C. 29 Fan, F. 71 | | Evans, W. 48, 127 Evitts, R. 32 F Faber, K. 110 Fabrègue, D. 68 Fadavi Boostani, A. 22 Fadgen, W. 135 Fahey, Z. 79 Fahimi, B. 106 Fahrenholtz, W. 87, 110 Fakayode, O. 136 Falkowski, D. 36 Fallahdoost, H. 19 Faller, R. 124 Fancher, C. 29 Fan, F. 71 Fang, M. 138 | | Evans, W. 48, 127 Evitts, R. 32 F Faber, K. 110 Fabrègue, D. 68 Fadavi Boostani, A. 22 Fadgen, W. 135 Fahey, Z. 79 Fahimi, B. 106 Fahrenholtz, W. 87, 110 Fakayode, O. 136 Falkowski, D. 36 Fallahdoost, H. 19 Faller, R. 124 Fancher, C. 29 Fan, F. 71 Fang, M. 138 Fang, X. 118 | | Evans, W. 48, 127 Evitts, R. 32 F Faber, K. 110 Fabrègue, D. 68 Fadavi Boostani, A. 22 Fadgen, W. 135 Fahey, Z. 79 Fahimi, B. 106 Fahrenholtz, W. 87, 110 Fakayode, O. 136 Falkowski, D. 36 Fallahdoost, H. 19 Faller, R. 124 Fancher, C. 29 Fan, F. 71 Fang, M. 138 Fang, X. 118 Fang, Z. 15, 92 | | Evans, W. 48, 127 Evitts, R. 32 F Faber, K. 110 Fabrègue, D. 68 Fadavi Boostani, A. 22 Fadgen, W. 135 Fahey, Z. 79 Fahimi, B. 106 Fahrenholtz, W. 87, 110 Fakayode, O. 136 Falkowski, D. 36 Fallahdoost, H. 19 Faller, R. 124 Fancher, C. 29 Fan, F. 71 Fang, M. 138 Fang, X. 118 Fang, Z. 15, 92 Fan, X. 133 | | Faria, G 58 | |---| | Farjam, N | | Farkas, N | | Fatoba, O 18, 39, 85 | | Fattah-alhosseini, A | | Faucett, D | | Fauske, S | | Fayomi, O | | Feathers, M | | Fedors, J | | Fehrenbacher, L | | Fehrenbach, J | | Feigelson, B 105, 131 | | Felderhoff, M | | Feldtmann, P 112 | | Felicelli, S | | Felker, C | | Fels, J | | Feng, J | | Feng, K | | Feng, M | | Feng, R | | Feng, Z | | Fenno, C | | Fensin, S | | Fergus, J | | Ferrari, A | | Ferreira Neto, J 57 | | Ferreri, N | | Ferrizz, R | | Fett, T | | Feurer, M | | Fezzaa, K | | Field, A | | Field, D | | | | Field, K 27 Finaske, T 15 | | | | Findley, K | | Finel, A | | Fink, C | | Finkeldei, S | | Finnis, M | | Firdosy, S | | Firrao, D | | Fischer, W | | Fisher, B | | Fisher, C | | Fisher, G | | Fitzpatrick-Schmidt, K 115 | | Fivos, D | | Flannagan, S | | Fleischman, Z 42 | | | | Fleming, R | Frith, M | Gao, Z | |--------------------------------------|------------------------------------|--------------------------------| | Flenner, E | Frocino, R | Garai, M 45, 126 | | Flesoura, G | Frömling, T | Garces, H | | Fleurial, J | Frueh, T | Garcia-Banos, B | | Flores, F 49, 66 | Fry, A | Garcia, C | | Flores-García, J 139 | Fry, M | Garcia, D 60 | | Flores, K | Fuentes, A 90, 111, 139 | Garcia, I | | Florez, R | Fu, G 120 | Garcia, J | | Flury, M | Fujii, H 48, 109 | Garcia-Rincon, O | | Fohtung, E | Fuji, M | Gardener, J | | Foiles, S | Fujimaki, Y | Gardner, L | | Folsom, M | Fujiwara, K | Garich, H | | Foltz, A | Fuka, M | Garmestani, H | | Foltz, J | Fu, L | Garofalini, S | | Fonda, R | Fullwood, D | Garrison, W | | Fornaro, O | Furrar D | Garry, M | | | Furrer, D | Gaskell, K | | Foroughi, P | Fu, S | Gasper, P | | Forrest, D | Fushimi, T | Gates, G | | Foster, J | Fu, Y | Gathogo, M | | Fouad, D | Fu, Z | Gauvin, R | | Fowler, S 69 | 14, 2 | Gavras, S | | Fowley, M 28 | G | Gayduk, S | | Fox, J | C 11 T | Gazit, N | | Fox, K 27, 28, 49, 67, 89, 111, 138 | Gabb, T | Gbur, J | | Fox, M | Gabor, U | Gehre, P | | Frafjord, J 23, 45, 64, 85, 108, 134 | Gadikota, G | Gelb, J | | Franco, V | Gagliano, M | Genanu, M | | Frankel, D 82 | Gaisina, V | Gentile, J | | Frankel, G 23, 137 | Gajjala, S | Gentry, S 44, 112 | | Franzese, R | Gakwaya, A | Georgin, B | | Fraser, A | Gal, C | Gepreel, M 81 | | Fraser, H | Galetz, M | Gerbig, Y 53, 85 | | Fraser, K | Gallegos Perez, A90 | Gerdes, K | | Fratto, E | Galler, J | Gerlt, A | | Frawley, K | Galusek, D | Ge, S 26, 48, 66, 88, 110, 138 | | Frazer, D | Gamboa, B 20, 133 | Ge, X | | Frazier, W | Gammer, C | Ge, Y | | Frederick, C | Ganapathy, V | Ghamarian, I | | Frederick, D | Gandha, K | Ghanbari, Z | | Frederick, G | Gandhi, A | Gharenbaghi, R | | Free, B | Ganesan, S | Ghassemi, P | | Freed, D | Ganjoo, K | Ghazisaeidi, M | | Freiherr Von Thungen, I | Ganot, G | Ghose, S | | French, M | Gao, F | Ghosh, A | | Frerichs, A | Gao, H | Ghoshal, A | | Freund, J | Gao, M 20, 31, 41, 51, 70, 94, 115 | Ghosh, P | | Fricano, L | Gao, N | Ghosh, S | | Fricks, T 60 | Gao, S | Gibala, R | | Friedrich, B | Gao, X | Gibbons, M | | | Gao, Y | G1000118, 191 | ### MSaT18 | Gibbs, P 123 Gibson, A 139 Gibson, D 42 Gibson, M 57 Gidley, D 45 Gill, P 46, 114 Gill, S 134 Gingerich, B 16 Gingerich, M 109 Ginzburg, V 68 Giri, A 98 Girina, O 68 Giroux, P 77 Gissinger, J 121, 126 Giuliani, F .33, 53, 71, 72, 96, 116, 126, | Gopalan, S 78, 79, 121 Gopinath, M 55 Gordon, S 109 Gorley, M 15 Gorsse, S 91 Gorzkowski, E 43, 46, 62, 73, 82, 87, 97, 105, 115, 117, 131, 141 Goswami, R 23 Gould, J 109, 111 Gouma, P 44, 50, 68, 94, 124 Gouvêa, D 115 Govindaraju, N 19 Gowda, R 55 Go, Y 88 Goyal, T 102 | Guillon, O. 110 Gulbiten, O. 80 Gulhane, A. 138 Gulliver, E. 130 Günay Bulutsuz, A. 43, 134 Gunda, N. 81 Gunduz, E. 107 Guo, F. 40 Guo, H. 109, 130 Guo, L. 50 Guo, P. 44 Guo, Q. 107 Guo, R. 19, 20, 41, 60, 133, 134 Guo, S. 57 Guo, W. 38 | |--
---|--| | Giulian, R. 25 Glasser, F. 87 Glatzel, U. 127 Gleeson, B. 18, 39 Glodowski, R. 68, 90, 112, 132 Glover, A. 19 Gnaeupel-Herold, T. 29 Gnaupel-Herold, T. 139 Gockel, J. 15, 16, 17, 77 Goebel, D. 74 Goel, A. 23, 27, 69 Goel, S. 76 Goff, J. 92 Gogotsi, Y. 126 Goh, Y. 60 Goins, P. 104 Gola, J. 24 Golden, R. 25 Goldstein, J. 18 Goller, G. 33, 53, 95 Golubev, I. 48, 135 Gomes Landgraf, F. 57 Gong, B. 89 Gong, C. 65 Gong, J. 17, 33, 122, 123 Gong, K. 29, 139 Gonzalez-Cabezas, C. 69 González-Cabezas, C. 69 González-Julian, J. 110 González, L. 139 <td>Graceffa, R 107 Graczyk-Zajac, M 56 Graddick, S 92 Grag, P 106 Graham, D 131 Grandinetti, P 135 Grant, G 72 Grapes, M 116, 124 Grassman, T 95 Graux, A 68 Gray, G 63 Grayson, K 61 Graziano, D 94 Greenough, M 73 Greenquist, I 67 Greenquist, F 101 Grewal, H 18, 114 Gribble, N 49 Griffiths, S 118, 123 Grigorian, C 25 Grimshaw, S 65 Grin, J 61 Gross, T 45, 107 Gruber, J 85 Grutzik, S 110 Grzesiak, D 36 Guan, P 25, 70 Guan, Q 30 Gu, B 131 Gueninchault, N 85</td> <td>Guo, W</td> | Graceffa, R 107 Graczyk-Zajac, M 56 Graddick, S 92 Grag, P 106 Graham, D 131 Grandinetti, P 135 Grant, G 72 Grapes, M 116, 124 Grassman, T 95 Graux, A 68 Gray, G 63 Grayson, K 61 Graziano, D 94 Greenough, M 73 Greenquist, I 67 Greenquist, F 101 Grewal, H 18, 114 Gribble, N 49 Griffiths, S 118, 123 Grigorian, C 25 Grimshaw, S 65 Grin, J 61 Gross, T 45, 107 Gruber, J 85 Grutzik, S 110 Grzesiak, D 36 Guan, P 25, 70 Guan, Q 30 Gu, B 131 Gueninchault, N 85 | Guo, W | | Gonzalez, R 91 Gonzalez Szwacki, N 20 Goodridge, R 75 Goodwin, F 20, 41 Gooneratne, R 39 | Guenther, J 100 Guerra, J 133 Guerrero Fernandez, M 136 Guerrier, P 16 Gu, H 38, 114 | Hackler, C.51Hackney, S33, 126Hadadzadeh, A.36, 100, 108Hadi, A60Hadian, F19, 40, 59 | | Hadley, G | Harmer, M 33, 42, 46, 53, 98, 108 | Heisler-Taylor, T 93 | |--|---|---| | Hager, E | Harnkarnsujarit, N | Heitjans, P | | Haghshenas, M. 33, 53, 71, 96, 108, 116, | Harp, J | He, J | | | - | | | 126, 140 | Harries, K | He, L | | Hahn, H | Harrington, G | Hemery, S | | Hahnlen, R | Harrington, K 64 | Hemker, K | | Haider, W50, 57, 69, 93, 114, 118, 125, | Harrison, N 85 | Hemrick, J | | 136 | Harris, W 85, 135 | Henaff, G | | Haines, C | Harrysson, O16, 17, 36, 37, 38, 57, 58, | Henderson, H 70 | | Haines, M | 59, 75, 76, 80, 99, 100, 118, 119, 129 | Henderson, J | | Hajilou, T96 | Hart, J | Henein, H | | Halbig, M 47, 75, 119 | Hartmann, T | Hengsbach, F | | Hall, K | Hart, R | Henkel, D | | Halloran, J 47, 75 | Hasannaeimi, V | Hennessy, D | | Hall, R | Hashemizadeh, S | Heo, T | | Hall, T18, 21, 38, 55, 74, 79, 100, 102, | Hashiguchi, D 81, 117 | He, P 26, 47, 48, 65, 66, 86, 87, 109, 124, | | 121, 130, 134 | Hassanein, N | 135 | | Hamdy, F | Hassani-Gangaraj, M | Herbert, E | | • | · · | | | Hamid, M | Hassan, M | Hernández Escobar, D | | Hamilton, R 39, 77, 101, 119, 133 | Hassan, S | Hernandez-Rivera, E 80, 104, 121, 130 | | Hamlin, R | Hass, D | Heron, J | | Hammer, N | Hattar, K | Hespos, M | | Hammond, V | Havics, A | Hetrick, E | | Hamuyuni, J | 43, 55, 62, 66, 81, 88, 104, 110, 122, 131, | Hetzel, B | | Hamza, A | 132, 133 | Heuer, A | | Hamza, H | Havics, T | He, Y 78, 100, 132 | | Hand, R | Hawaldar, N | Hickam, S | | Handwerker, C 18, 19, 40, 59, 94, 124 | Hawk, J | Hickman, J | | Hangen, U | Haxhimali, T | Higashiyama, M | | Han, J | Hayakawa, N 48 | Hilburn, S | | Han, K | Haynes, C | Hill, B 60 | | Hanna, J | Haynes, J | Hilli, N | | Han, S | Hay, R 42, 93 | Hill, M 82, 102 | | Hansson, C | Hazeli, K | Hilmas, A | | Han, T 40 | Hdz-García, H | Hilmas, G | | Han, X | | Hindin, B | | | Headings, L | | | Han, Y | Headrick, Jr, W | Hineman, M | | Hao, H | Headrick, W | Hinojos, A | | Haouala, S | Heatherly, L | Hintsala, E | | Hao, W | Hecht, M | Hirai, N | | Haque, A | Heckman, E 24, 32, 52 | Hiramatsu, K 66 | | Hara, T | Hedayat, N | Hirayama, M | | Harcuba, P 62 | Heerema, J | Hiroki Miwa, R | | Harder, B | Hefny, G | Hirose, A .26, 47, 48, 65, 66, 86, 87, 109, | | Hardin, T | Hegedüs, M | 124, 135 | | Hardwick, N | Heggadadevanapura Thammaiah, M 127 | Hishinuma, R | | Hardy, D94 | Hehr, A | Hitt, A | | Hardy, M | Heiden, M | Hjärthner-Holdar, E | | Haremski, P | Heigel, J | Hjelmstad, M | | Hargather, C 94, 98, 115, 134 | Heim, F | Hobbs, D | | Harimkar, S 31, 71, 79, 102, 121, 134 | Hein, S | Hochanadel, P | | Harlow, D | Heinz, H 64, 93, 121, 122, 126, 135 | Hochhalter, J | | 11a110 W, D | 1101112, 11 07, 73, 121, 122, 120, 133 | 110cmilatici, j//, 100 | ## NSaT18 ### MATERIALS SCIENCE & TECHNOLOGY | Hoefer, K | Howard, C | |------------------------------------|---| | Hoerner, M | Howarter, J | | Hoffman, E | Howell, R 40 | | Hoffman, K | Howell, T | | | | | Hoffman, M | Howlett, L | | Hoffmann, M | Ho, Y 102 | | Hoffrogge, P | Hrizo, C 62 | | Hofmann, D | Hryha, E 59 | | Ho, K | Hsiao, C | | Holber, J 67 | Hsieh, T | | Holcomb, G 89, 111 | Hsin, C | | Holenarasipura Raghu, S 57 | Hsu, K | | Holesinger, T | Hsu, T 61 | | Holland, T | Hsu, Y | | | * | | Hollis, K | Hu, A 26, 47, 48, 65, 66, 86, 87, 109, 124, | | Holman, J | 135 | | Holm, E 17, 85, 108, 112, 130, 135 | Huang, A | | Holm, J | Huang, C | | Holy, V 62 | Huang, H | | Holý, V 62 | Huang, J | | Holzmond, O | Huang, K 34, 55, 73, 74, 141 | | Homer, E | Huang, L 23, 45, 63, 84, 107, 108, 131 | | Hong, J | Huang, P | | Hong, K | Huang, S | | Hong, S | Huang, T | | č | <u>c</u> | | Hong, T | Huang, Z | | Hong, Y | Hua, Z | | Hood, M 88 | Hu, C 65, 108 | | Hooks, D 82, 100 | Huebsch, W | | Hooshmand, M 85 | Hufnagel, T80 | | Hopkinson, D | Huggins, A | | Hori, H | Hughes, L | | Hori, S | Hughes, T | | Horita, Z | Hu, J 52, 93, 134 | | Hornberger, B | Hulbert, B | | Hornbuckle, B 30, 98, 126 | Hunca, B | | | Hundley, J | | Horn, J | | | Horn, T | Hunt, M | | Horrell, A | Hunt, R | | Horstemeyer, M | Hurley, D | | Hort, N | Hurley, J | | Horvay, K | Hurwitz, F | | Horwath, J | Hussain, T | | Hosemann, P | Hussein, M | | Hoshina, T | Hutabalian, Y | | Hostetler, J | Hutchinson, C 82 | | Hötzer, J | Hutten, E | | Housley, W | Hu, X | | · | | | Hou, Y | Huxol, A | | Hovan, A | Hu, Y | | Hovanski, Y 48 | Huynh, J | | Hovhannisyan, A | Hu, Z 60, 94 | | | • | | Hwang, H | |--------------------------------------| | Hwang, J 28, 45, 73, 76, 97, 103 | | Hwang, S | | Hyatt, N | | Hyde, E | | Hyer, H | | Hyer-Peterson, D | | Hyers, R | | 11ye1s, R | | I | | Iadicola, M 28 | | | | Iams, A | | Ianos, E | | Ibanez, S | | Ibrahim, A | | Ibrahim, H 39, 77, 78, 101, 119, 133 | | Idowu, A 52 | | Idriss, M | | Iguchi, F 65 | | Ihlefeld, J | | Ihringer, R | | Iijima, M | | Ii, S | | Ikeda, M 81, 134 | | Ikeda, R 48 | | Ike, N | | Ikesue, A | | Ilavsky, J | | Ilkhani, H | | Illing, C | | Ilton, E | | Ilyas, A | | Imam, M | | Imanian, A | | Imanieh, S | | Imbriglio, S | | Imhoff, S | | Im, S | | | | Inada, H | | Inal, K 26, 48, 66, 88, 110, 138 | | Inam, A | | Inami, K | | Inman, M 18, 38, 74, 79 | | Instan, A | | Ipus, J | | Irrinki, H | | Isacco, S | | Isac, M 26, 48, 66, 88, 110, 138 | | Ishimaru, M 101, 119 | | Ishtiaq, M | | Isik, M | | T 1 A | | Islam, M | Jacquis I | Jones, G | |---------------------------------------|--|--| | | Jasiuk, I | | | Islam, R | Jasjukevics, A | Jones, J | | Islam, S | Jasthi, B | Jones, N 29, 100, 101 | | Isukapati, S | Javaid, S 26, 72, 141 | Jones, S | | Isupov, F | Jayalakshmi, S 27 | Jones, Z | | Iten, J | Jayan, B | Jong Ho, K | | Itoh, M | Jayaraman, T 90, 111, 137 | Joost, W | | Ito, S | Jefferson, G 47 | Jordon, B | | Ivanoff, T | Jeffryes, C | Jordon, J | | Ivanov, E | Jeleel, A 82 | Jörg, T 53 | | Ivasishin, O | Jelis, E | Jo, S 88 | | Ivey, D | Jenkins, N | Joshi, A | | Ivschenko, L | Jennings, R | Joshi, D | | | Jensen, B | Joshi, S 17, 76, 102 | | J | Jeon, J | Joshi, V | | *1.1. | Jha, S | Joya, K | | Jabed, A | Jiang, B | Juan, H 60 | | Jablonski, P 83, 101, 105 | Jiang, C | Juechter, V | | Jaccani, S | Jiang, D | Juhasz, M | | Jackson, M 79, 103 | | | | Jackson, W | Jiang, R | Ju, M | | Jacobson, A | Jiang, S | Junaedi, C | | Jacobson, N | Jiang, Z 70, 117 | Jung, H | | Jacobs, R | Jiao, Z | Jung, I | | Jacobs, T | Jia, T 67, 119 | Jung, J | | Jacques, H 90, 111, 112, 139 | Ji, C | Jung, M | | Jadhav, S | Ji, G | Jung, S | | Jaegle, E 15, 16, 36, 56, 75, 99, 129 | Jimenez, A | Jung, W | | Jahadakbar, A | Jiménez-Piqué, E 57 | Jung, Y 17, 37, 38, 56, 58, 77, 99, 130, | | Jahed, H | Jimma, B | 138 | | Jain, G | Jin, H | Jun, J | | Jain, M |
Jinschek, J | Jun, T | | Jain, N | Jin, Y | Jur, T | | | Jiratumnukul, N | Justice, G | | Jak, E | Ji, T | | | Jakes, J | Ji, Y | K | | Jalalahmadi, B | Jo, C | W 1 1:0 | | Jamalian, M | Jodhani, G 44, 68, 94 | Kadambi, S | | James, B | John, K | Kadirvel, K | | Jamshidi, P | John, R | Kagawa, Y | | Jana, S | Johns, D | Kailas, S | | Janecek, M 62 | Johnson, C | Kain, V | | Jang, C 89, 111 | Johnson, D | Kalapala, A116 | | Jang, J | Johnson, J | Kalapos, T 61 | | Jang, Y | | Kalay, E | | Jankowski, E | Johnson, K | Kalay, I | | Jankowski, J | Johnson, L | Kalejaiye, O | | Janowski, G | Johnson, N | Kalidindi, A 63 | | Jansen, V | Johnson, O | Kalidindi, S 81, 141 | | Janson, M | Johnson, S 46, 73, 97, 98, 115, 117, 141 | Kalluri, S | | Jansto, S 68, 90, 91, 112, 132 | Jo, J | Kamada, K | | Jaques, B | Jo, M | Kamat, H 27 | | Jardon-Alvarez, D | Jones, D 62, 63 | Kambale, K | | Jared, B | Jones, E | Kamde, M | | ,, 2 | | | ### MSaT18 | Kamijyo, Y | Kaur, M | Khan, Y | |--|--|---| | Kamimura, K | Kawada, T | Khare, S | | Kamran, M | Kawaguchi, K | Khatri, I | | Kanan, M | Kawanda, S | Khodabakhsh, S | | Kandrotaite Janutiene, R 138 | Kawanishi, K 47 | Khodorov, S | | Kanematsu, H 34, 51, 69, 114 | Kawano, K | Khosravani, A | | Kane, S | Kawasaki, M | Kiaei, K | | Kang, H | Kayembe, J | Kidner, N 60, 61, 78 | | Kang, J | Kazakov, A | Kieffer, J 23, 45, 63, 84, 107, 131 | | Kang, M | K.C, H | Kiener, D | | Kang, S | Kecskes, L | Kiggans, J 89 | | Kang, Y | Kedir, N 65 | Kilczewski, S | | Kanhaiya, K 64, 122, 135 | Keeble, M 23, 24, 45, 64, 85, 108, 134 | Kilgo, A | | Kannan, D | Keech, P | Kim, B | | Kannan, R | Ke, H | Kim, C | | | Kehl, K | Kimchi, M | | Kanno, R | | Kim, D | | Kanno, T | Keiser, J | | | Kantner, C | Keist, J | Kim, E 40, 56, 89 | | Kant, R | Keles, O | Kimes, K | | Kantzos, C 102, 107, 129 | Kellar, J | Kim, G | | Kan, W | Kelleher, J | Kim, H | | Kapil, A | Keller, R 67 | Kim, I | | Kaplan, M | Kellner, M | Kiminami, C 80 | | Kaplan, W 24, 33, 46, 64, 85, 108, 124, | Kellogg, F | Kim, J15, 16, 20, 27, 78, 81, 117, 123, | | 135 | Kelly, S 85, 113, 135 | 137, 138 | | Kapoor, S | Kenesei, P | Kim, K 34, 76 | | Kappagantula, K 49, 88, 96, 99, 127, 136 | Kennedy, J | Kim, M | | Kappes, B | Kenner, M 21, 22 | Kimmel, G 53 | | Kapush, D | Kenney, M 91 | Kim, O | | Karaca, H 39, 76, 77, 78, 101, 119, 133 | Kent, P 94, 122 | Kim, P | | Karakoc, A | Keough, C | Kim, S25, 40, 47, 62, 65, 78, 79, 86, 88, | | Karaman, I | Kernan, B | 89, 100, 110, 111, 137 | | Karamanov, A 84, 106, 123, 131 | Keshishian, V | Kimura, Y | | Karcz, A | Kesler, M 52, 70 | Kim, W 21, 42, 138 | | Kar, J | Keto, J | kim, Y | | Karki, K 24, 124 | Keun, C | Kim, Y | | Karma, A | Ke, X | King, D | | Karmakar, A | Key, T | King, M | | Karnati, P | Khademi, V 81, 123 | Kingman, S | | Karpov, D | Khadka, R | King, S 45, 110 | | Kashfipour, M 42, 52, 134 | Khafizov, M 22, 47, 49, 121 | Kini, A | | Kashyap, B 43, 72 | Khairallah, S | Kinloch, I | | Kaspar, J | Khakpash, N 41 | Kinser, E 50, 93, 107 | | Kassen, A | Khaliq, A 41 | Kinsey, A | | Kate, K | Khan, A | Kinzel, E | | Katinas, C | Khanal, S | Kirchheim, R | | Katiyar, R 41 | Khan, M 93, 95 | Kirchlechner, C | | Katoh, Y 27, 49, 67, 89, 111, 138 | Khanolkar, A 84 | Kirihara, S | | Katsumura, T | Khanoonkon, N | Kirka, M | | Katsuragawa, T 51 | Khan, R | Kirk, C | | Kattner, U | Khanra, A | Kirk, T | | Kattoura, M | Khan, S | Kiser, J | | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1 | 11111111, 0 | 10001, j 4/ | | Tr. d. T. | T7 T | TT 1 1 1 | |-------------------------------|--|--| | Kistler, E | Koruza, J 60, 75, 99 | Kudzal, A | | Kistler, N | Korzhavyi, P | Kuhn, H | | Kitahara, A | Ko, S | Kuhr, B | | Kiyoshi, G | Koshy, P | Kujofsa, T | | Klassen, R 53, 116 | Koski, C | Kulkarni, A 16, 41 | | Klein, M | Koslowski, M 59, 111 | Kulkarni, G 28, 90 | | Klement, U | Kotila, J | Kulkarni, K | | Klepko, O | Kotsanos, N 69 | Kulkarni, N | | Klier, E | Kottman, M | Kumar, D | | Klingbeil, N 16, 17 | Kougo, T | Kumar Gupta, R 82 | | | • | - | | Klingshirn, C | Kovacs, C | Kumar, N | | Klinkhachorn, P | Kovalchuk, M | Kumar, P | | Klochikhin, V | Kovar, D | Kumar, S | | Kloenne, Z | Kovarik, L 49 | Ku, N | | Knap, J | Kowalski, B | Kunchala, P | | Knezevic, M 106, 113 | Koyama, M | Kundu, A | | Kobayashi, T | Kozina, T | Kung, S | | Koch, C | Kozlosky, K | Kunstmann, J 20, 42, 61, 134 | | Koch, R | Kozlowski, G | Kuo, S | | Kocic, L | Kozmel, T | Kuper, M | | Kockelmann, W | Kraemer, S 80 | Kuprienko, A | | Koc, R | Kraft, F 49, 96, 127 | Kuramoto, K | | | | | | Kodas, M | Krajewski, A | Kürnsteiner, P | | Koepke, J | Krakauer, B | Kuroda, A | | Koerner, H 24, 56, 99 | Kral, M | Kuroda, D | | Koh, L | Kramer, M 51, 52, 58, 73, 97, 137 | Kuropda, D | | Kohno, K | Kramer, P | Kurosawa, S | | Koizumi, Y | Krane, M | Kusner, R | | Ko, J | Krause, A 46, 61, 97, 108 | Kustas, A | | Kokawa, H 109, 125 | Kraxner, J | Kutchko, C | | Koklu, H114 | Kreit, E | Kutnjak, Z 60, 126 | | Kolbanev, I 90 | Krell, P | Kwak, N | | Kolisetty, A | Kriikku, E | Kwon, D 60 | | Kolis, J | Krill, C 50 | Kwong, K | | Komai, R | Krishna, A | Kwon, K | | Komarasamy, M54, 96, 117, 154 | Krishnan, N | Kwon, P | | | Krishnan, P | KWOII, P | | Konda Gokuldoss, P 16 | | L | | Kondo, D 60 | Krishnan, S | L | | Kondo, T | Krishna, S | Labonnote-Weber, S 121 | | Kong, J | Krivanec, C | LaBreche, T | | Kongsin, K | Kriven, W 93, 94, 115, 126, 132 | Labukas, J | | Konishi, H | Kroenlein, K | Lafyatis, G | | Konopka, J | Krogstad, J 101, 116, 126 | Laha, T | | Kool, G | Kroll, P | Lai, A | | Kopechek, D 60, 102 | Kruger, A 27, 28, 103 | | | Koppa, P 58 | Krull, E | Lai, B | | Kopp, D | Krumwiede, D | Lai, C | | Koptyug, A | Krupanidhi, S | Lai, D | | Ko, R | Kubota, K | Lalwani, S 30, 50, 69, 93, 114, 125, 140 | | Korey, M | Kubuta, K 00 Kubushiro, K 76 | Lambert, P | | | | Lambourne, A | | Korinko, P | Kuchimanchi, C90 | Lamon, J | | Körner, C | Kudo, I | Lam, P 17, 118 | | | | | ### MS&T18 | Lampenscherf, S 97 | Lee, Y | Li, H 64, 98, 118, 120 | |---|--------------------------------------|---| | Lancellotti, I 84, 106, 123, 131 | Lefkelidou, A 69 | Li, J 20, 21, 31, 41, 46, 49, 54, 69, 72, 75, | | Lancelotti, R | Legrand, E | 78, 79, 97, 103, 115, 122, 130, 133 | | Landa-Mejia, R 19 | Legwand, A | LI, J | | Landers, R | Lehmhus, D 15, 36, 56, 75, 99, 129 | Li, K | | Lane, B | Lei, B | Li, L 26, 34, 55, 73, 84, 89, 91, 95, 98, | | Lane, J | Lei, J | 120, 141 | | | | | | Lanford, W | Leinenbach, C | Lilensten, L | | Lan, G | Leister, B | Lilova, K | | Langhorn, J | Leithe-Jasper, A 61 | Li, M74, 91, 123, 124, 132, 137 | | Lang, S | Leiva, D | Limbu, D | | Lanning, W 26, 72, 141 | Lekakh, S | Limmer, K | | Lann, J | Lemberg, J | Lim, R | | Lapidus, S | Lemons, J | Lim, S 135, 137, 141 | | La Plante, E44 | Lemus-Ruiz, J 48 | Lim, Y | | Larimian, T | Leng, B | Li, N | | Laroche, F 26, 48, 66, 88, 110, 138 | Lentz, J | Lincoln, A | | Laroche, R | Leonard, D | Lin, D | | LaRosa, C | Leonard, M | Lindamood, L | | Larose, S | Leonard, T | Lindberg, D | | Larsen, P 63 | Leonelli, C | Lindemuth, J | | Larson, D | León-Patiño, C | Lindley, D | | Larson, M | Leser, P | Lindwall, G | | Larson, N | Leu, M | Lin, H | | LaSalvia, J | Leung, C | Lin, J | | Lass, E | Leung, K | Lin, K | | Lassinantti Gualtieri, M 123, 131 | Levesque, J 26, 48, 66, 88, 110, 138 | Link, G | | Lassnig, A | Lévesque, J | Lin, P | | Laumb, J | Levi, C | Lin, T | | | | | | Laurencin, C | Levine, L | Lin, Y | | Lauridsen, E | Lewandowska, M | Li, P | | Lavernia, E | Lewandowski, J 55, 81, 111, 117 | Lipke, D | | Lavogiez, C | Lewis, D | Lippold, J 26, 66, 135 | | Lawson, B | Lewis, J | Li, Q 46, 115, 116, 117, 122 | | Lazarenko, D 82 | Leyens, C | Li, R | | Lazor, R | Ley, T | Li, S 58, 90 | | Lazovic, G 19, 53, 74, 133 | Liang, S | LI, s | | Leal Bayerlein, D 57 | Liang, Z | Lisiecka-Graca, P | | Le Bouar, Y | Lian, J | Li, T 21, 107, 116, 123, 124 | | Lebullenger, R 106, 123 | Liao, P | Litster, S 61, 78 | | Lee, B | Liao, Y | Liu, B | | Lee, D 25, 40, 116, 133 | Liaw, P 54, 103 | Liu, C | | Lee, E | Li, B | Liu, F | | Lee, G | Liberati, A | Liu, G 54, 62, 68, 81 | | Lee, H 24, 25, 33, 43, 68, 92, 94, 103, 111 | Li, C 74, 111, 118, 129, 135 | Liu, H 29, 45, 108 | | Lee, J | Li, D | Liu, J | | Lee, K 36, 73, 76, 97, 117, 130, 141 | Li, E | Liu, L | | Lee, P | Lienert, T | Liu, M | | Lee, S | Liewald, M | Liu, Q | | Lee, T | Lifton, J | Liu, R 62 | | Lee, U | Li, G | Liu, S | | Lee, W | Ligda, J 50, 116, 124 | Liu, T | | 200, | 22040, 7 | 220, 1 120 | | Liu, W | Lu, K. 43, 49, 62, 82, 105, 131 Luo, A. 16, 26, 51 Luo, H. 135 Luo, J. 15, 46, 63, 71, 83, 105, 108, 119, 122 Luo, X. 120 Lu, P. 23, 82 Lupercio, A. 137 Lupetin, P. 46 Luther, S. 66 | Makagon#, E 32 Makhatha, M 39 Makhdoom, A 125 Makineni, S 142 Ma, L 17, 37, 40, 58, 77, 130 Malakkal, L 89, 111 Malak, R 75 Malas, A 75 Malatesta, K 93 Malhotra, R 101 | |--|---
---| | Li, Y 20, 21, 62 li, Z 36 Li, Z 90, 125 Ljungblad, U 58 Llorca, J 83 Locke, J 52, 71 Lodhi, J 57, 118 Lodhi, M 136 Lockear 112 | Lutsak, E. 115 Lu, W 125 Lu, X 63, 89, 96, 106 Lü, X 116 Lu, Y 24, 59, 79, 121, 135, 140 Lyle, A 76 | Malic, B. 60, 75 Malik, H 69 Malinovsky, P 136 Maltry, G 104 Malyar, N 53 Ma, M 32 Manami, M 140 Manandhar, K 105 | | Loesser, A 113 Loganathan, A 141 Lograsso, T 101 Loidl, A 126 Lolla, T 64, 85 Lomello, F 77 Lonardo, R 110 London, I 31, 52, 70, 94 londoño, c 135 | Maass, R. 33 Ma, B. 105 Macatangay, D. 82 MacDonald, E. 16, 110, 135, 137 Machrowicz, T. 90 Mackowiak, K. 56 Macwan, A. 20, 65 Maczka, M. 90 Ma, D. 29 | Manchón-Gordón, A 39, 111 Mancuso, A 107 Mandal, A 85 Mandal, K 46 Mandal, S 135 Mandhana, Y 39 Mane, P 28 Mangal, A 112 Manga, V 28 | | Lonergan, J 27, 49, 67 Long, A 80 Long, D 41 Loomis, P 51 Lopez, A 50 López, B 68 Lopéz, E 15 Lorenzo, N 116, 124 Losko, A 37, 62 | Maddala, D. 30, 50 Madej, L. 91, 112, 139 M Adinarayanappa, S. 58 Madison, J. 36, 92, 107, 108, 123 Madsen, A. 107, 123 Madsen, L. 56, 84, 107 Ma, F. 21 Magdefrau, N. 22 | Maniatty, A. 17 Maniere, C. 71 Manjooran, N. 18, 39, 68, 92, 113, 125 Mann, A. 22 Manna, I. 54 Manna, J. 112 Mannava, S. 27, 58, 66, 118, 119 Manogharan, G. 110, 118 Manring, S. 111 | | Loughnane, G. 17 Lou, X. 82 Love, I. 87 Lowry, D. 93, 132 Lo, Y. 54 Luan, Z. 136 Lu, B. 118 Lubinsky, A. 84 | Mahajan, A. 43 Mahajanam, S. 32, 52, 71, 132 Mahalingam, S. 46 Mahapatra, M. 15, 46, 93 Mahbooba, Z. 80 Mahbub, R. 61, 78 Mahmoud, M. 30, 51, 69, 140 Mahmud, M. 44 Mahtabi, M. 39, 77, 78, 101, 119, 133 | Mansoori, A 95 Mansour, A 118 Manthani, N 42 Mantri, S 30, 62, 91, 118 Manzoor, M 113, 121 Mao, B 66, 103 Mao, E 64 Mao, W 74 | | Lubomirsky, I 32, 53, 86, 137 Lu, C 33, 53, 71, 96, 116, 126, 140 Lucas, G 45 Lucas, H 106 Lucas, P 84 Lucey, T 29 Lucon, E 120 Lu, J 122 | Mahton, Y. 88, 132 Maier, J. 65 Maiocco, L. 57 Maiwald, T. 15 Ma, J. 75 Majta, J. 139 Majumdar, A. 78 Ma, K. 117 | Mao, X 62 Mao, Y 66 Mapar, A 50 Maratea, A 21 Maravola, M 137 Marcial, J 103 Marcillo, F 47 Marian, J 63 | ### MS&T18 | Mari, E | Maughan, M | Mehrabi, R 39, 77, 101, 119, 133 | |--------------------------------------|--------------------------------|---| | Marín, C | Mauro, J 63, 80, 107, 110, 121 | Mehra, N 42, 52, 62 | | Marin, E | Mauro, Y | Mehta, A | | Marinkovic, B | Maurya, A | Meier, J | | Markl, M | | | | | Ma, Y | Meinert, K | | Markovsky, P | Mayes, D | Meisenheimer, P | | Marmo, L 62 | Mayr, P | Meka, V | | Marquardt, A | Ma, Z | Melgarejo, Z | | Marquis, E | Mazdi, A | Melia, H | | Marsden, K | Mažeika, D | Melia, M 82 | | Marshall, A | Mazumder, R 60, 82, 133 | Mellott, N | | Marshall, P | Mazzini, D | Mendelev, M | | Marti, A | McAllister, M | Mendelson, O | | Martin, A | McCabe, R 89, 90, 139 | Mendoza-Bravo, I 109 | | Martin, B | McCallister, J | Mendoza, E | | Martin, D | McCall, S | Mendoza, H | | Martínez Camejo, Y 20 | | | | • | McCaslin, E | Mendoza, M | | Martinez, J 23, 45, 64, 85, 108, 134 | McClamrock, E | Mendoza-Suarez, G | | Martinez, N | McClane, D | Menezes, P | | Martin, H | McCloy, J 27, 36, 79, 103, 131 | Meng, F 81, 98, 137 | | Martini, A | Mccormack, S | Meng, L 58 | | Martin, J | McCracken, S | Meredith, S | | Martin, M | McCulloch, W | Merkle, R 65 | | Martin-Root, C 91 | McDermid, J 20, 41 | Merrick, P | | Martin, S | McDonnell, M 48, 136 | Merrill, F | | Martin-Treceno, S | McDowell, D 81, 97 | Meserole, S | | Martukanitz, R | McEnerney, B 16, 74 | Mesquita, R 91 | | Marusczyk, A | McEntire, B | Meyer, H | | Marvel, C | McGarry, D | Meyer, J | | Marx, M | McGee, T | Miao, J | | Marya, M | McGroddy, M 89 | Miao, Y | | Masi, L | McGuire, M | Miaoyong, Z | | Maskrot, H | McKendrick, D | Michael, J | | - | • | | | Mason, C | McKenzie, R 82 | Michaels, C | | Masseling, L | Mckeown, J | Michler, J | | Mastorakos, I 29 | McKeown, J 36, 100, 123 | Middendorf, J 15, 16, 17 | | Mastropietro, A | McKittrick, M | Mikaeili, F | | Masuda, A | Mckown, S | Mikel, T | | Matavž, A | McLendon, R | Mikes, L | | Matei, D | McLeod, M | Mikler, C | | Mathaudhu, S | McMillan, L | Milanez, D 40, 80 | | Matheshwaran, S 54 | McMurray, J 67 | Miles, M 65 | | Matson, T | McWilliams, A | Militzer, M 91 | | Matsuda, I | McWilliams, B 38, 58, 118, 119 | Miller, B | | Matsuda, T 48, 86, 109, 124 | Meacham, B 90, 116, 138 | Miller, C | | Matsumoto, S | Mear, F 106, 123 | Miller, J | | Matsuoka, K | Medlin, D | Miller, R 18, 23, 44, 63, 106 | | | | | | Matsushita, M | Meelaksana, J | Miller, S | | Matteis, P | Meents, A | Millet, Y | | Matthews, I | Megahed, M | Milligan, B | | Matthews, M | Mehlmann, A | Milligan, M | | Matyas, J 27, 49, 67 | Mehrabi, H | Mills, M . 50, 72, 76, 77, 81, 83, 122, 134 | | Milner, J | Mogrelia, R | Morsi, K | |-------------------------------------|-------------------------------|---| | Milonin, E | Mohamed, K | Moshe, R | | Milow, B | Mohammadijoo, M 90 | Mostafaei, A | | Mincache, A | Mohammadi, M | Motoyama, K 48 | | Mingareev, I | Mohammadi, R 23 | Mousavi, M | | Minh, N 60 | Mohammad Rahimi, R 96 | Mubarok, A | | Minneci, R | Mohammed, Y | Muche, D 63 | | Miracle, D 50, 98 | Mohanty, G 53, 116 | Mudanyi, R118 | | Mirkovic, D | Mohr, N | Muecklich, F | | Mirzaeifar, R 39, 77, 101, 119, 133 | Mo, K | Mueller, E | | Mishchenko, V | Mokhtari, S | Mughal, M | | Mishin, Y | Molas, S | Mugoni, C | | Mishra, A 32, 52, 71, 82, 132 | Molla, A | Muguruma, T | | Mishra, B | Monroe, C | Muhammad, W 66 | | Mishra, K 41 | Monson, T | Muhlstein, C | | Mishra, M | Monte, F 50 | Mujahid, S | | Mishra, R | Montemayor, S | Mujawar, M | | | • | • | | Mishuk#, E | Montgomery, C | Mukherjee, A | | Misorski, C | Moon, C | Mukherjee, R | | Misra, A | Moon, J | Mukherjee, S 18, 53, 102, 114 | | Misra, M | Moon, K | Mukhopadhyay, N 90 | | Misra, R | Moon, M | Mukhopadhyay, S .21, 44, 113, 121, 125, | | Misture, S | Moon, S | 142 | | Mitchell, A | Moore, A | Mula, S | | Mitchell, B | Moore, D | Müller, M | | Mitchell, D 61 | Moorehead, C | Müllner, P | | Mitchell, E | Morales, J | Mummareddy, B 137 | | Mitchell, J | Morando, C | Mumm, D 73, 97, 117, 122, 141 | | Mitic, V | Morcos, P | Munagala, V | | Mitra, R 78, 84 | Mordasky, M | Muñiz Lerma, J | | Mitsufuji, K 48 | Moreau, C | Muñiz-Lerma, J | | Mitterer, C | More, K | Muntifering, B | | Mixson, K | Morgan, C | Muojekwu, C 83 | | Miyasaka, F 48, 87 | Morgan, D 25, 49, 86 | Muralidharan, G 29, 40, 52, 64, 71 | | Mizoguchi, I | Morgan, M | Muralidharan, K 28 | | Mizunoe, Y | Moridi, A 53, 99 | Murch, G | | Mizuno, K | Mori, H | Murdoch, H 50, 126 | | Mizuno, Y | Morikawa, K | Murty, Y | | M, K | Morikawa, Y | Murugan, M | | Moataz, A | Mori, M | Murugan, P | | Mo, B | Morimitsu, M | Murugan, S | | Mo, C | Morisada, Y 48 | Mu, S | | Modak, P | Moritz, J | Musgrave, C | | Modi, P | Morozova, I | Musho, T | | Modroukas, D | Morozova, O | | | | | Muskeri, S | | Modugno, M | Morral, J | Muszka, K | | Moftakhar, A | Morris, J | Muth, A | | Moghaddam, N | Morris, L | Muth, C | | Moghe, P | Morris, P | Muth, T | | Mogilevsky, P | Morrow, B 22, 43, 62, 81, 134 | Mutombo, D 90 | | Mogni, L | Morscher, G 47, 81 | Muto, S | | Mogonye, J | Morse, D | Mutuku, F | ### MSeT18 | Mwema, F | Nejatpour, M | Nlebedim, C | |---|----------------------------------|--------------------------| | Myers, J 42, 52 | Nelson, A | Nlebedim, I | | Myers, Z 48 | Nelson, K | Nobre, R | | N | Nematolahi, M | Noel, J | | TV | Nematollahi, M | Noël, J | | Nabavizadeh, S | Nesbitt, J | Nohira, T | | Nachlas, J | Nestler, B | Noh, J | | Nadagouda, M 21 | Nettleship, I 24, 44 | Nommeots-Nomm, A 17 | | Nadot, Y | Neuhaus, K | Nordell, B | | Nagano, Y | Neveau, M | Norfleet, D | | Nagao, A 63, 98 | Nevius, M | Norfolk, M 75, 96, 119 | | Nagasaka, T | Newaz, G | Nouranian, S | | Naguib, M 62 | Newcomb, B | Novak, G | | | Newell, D | Novak, N 60, 126 | | Nair, R | Newman, J | Novak, S | | Nakada, N | Nezaki, K | Nsek, D | | Nakamura, N | Nguyen, A | Numata, A 48 | | Nakamura, R | Nguyen, H 82, 136 | Nusstein, J 69 | | Nakamura, T | Nguyen, L | Nwankwo, N | | Nakano, A | Nguyen, M 20 | Nweke, I | | Nakano, J | Nheta, W 68, 90 | Nwoke, V | | Nakatani, S | | | | Nakayama, T | Niaz, U | Nyamuchiwa, K 81 | | Nam, D | Nicholas, J 25, 47, 65, 121, 124 | Nyembwe, D | | Nandwana, P | Nicolai, J | Nygren, K | | Nanstad, R | Nicoleau, L | Nystrom, M 57 | | Naqvi, S | Niendorf, T | 0 | | Naralasetty, H 27 | Nie, P | O | | Narayana Murty, S | Nie, Y | Oancea, V | | Narayanan, A | Niezgoda, M | Obayemi, J | | Narayanan, B | Niezgoda, S 72, 80, 108, 122 | Oberdorfer, C | | Narayan, R30, 33, 50, 69, 93, 114, 125, | Nihei, T | O'brien, M | | 140 | Niihara, K | O'Brien, M | | Nardone, S | Niinomi, M | Obulan Subramanian, G 89 | | | Niki, T | | | Naredla, S | Nikolic, Z | Ocak, B | | Narra, S 16, 18, 76, 99, 100 | Nilufar, S | Ochiai, H | | Na, S | Nimbalkar, S | Ochulor, F | | Nasik, A | Ninos, N | O'Connell, J | | Nassar, A 16, 125 | Nirankari, V | Oder, T | | Nastasi, M 24, 89 | Nirudhoddi, B | Odeshi, A | | Nathanson, M 122, 135 | Nisar, A | Odette, G | | Nath, M | | O'Donnell, T | | Nath, S | Nishikawa, H | Oettel, M | | Natsumi, O | Nishikori, M | Ogata, S | | Naumov, A 48, 135 | Nishiyama, N | Ogawa, A | | Naumyk, V 127, 129, 136 | Nissenbaum, A | Ogenhall, E | | Nautiyal, P 53, 135, 136 | Nitta, K | Ogundare, A | | Navrotsky, A 67, 93, 94, 110 | Nittala, A 49, 136 | Oguocha, I | | Na, W | Niu, C | Ogura, H 48 | | Neeb, D | Niu, G | Ogura, T | | Neeway, J | Niu, R | Ohaeri, E | | Neill, A | Nizolek, T 63 | O'Hara, R | | Neils, A | Njah, A |
Ohashi, Y | | | | | | Ohata, M 48 | Ostman, F | Pankiw, R | |--|---|--| | Oh, J | Ota, H | Pan, Q | | Ohji, T | Otis, R | Pan, S | | Ohldin, P | O'Toole, R | Panta, S | | Ohmura, T 83, 126 | Ott, R 58, 63, 70, 137 | Pantawane, M 102 | | Ohodnicki, P | Oveisi, E | Pantazopoulos, G | | Oh, Y 88 | Overby, D | Panthi, D | | Oikawa, I | Owada, K | Pan, Y | | Oishi, T | Oware Sarfo, K | Panzi, M | | Ojard, G | Owen, L 29, 137, 139 | Papadopoulou, L 69 | | Ojolo, S | Owen, R | Papageorgiou, D 126 | | Okeniyi, E 92, 132 | Oyler, N 28, 45, 73, 97 | Papagerakis, P 69 | | Okeniyi, J | Ozaki, T | Papanikolaou, S | | Okugawa, M | Özaltin, K | Pape, C | | Okuyama, K | Özerinç, S | Paquette, M 28, 45, 73, 97 | | Oladijo, O | Ozmen, M | Paquit, V | | Olbinado, M | Ozmen, O 61 | Parab, N | | Olds, D | Ozmen, O | Paramore, J | | Olek, J | P | Parasuraman, R | | | | | | Oleksak, R | P., A | Parga, C | | Olevsky, E 33, 53, 71, 95, 110, 140 | Pacci Evaristo, F 140 | Parikh, S | | Olig, S | Pacheco, R | Park, C 62, 81, 117 | | Oliveira, A 84, 106, 123, 131 | Packard, C | Park, E | | Oliveira, B | Padgett, B | Parker, D | | Oliveira Dantas, N | Padmanabhan, A 59 | Park, H | | Oliveira, J | Padture, N | Park, J | | Oliveira, O | Pagan, D | Park, N | | Olivos, E | Page, K | Park, s | | Olson, G | Pai Raikar, P | Park, S | | | | | | Olson, W 94 | | Park, W 88 | | O'Malley, R | Pajares, N | Park, Y | | | Pajares, N | Park, Y | | O'Malley, R 42, 112, 120 | Pajares, N 125 Palakurthi, H 39 Palazotto, A 65 | Park, Y 15, 20, 100 Parras, J 85 Parr, C 92 | | O'Malley, R | Pajares, N 125 Palakurthi, H 39 Palazotto, A 65 Pal, D 92, 113 | Park, Y | | O'Malley, R. 42, 112, 120 Omasta, M. 57 Ong, B. 35 | Pajares, N 125 Palakurthi, H 39 Palazotto, A 65 Pal, D 92, 113 Palehova, I 77 | Park, Y 15, 20, 100 Parras, J 85 Parr, C 92 | | O'Malley, R. 42, 112, 120 Omasta, M. 57 Ong, B. 35 Ong, S. 46 | Pajares, N 125 Palakurthi, H 39 Palazotto, A 65 Pal, D 92, 113 Palehova, I 77 Paliwal, M 18 | Park, Y 15, 20, 100 Parras, J 85 Parr, C 92 Parrington, R 34 | | O'Malley, R. 42, 112, 120 Omasta, M. 57 Ong, B. 35 Ong, S. 46 Ono, H. 52 | Pajares, N 125 Palakurthi, H 39 Palazotto, A 65 Pal, D 92, 113 Palehova, I 77 Paliwal, M 18 Palmer, B 55 | Park, Y 15, 20, 100 Parras, J 85 Parr, C 92 Parrington, R 34 Parry, M 98 | | O'Malley, R. 42, 112, 120 Omasta, M. 57 Ong, B. 35 Ong, S. 46 Ono, H. 52 Ono, S. 48 Onuike, B. 54, 141 | Pajares, N 125 Palakurthi, H 39 Palazotto, A 65 Pal, D 92, 113 Palehova, I 77 Paliwal, M 18 Palmer, B 55 Palmer, T 15, 36, 37, 57, 58, 119 | Park, Y 15, 20, 100 Parras, J 85 Parr, C 92 Parrington, R 34 Parry, M 98 Parsons, C 90 Parthasarathy, T 64, 65, 98 | | O'Malley, R. 42, 112, 120 Omasta, M. 57 Ong, B. 35 Ong, S. 46 Ono, H. 52 Ono, S. 48 Onuike, B. 54, 141 Opembe, N. 61 | Pajares, N 125 Palakurthi, H 39 Palazotto, A 65 Pal, D 92, 113 Palehova, I 77 Paliwal, M 18 Palmer, B 55 Palmer, T 15, 36, 37, 57, 58, 119 Pal, S 49 | Park, Y 15, 20, 100 Parras, J 85 Parr, C 92 Parrington, R 34 Parry, M 98 Parsons, C 90 Parthasarathy, T 64, 65, 98 Parveen, A 69 | | O'Malley, R. 42, 112, 120 Omasta, M 57 Ong, B. 35 Ong, S. 46 Ono, H 52 Ono, S. 48 Onuike, B. 54, 141 Opembe, N 61 Ophus, C. 25 | Pajares, N 125 Palakurthi, H 39 Palazotto, A 65 Pal, D 92, 113 Palehova, I 77 Paliwal, M 18 Palmer, B 55 Palmer, T 15, 36, 37, 57, 58, 119 Pal, S 49 Pal, U 78, 79, 121 | Park, Y 15, 20, 100 Parras, J 85 Parr, C 92 Parrington, R 34 Parry, M 98 Parsons, C 90 Parthasarathy, T 64, 65, 98 Parveen, A 69 Parvinian, S 141 | | O'Malley, R. 42, 112, 120 Omasta, M. 57 Ong, B. 35 Ong, S. 46 Ono, H. 52 Ono, S. 48 Onuike, B. 54, 141 Opembe, N. 61 Ophus, C. 25 Opila, E. 25, 98 | Pajares, N 125 Palakurthi, H 39 Palazotto, A 65 Pal, D 92, 113 Palehova, I 77 Paliwal, M 18 Palmer, B 55 Palmer, T 15, 36, 37, 57, 58, 119 Pal, S 49 Pal, U 78, 79, 121 Panahi, D 68 | Park, Y 15, 20, 100 Parras, J 85 Parr, C 92 Parrington, R 34 Parry, M 98 Parsons, C 90 Parthasarathy, T 64, 65, 98 Parveen, A 69 Parvinian, S 141 Pasala, X 95 | | O'Malley, R. 42, 112, 120 Omasta, M. 57 Ong, B. 35 Ong, S. 46 Ono, H. 52 Ono, S. 48 Onuike, B. 54, 141 Opembe, N. 61 Ophus, C. 25 Opila, E. 25, 98 Oppedal, A. 22, 112 | Pajares, N 125 Palakurthi, H 39 Palazotto, A 65 Pal, D 92, 113 Palehova, I 77 Paliwal, M 18 Palmer, B 55 Palmer, T 15, 36, 37, 57, 58, 119 Pal, S 49 Pal, U 78, 79, 121 Panahi, D 68 Panat, R 108 | Park, Y 15, 20, 100 Parras, J 85 Parr, C 92 Parrington, R 34 Parry, M 98 Parsons, C 90 Parthasarathy, T 64, 65, 98 Parveen, A 69 Parvinian, S 141 Pasala, X 95 Pasebani, S 38 | | O'Malley, R. 42, 112, 120 Omasta, M. 57 Ong, B. 35 Ong, S. 46 Ono, H. 52 Ono, S. 48 Onuike, B. 54, 141 Opembe, N. 61 Ophus, C. 25 Opila, E. 25, 98 Oppedal, A. 22, 112 Ordoñez, E. 129 | Pajares, N 125 Palakurthi, H 39 Palazotto, A 65 Pal, D 92, 113 Palehova, I 77 Paliwal, M 18 Palmer, B 55 Palmer, T 15, 36, 37, 57, 58, 119 Pal, S 49 Pal, U 78, 79, 121 Panahi, D 68 Panat, R 108 Panchenko, O 135 | Park, Y 15, 20, 100 Parras, J 85 Parr, C 92 Parrington, R 34 Parry, M 98 Parsons, C 90 Parthasarathy, T 64, 65, 98 Parveen, A 69 Parvinian, S 141 Pasala, X 95 Pasebani, S 38 Paszynski, M 112 | | O'Malley, R. 42, 112, 120 Omasta, M 57 Ong, B. 35 Ong, S. 46 Ono, H 52 Ono, S. 48 Onuike, B. 54, 141 Opembe, N. 61 Ophus, C. 25 Opila, E. 25, 98 Oppedal, A. 22, 112 Ordoñez, E. 129 Orisaleye, I. 119 | Pajares, N 125 Palakurthi, H 39 Palazotto, A 65 Pal, D 92, 113 Palehova, I 77 Paliwal, M 18 Palmer, B 55 Palmer, T 15, 36, 37, 57, 58, 119 Pal, S 49 Pal, U 78, 79, 121 Panahi, D 68 Panat, R 108 Panchenko, O 135 Pandey, A 82 | Park, Y 15, 20, 100 Parras, J 85 Parr, C 92 Parrington, R 34 Parry, M 98 Parsons, C 90 Parthasarathy, T 64, 65, 98 Parveen, A 69 Parvinian, S 141 Pasala, X 95 Pasebani, S 38 Paszynski, M 112 Patala, S 25, 126 | | O'Malley, R. 42, 112, 120 Omasta, M 57 Ong, B. 35 Ong, S. 46 Ono, H 52 Ono, S. 48 Onuike, B. 54, 141 Opembe, N. 61 Ophus, C. 25 Opila, E. 25, 98 Oppedal, A. 22, 112 Ordoñez, E. 129 Orisaleye, I. 119 Ormeord, J. 52 | Pajares, N 125 Palakurthi, H 39 Palazotto, A 65 Pal, D 92, 113 Palehova, I 77 Paliwal, M 18 Palmer, B 55 Palmer, T 15, 36, 37, 57, 58, 119 Pal, S 49 Pal, U 78, 79, 121 Panahi, D 68 Panat, R 108 Panchenko, O 135 Pandey, A 82 Pandey, C 102 | Park, Y 15, 20, 100 Parras, J 85 Parr, C 92 Parrington, R 34 Parry, M 98 Parsons, C 90 Parthasarathy, T 64, 65, 98 Parveen, A 69 Parvinian, S 141 Pasala, X 95 Pasebani, S 38 Paszynski, M 112 Patala, S 25, 126 Patel, A 29 | | O'Malley, R. 42, 112, 120 Omasta, M 57 Ong, B. 35 Ong, S. 46 Ono, H 52 Ono, S. 48 Onuike, B. 54, 141 Opembe, N. 61 Ophus, C. 25 Opila, E. 25, 98 Oppedal, A. 22, 112 Ordoñez, E. 129 Orisaleye, I. 119 Ormeord, J. 52 Ortac, O. 36 | Pajares, N 125 Palakurthi, H 39 Palazotto, A 65 Pal, D 92, 113 Palehova, I 77 Paliwal, M 18 Palmer, B 55 Palmer, T 15, 36, 37, 57, 58, 119 Pal, S 49 Pal, U 78, 79, 121 Panahi, D 68 Panat, R 108 Panchenko, O 135 Pandey, A 82 Pandey, C 102 Pandey, P 142 | Park, Y 15, 20, 100 Parras, J 85 Parr, C 92 Parrington, R 34 Parry, M 98 Parsons, C 90 Parthasarathy, T 64, 65, 98 Parveen, A 69 Parvinian, S 141 Pasala, X 95 Pasebani, S 38 Paszynski, M 112 Patala, S 25, 126 Patel, A 29 Patel, D 65, 76, 98 | | O'Malley, R. 42, 112, 120 Omasta, M. 57 Ong, B. 35 Ong, S. 46 Ono, H. 52 Ono, S. 48 Onuike, B. 54, 141 Opembe, N. 61 Ophus, C. 25 Opila, E. 25, 98 Oppedal, A. 22, 112 Ordoñez, E. 129 Orisaleye, I. 119 Ormeord, J. 52 Ortac, O. 36 Ortalan, V. 124 | Pajares, N 125 Palakurthi, H 39 Palazotto, A 65 Pal, D 92, 113 Palehova, I 77 Paliwal, M 18 Palmer, B 55 Palmer, T 15, 36, 37, 57, 58, 119 Pal, S 49 Pal, U 78, 79, 121 Panahi, D 68 Panat, R 108 Panchenko, O 135 Pandey, A 82 Pandey, C 102 Pandey, P 142 Pandey, S 97 | Park, Y 15, 20, 100 Parras, J 85 Parr, C 92 Parrington, R 34 Parry, M 98 Parsons, C 90 Parthasarathy, T 64, 65, 98 Parveen, A 69 Parvinian, S 141 Pasala, X 95 Pasebani, S 38 Paszynski, M 112 Patala, S 25, 126 Patel, A 29 Patel, D 65, 76, 98 Patel, P 54 | | O'Malley, R. 42, 112, 120 Omasta, M. 57 Ong, B. 35 Ong, S. 46 Ono, H. 52 Ono, S. 48 Onuike, B. 54, 141 Opembe, N. 61 Ophus, C. 25 Opila, E. 25, 98 Oppedal, A. 22, 112 Ordoñez, E. 129 Orisaleye, I. 119 Ormeord, J. 52 Ortac, O. 36 Ortalan, V. 124
Ortigala, J. 103 | Pajares, N 125 Palakurthi, H 39 Palazotto, A 65 Pal, D 92, 113 Palehova, I 77 Paliwal, M 18 Palmer, B 55 Palmer, T 15, 36, 37, 57, 58, 119 Pal, S 49 Pal, U 78, 79, 121 Panahi, D 68 Panat, R 108 Panchenko, O 135 Pandey, A 82 Pandey, C 102 Pandey, P 142 Pandey, S 97 Pandiya, S 16 | Park, Y 15, 20, 100 Parras, J 85 Parr, C 92 Parrington, R 34 Parry, M 98 Parsons, C 90 Parthasarathy, T 64, 65, 98 Parveen, A 69 Parvinian, S 141 Pasala, X 95 Pasebani, S 38 Paszynski, M 112 Patala, S 25, 126 Patel, A 29 Patel, D 65, 76, 98 Patel, P 54 Patel, R 18, 76, 99 | | O'Malley, R. 42, 112, 120 Omasta, M. 57 Ong, B. 35 Ong, S. 46 Ono, H. 52 Ono, S. 48 Onuike, B. 54, 141 Opembe, N. 61 Ophus, C. 25 Opila, E. 25, 98 Oppedal, A. 22, 112 Ordoñez, E. 129 Orisaleye, I. 119 Ormeord, J. 52 Ortac, O. 36 Ortalan, V. 124 Ortigala, J. 103 Orzolek, S. 124 | Pajares, N 125 Palakurthi, H 39 Palazotto, A 65 Pal, D 92, 113 Palehova, I 77 Paliwal, M 18 Palmer, B 55 Palmer, T 15, 36, 37, 57, 58, 119 Pal, S 49 Pal, U 78, 79, 121 Panahi, D 68 Panat, R 108 Panchenko, O 135 Pandey, A 82 Pandey, C 102 Pandey, P 142 Pandey, S 97 Pandiya, S 16 Pang, E 126 | Park, Y 15, 20, 100 Parras, J 85 Parr, C 92 Parrington, R 34 Parry, M 98 Parsons, C 90 Parthasarathy, T 64, 65, 98 Parveen, A 69 Parvinian, S 141 Pasala, X 95 Pasebani, S 38 Paszynski, M 112 Patala, S 25, 126 Patel, A 29 Patel, D 65, 76, 98 Patel, P 54 Patel, R 18, 76, 99 Patel, V 87, 109 | | O'Malley, R. 42, 112, 120 Omasta, M. 57 Ong, B. 35 Ong, S. 46 Ono, H. 52 Ono, S. 48 Onuike, B. 54, 141 Opembe, N. 61 Ophus, C. 25 Opila, E. 25, 98 Oppedal, A. 22, 112 Ordoñez, E. 129 Orisaleye, I. 119 Ormeord, J. 52 Ortac, O. 36 Ortalan, V. 124 Ortigala, J. 103 Orzolek, S. 124 Osaka, A. 93 | Pajares, N 125 Palakurthi, H 39 Palazotto, A 65 Pal, D 92, 113 Palehova, I 77 Paliwal, M 18 Palmer, B 55 Palmer, T 15, 36, 37, 57, 58, 119 Pal, S 49 Pal, U 78, 79, 121 Panahi, D 68 Panat, R 108 Panchenko, O 135 Pandey, A 82 Pandey, C 102 Pandey, P 142 Pandey, S 97 Pandiya, S 16 Pang, E 126 Pang, S 83 | Park, Y 15, 20, 100 Parras, J 85 Parr, C 92 Parrington, R 34 Parry, M 98 Parsons, C 90 Parthasarathy, T 64, 65, 98 Parveen, A 69 Parvinian, S 141 Pasala, X 95 Pasebani, S 38 Paszynski, M 112 Patala, S 25, 126 Patel, A 29 Patel, P 54 Patel, R 18, 76, 99 Patel, V 87, 109 Pathak, S 106 | | O'Malley, R. 42, 112, 120 Omasta, M 57 Ong, B. 35 Ong, S. 46 Ono, H 52 Ono, S. 48 Onuike, B. 54, 141 Opembe, N. 61 Ophus, C. 25 Opila, E. 25, 98 Oppedal, A. 22, 112 Ordoñez, E. 129 Orisaleye, I. 119 Ormeord, J. 52 Ortac, O. 36 Ortalan, V. 124 Ortigala, J. 103 Orzolek, S. 124 Osaka, A. 93 Osmanlic, F. 58 | Pajares, N 125 Palakurthi, H 39 Palazotto, A 65 Pal, D 92, 113 Palehova, I 77 Paliwal, M 18 Palmer, B 55 Palmer, T 15, 36, 37, 57, 58, 119 Pal, S 49 Pal, U 78, 79, 121 Panahi, D 68 Panat, R 108 Panchenko, O 135 Pandey, A 82 Pandey, C 102 Pandey, P 142 Pandey, S 97 Pandiya, S 16 Pang, E 126 Pang, S 83 Pang, X 23, 44, 63, 106 | Park, Y 15, 20, 100 Parras, J 85 Parr, C 92 Parrington, R 34 Parry, M 98 Parsons, C 90 Parthasarathy, T 64, 65, 98 Parveen, A 69 Parvinian, S 141 Pasala, X 95 Pasebani, S 38 Paszynski, M 112 Patala, S 25, 126 Patel, A 29 Patel, D 65, 76, 98 Patel, P 54 Patel, R 18, 76, 99 Patel, V 87, 109 Pathak, S 106 Patibandla, A 16 | | O'Malley, R. 42, 112, 120 Omasta, M. 57 Ong, B. 35 Ong, S. 46 Ono, H. 52 Ono, S. 48 Onuike, B. 54, 141 Opembe, N. 61 Ophus, C. 25 Opila, E. 25, 98 Oppedal, A. 22, 112 Ordoñez, E. 129 Orisaleye, I. 119 Ormeord, J. 52 Ortac, O. 36 Ortalan, V. 124 Ortigala, J. 103 Orzolek, S. 124 Osaka, A. 93 | Pajares, N 125 Palakurthi, H 39 Palazotto, A 65 Pal, D 92, 113 Palehova, I 77 Paliwal, M 18 Palmer, B 55 Palmer, T 15, 36, 37, 57, 58, 119 Pal, S 49 Pal, U 78, 79, 121 Panahi, D 68 Panat, R 108 Panchenko, O 135 Pandey, A 82 Pandey, C 102 Pandey, P 142 Pandey, S 97 Pandiya, S 16 Pang, E 126 Pang, S 83 | Park, Y 15, 20, 100 Parras, J 85 Parr, C 92 Parrington, R 34 Parry, M 98 Parsons, C 90 Parthasarathy, T 64, 65, 98 Parveen, A 69 Parvinian, S 141 Pasala, X 95 Pasebani, S 38 Paszynski, M 112 Patala, S 25, 126 Patel, A 29 Patel, P 54 Patel, R 18, 76, 99 Patel, V 87, 109 Pathak, S 106 | ### MS&T18 | Patil, S 67 | Perram, G | Pokharel, N | |-----------------------------|--------------------------------------|-----------------------| | Pati, S | Perron, A | Pokharel, R | | Patra, A | Perry, N 65 | Polasik, A | | Patra, S | Perry, S 67 | Polenz, S | | Patricia, M | Perumal, G | Poliak, E 68 | | Patterson, B | Pesach, A | Polizzi, A | | Patterson, E | Peters, S | Polyanskii, A | | Patwary, S | Peters, T | Ponder, K | | Paudel, H | Petford-Long, A | Ponomarev, I | | Paudel, Y | Petrova, R | Pontikes, Y | | Paul, B | | | | | Peys, A | Poole, L | | Paul, T | Pezzotti, G | Poole, W | | Paunovic, V 19, 53, 74, 133 | Pfizenmaier, P | Poplawsky, J | | Pauza, J | Phani, S | Popoola, A | | Pawar, P | Phapale, K | Popovich, A | | Payne, D | Phermthai, T | Popov, O | | Payne, H | Phero, T 48, 136 | Poret, J | | Payton, E 19, 22, 85 | Phillips, B | Porter, J | | Payton, T 50 | Phillips, J | Porter, W 81 | | Payzant, A | Phillpot, S | Porwal, H | | Paz Soldan Palma, J | Phongpreecha, T 124 | Poulton, J | | Paz y Puente, A | Phukan, H 83 | Pouyet, E 80 | | Pearce, C | Phyo, P | Poweleit, D | | Pearce, J | Picard, Y | Powell, H | | Pech-Canul, M | Picicco, M | Prabhu, N | | Peck, J | Pickrell, G 18, 39, 68, 92, 113, 125 | Pramanik, C | | Pedash, A | Pierce, D 29, 40, 64 | Prasad, A 89, 95, 111 | | Pedersen, M | Pierce, E 28, 69, 131 | Prasad, N | | Pedraza, J | Pierce, J | Prasad, S | | Pedrazzi, S | Pierce, M | Prasitthipayongop, A | | Peele, J | Pierson, H | Prater, T | | Peeler, D | Pietrowski, R 66 | Pratt, O | | Pei, F | Pietrucha, M | Prellier, W | | Pelletier, J | Pilchak, A | Presby, M 47, 81 | | Pelletiers II, T | Pilgrim, S | Preston, A | | Pelletiers, T | Pillai, R | Price, P | | Pelligra, C | Pimton, P | Pridemore, W 62, 81 | | Pelton, A | Pinky, S 28, 91 | Priedeman, J | | Peña-Duarte, A | Pint, B | Prikhodko, S | | Pencer, J | | | | | Pirc, R | Prima, F | | Peng, D | Piston, M | Pringle, A | | Peng, F | Pistorius, C | Privitali, B | | Peng, P | Pittari, J | Profazi, C | | Peng, Q | Pitz, M | Proust, G | | Peng, Y | Pizarro, C | Przybyla, C | | Peng, Z | Playford, H | Puente, A | | Penide-Fernandez, R | Plotkowski, A | Puleo, B | | Peralta, A | Plucknett, K | Pushkareva, M | | Pereda, B | Podlesny, M | Putatunda, S | | Perepezko, J 80, 118 | Podraza, N 122, 126 | Pye, L | | Perez, M | Podrazky, W | Pyun, Y | | Perkins, C | Poirier, J | | | | | 0 | | 0 1 1 0 | D 11 1 4 4 105 | D 0 | |---|---|--| | Qadri, S 23, 42, 105, 117 | Ramkhelawan, A 135 | Ren, S | | Qafoku, N | Ramos, E 49, 117 | Renteria, E 95, 116 | | Qian, G 141 | Ramprasad, R | Ren, W | | Qian, M | Ramprasad, T | Ren, X | | | - | | | Qiao, J 54, 80, 103 | Rangarajan, H 47 | Ren, Y | | Qi, H | Rännar, L | Ren, Z | | Qi, L 80, 115 | Rao, A | Repukaiti, R | | Qing, J | Rao, D | Restrepo Carmona, A 138 | | Qin, H | Raoux, S | Reutzel, E | | Qin, S | Rao, Y | Revelo, C | | | | | | Qin, W | Rapking, D | Reyes, J | | Qiu, C 58 | Rashid, A | Reynolds, D | | Qiu, D | Rashidi, S 82 | Reynolds, Jr., W | | Qiu, G 52 | Rashid, M | Rhee, H | | Qi, Y | Rathi, A 90, 111, 137 | Rheinheimer, W 33, 53, 64, 71, 85, 95, | | Quintana, M | Rathi, M | 140 | | Qu, J | Rauch, H | Rhonehouse, D 42 | | Qu, j | | | | R | Raughley, M | Riaz, F | | K | Rausch, A | Rice, K | | Raabe, D | Raush, J | Richards, N | | Rabbani, M | Ravindran, C | Richardson, D | | | Ravi, P | Richardson, K 21 | | Rabelo Monich, P 106, 123 | Ravi, V | Richardson, M | | Rabin, O 83 | Rawlings, M | Richter, A | | Rabkin, E | | | | Rack, A | Rawn, C | Richter, J | | Radhakrishnan, R 38, 55 | Ray, A | Ricker, R | | Radzilowski, R | Razavi, H | Rickman, J | | | Razmpoosh, M | Ricote, S | | Rafailov, G | Razmyar, S 62 | Riddle, M | | Rafique, M 80, 103 | Rebak, R27, 32, 49, 52, 67, 71, 82, 89, | Ridenour, G | | Raghuraman, K 69 | | | | Rahbar, N | 107, 111, 132, 138 | Ridley, M | | Rahimi, R | Rebellato, M | Ridosz, L | | Rahman, A 29, 113, 125 | Reddy, R 42, 71 | Riedel, R | | Rahmani, F | Redkin, K 62, 78 | Riede, M | | Rahman, Z 50 | Reed, T | Riegner, D | | | Reeja Jayan, B | Rifat, M | | Rahn, T | Reeja-Jayan, B 121 | Rigaud, M | | Raikar, P 56 | Reese, S | Rigg, P 62 | | Raiman, S | - | | | Raines, J 19, 40, 60, 78, 101, 120, 130 | Reese, Z | Riggs, K | | Rajagopalan, S 106 | Rehn, V | Riley, B | | Rajan, K | Reichmann, T 70 | Riman, R 55, 70, 84, 94 | | Rajasekaran, M | Reifsnyder, A | Rimnac, C | | | Reigel, M 61 | Rimsza, J 28 | | Rajbhandari, P | Reilly, K 95, 116 | Rincon Romero, A | | Rajivmoorthy, M 46 | Reimanis, I | Rinko, E | | Raj, R | | | | Rakers, N | Reimer, T | Rios, O | | Ralston, K | Ren, B | Rise, A 107, 124 | | Ramakrishnan, A | Ren, F | Rivera, P | | Ramamurty, U | Rengifo, S | Roach, A | | | Ren, J | Roach, M 79, 102, 110, 121, 134 | | Raman, R | Ren, K | Roback, R | | Ramanuj, V112 | Ren, M 63 | Robertson, I | | Ramirez, A 48, 58, 66, 78 | 10011, 191 | 10000113011, 1 | | | | | ## S&T18 | Robertson, S | |-----------------------------| | Roberts, S | | Rock, C | | | | Rodelas, J 59, 82, 85, 109 | | Rödel, J | | Rodgers, T 92, 110, 123 | | Rodomsky, C | | Rodriguez-Ibabe, J 68 | | Rodriguez, P 101, 118, 129 | | Rodriguez, Y | | Roehling, J | | Roehling, T | | Roe, J | | Rogers, G | | Rogers, J | | Rogers, K | | Rogne, B | | Rohatgi, P | | Rohrer, G 64, 108, 115, 135 | | Rojac, T | | Rojas, R | | Rollet, A | | Rollett, A | | 107, 108, 113, 118, 139 | | | | Rollins, B | | Romankov, S | | Romualdi, N 91 | | Rondinella, A 54 | | Rondinone, A | | Ronevich, J | | RongFeng, Z | | Rong, Y | | Roosendaal, T 65 | | Roos, S | | Rosas, B | | Rosei, F | | Rosenbrock, C | | | | Rossell, M | | Rossetti, G 41, 60 | | Rossey, W | | Ros, T | | Roth, C | | Rothchild, A | | Roth, E | |
Rottmann, P | | Rottmayer, M | | Rouxel, T 63, 80, 104 | | Rowenhorst, D | | Roy, A | | Roychoudhury, S 102 | | Roy, G | | Roy, S 45, 48, 100, 126 | | • | | Rozic, B | |-------------------------| | Rozman, K 101, 111 | | R, S | | Rud, N | | Rudolf, C | | Rueschhoff, L | | Rugthaworn, P | | Rulis, P 28, 45, 73, 97 | | Runcevski, T | | Runge, K | | Runnels, B | | Rupert, T 25, 46, 63 | | Russell, M | | Russell, R | | Ruzic, D | | | | Ryan, J | | Ryan, M | | Rylkov, E | | Ryou, H | | Ryu, J | | | | S | | | | Saitou, K | |-----------------------------------| | Saiz, D | | Sakagami, Y | | Sakidja, R 28, 45, 73, 91, 97 | | Salamanca-riba, L 83 | | Salamanca-Riba, L | | Salas, R | | Saleem, B | | Saleh, E | | Saleh, M | | Salem, H | | Salem, J | | Salgado-Lopez, J | | Salifu, A | | Sallica Leva, E | | Salman, O | | | | Saluru, K | | Salvador, P 64, 78, 115, 135 | | Samarakoon, D | | Sama, S | | Samei, J | | Samia, A | | Samolyuk, G | | Sampath Kumar, T | | Samuel, A | | Sanchez, F | | Sanchez, L | | Sánchez-Mata, O | | Sander, G | | Sanders, A | | Sanders, K | | Sanders, L | | Sanders, P | | Sanghera, J 21, 42, 61, 130 | | Sanguino, G | | Sang, X | | Sankaran, R | | Sankare, S | | Sanni, O | | Sano, K | | Sano, T 27, 48, 86, 107, 109, 124 | | Sanpo, N | | SanSoucie, M | | Sansoz, F 63, 96, 98 | | Santala, M 25, 36, 107, 116, 124 | | Sant, G 44, 87 | | Santos, I | | Saraf, N | | Sarich, C | | Sarina, S | | Sarin, P93, 115, 122, 126, 132 | | Sarkar, A | | , | | Sarkar, N | Schulz, E | Sernicola, G | |---|---------------------------------------|-------------------------------| | Sarkar, S | Schulze, W 41, 60, 133 | Sestito, J | | Sarmiento-Klapper, H | Schulz, J | Setargew, N | | Sasaki, K | Schuster, B | Sevener, K | | Sasaki, S | Schüth, F | Shabib, I | | Saslow, S 67 | Schwalbach, E | Shackleford, C | | Sato, A | Schwaller, E | Shadangi, Y 90 | | | | | | Sato, M 30, 31, 51, 69, 140 | Schwam, D | Shafe, A | | Sato, N | Schwartz, R 50 | Sha, G | | Sato, S | Schwarz, R 81 | Sha, H | | Sato, T | Schweiger, M | Shah, A | | Sato, Y | Schwen, D 49 | Shahani, A | | Saunders, A | Scime, L 16, 37, 58 | Shahbazmohamadi, S 117 | | Saunders, M | Scoones, J | Shahbeigi Roodposhti, P 117 | | Savage, D | Scully, J | Shah, D | | Savvakin, D | Seabaugh, M 60, 61, 78, 102, 121, 134 | Shah, N | | Sawruk, N | Seal, S | Shahriari, D | | Sayet, T | Sease, E | Shahriar, S | | Scattergood, R | Sebeck, K | Shah, S | | Schade, C | Seddio, S | Shahsavari, R 87 | | Schaedler, T 57 | Sediako, D 26, 27, 136 | Shah, U | | Schaefer, F 83 | Seely, D | Shahzad, M | | Schaefer, M | Seguardo, J | Shalomeev, V | | Schaller, R 82 | Sehitoglu, H | Shamrell, D | | Schaper, M | Seidel, A | Shamsi, M | | Scharf, T | Seidel, S | Shang, S | | Schaube, M | Seidman, D | Shankar, R | | | | | | Schaut, R | Seifert, H | Shan, Y | | Scheckelhoff, M | Seifert, J | Shao, M | | Scheer, A | Seif, M | Shaown, R | | Schehl, N | Seiman, D | Shapiro, A | | Scheideler, E | Seiz, M | Shapiro-Scharlotta, A | | Schindelholz, E32, 44, 52, 71, 82, 109, | Sekizawa, O 65 | Sharif, A | | 132 | Sekulic, D | Sharma, A 66, 96, 98 | | Schlagel, D | Sellers, C | Sharon, J | | Schloder, S | Selvaminickam, V 95 | Shassere, B | | Schlom, D | Semiatin, L | Shaul, T 53 | | Schmidt, D | Semiatin, S | Shaw, A | | Schneider, D | Sengupta, P | Shaw, B 21, 42, 82 | | Schneider, J 48, 65, 76, 97, 124 | Senior, N | Shaw, L | | Schoeller, H 40, 59 | Senkov, O | Shayer, Z | | Schoensee, L 48, 136 | Senna, M | Shayesteh Moghaddam, N 76, 77 | | Schoenung, J | Sen, S | Shchelkanov, I 83 | | Scholler, S | Sepelak, V 90 | Sheedy, P | | Schreiber, S 68 | Šepelák, V | Sheets, C | | Schroeder, C | Sereda, B 41, 42, 77 | Sheid, E | | Schroers, J | Sereda, D | Sheikh, A | | Schrout, J | Sereda, I | Shejko, S | | Schubert, R | Sergueeva, A | Shekhar, S | | Schuessler, B | č | Shekhawat, D | | | Serio, J | | | Schultz A | Serizawa, H | Shen, C | | Schultz, A 67 | Serne, J | Sheng, W | ### MSaT18 | Shen Y | Shen, Q | Siakati, C | Sivaneri Varadhrajan Idaiam, K 113 | |---|--------------|--|---| | Sherman, A | | | | | Sherman, S. | | Siddaiah, A | | | Shetty, P 101 Siedlecki, C 50 Slager, A 8.8 Shetty, V 38 Siefert, J 6.6 Sone, C 122, 134 Sheyko, S 69 Siemers, C 48 Smaglik, N 9.5116 Shiada, R 99 Sietins, J 96 Smathers, D 98 Shibata, R 99 Sietins, J 96 Smilauerova, J 62 Shibata, N 35 Sievers, D 61 Smilauerova, J 62 Shit, D 30 Sigmon, G 67 Smilauerova, J 62 Shit, M 83 Sikder, P 69, 125 Smith, A 17, 70, 72, 108 Shit, M 85 Sikora, B 133 Smith, A 17, 70, 72, 108 Shit, M 13 Sikora, B 133 Smith, A 17, 70, 72, 108 Shit, M 12 Sikorsk, B 99, 125 Smith, A 17, 70, 72, 108 Shit, Pount, Y 27 Sikorsk, B 99, 125 Smith, G 67 Shit, Pount, M | Sherman, A | Siddique, I | Skinn, B 55, 74, 79, 102, 121, 134 | | Shetty, V | Sherman, S | Sidhu, S | Skoglund, P 57, 80 | | Sheylo, S | Shetty, P | Siedlecki, C 50 | Slager, A | | Sheylo, S | Shetty, V | Siefert, J | Slone, C | | Shiabata K. 99 Sietins J. 96 Smeltzer, J. 98 Shibata K. 99 Sietins J. 96 Smeltzer, J. 98 Shibata, N. 35 Sievers, D. 61 Smilauerova, J. 62 Shi, D. 30 Sigmon, G. 67 Smilauerova, J. 62 Shi, P. 92 Sikan, F. 140 Smith, G. 67 Smilauerova, J. 62 Shi, J. 43, 62, 82, 105, 113 Sikora, B. 135 Smith, G. 67 | | | | | Shibata, K. 99 Sieturs, J. 96 Smeltzer, J. 98 Shibata, N. 35 Sievers, D. 61 Smilauerovā, J. 62 Shi, D. 30 Sigmon, G. 67 Smilauerovā, J. 62 Shi, A. 92 Sikan, F. 140 Smith, A. 1.7,70,72, 108 Shi, J. 43,62,82,105,131 Sikora, B. 135 Smith, J. 136 Shi, K. 120 Sikora, B. 82 Smith, I. 53,28,50,67,69,90,138 Shik, P. 127 Sikorsky, M. 107 Smith, P. 121 Shik, V. 127 Sikorsky, M. 107 Smith, P. 121 Shin, D. 67,71,115 Siligardi, C. 123,131 Snow, Z. 1,7 Shin, J. 60 Silvestri, A. 101 Soboley, K. 87 Shin, J. 65 Sima, F. 1,7 Soboyejo, W. 93 Shin, S. 86,117 Simpson, M. 27,107 Sohmshetty, R. 41 | | |
 | Shibata, N. 35 Sievers, D. 61 Smilauerova, J. 62 Shi, D. 30 Sigmon, G. 67 Smiluerová, J. 62 Shigeta, Y. 92 Sikan, F. 140 smith, G. 67 Shi, J. 43, 62, 82, 105, 131 Sikora, B. 135 Smith, G. 67 Shi, P. 436, 28, 2105, 131 Sikorak, B. 135 Smith, J. 136 Shi, P. 43, 62, 82, 105, 131 Sikorsk, B. 82 Smith, J. 59 Shik Pyoun, Y. 2.72 Sikorsk, B. 89 Smith, J. 59 Shik Pyoun, Y. 1.27 Sikorsk, B. 89 Smith, N. 23, 28, 50, 67, 69, 90, 138 Shik Pyoun, Y. 1.27 Sikorsk, B. 89 Smith, N. 23, 28, 50, 67, 69, 90, 138 Shik Pyoun, Y. 1.27 Sikorsk, B. 89 Smith, N. 20 30 Smith, N. 20 30 Smith, N. 20 30 Smith, N. 20 30 Smith, N. 20 Smith, N. | | | | | Shi, D | | | | | Shight, M | Shi, D | | | | Shih, M. 8.3 Sikder, P. 6.9, 125 Smith, G. 6.7 Shi, J. 43, 62, 82, 105, 131 Sikora, B. 135 Smith, J. 1.36 Shi, K. 120 Sikora, B. 82 Smith, J. 5.0 Shik, Pyoun, Y. 2.7 Sikorski, E. 89 Smith, N. 23, 28, 50, 67, 69, 90, 138 Shilo, V. 127 Sikorski, E. 89 Smith, N. 23, 28, 50, 67, 69, 90, 138 Shilo, C. 141 Silager, A. 60 Smith, N. 23, 28, 50, 67, 69, 90, 138 Shin, D. 67,71, 115 Siligardi, C. 123, 31 Snow, Z. 17 Shin, B. 67,71, 115 Siliyardi, C. 123, 31 Snow, Z. 38, 55, 74, 91, 100 Shin, B. 60 Silvestri, A. 101 Sobolev, K. 87 Shin, J. 96 Simate, G. 55, 74 Soderlind, J. 44 Shin, S. 86, 117 Simpson, M. 27, 107 Sohmshetty, R. 41 Shin, Y. 37, 87 Simpson, M. <td></td> <td>e</td> <td></td> | | e | | | Shi, J. 43, 62, 82, 105, 131 Sikora, B. 135 Smith, J. 136 Shi, K. 120 Sikora, E. 82 Smith, P. 159 Shi, K. 120 Sikora, E. 89 Smith, N. 23, 28, 50, 67, 69, 90, 138 Shilo, V. 127 Sikorski, E. 89 Smith, N. 23, 28, 50, 67, 69, 90, 138 Shilo, V. 127 Sikorsky, M. 107 Smith, P. 121 Shin, C. 141 Silaen, A. 60 Smith, P. 121 Shin, C. 141 Silaen, A. 60 Smith, P. 121 Shin, D. 67, 71, 115 Siligardi, C. 123, 131 Snow, Z. 17 Shingledecker, J. 71, 111 Siva Santisteban, T. 28 Snow, Z. 17 Shingledecker, J. 71, 111 Siva Santisteban, T. 28 Snow, Z. 38, 55, 74, 79, 100 Shin, M. 101 Sobolev, K. 87 Shin, J. 96 Simate, G. 55, 74 Soboyejo, W. 93 Shinomiya, Y. 66 Simoni, F. 17 Soderlind, J. 140 Shin, S. 86, 117 Simpson, M. 27, 107 Sohmshetty, R. 4. 41 Shin, Y. 37, 87 Simpson, T. 15 Solanki, K. 105, 106 Shipilov, S. 44, 55 Sims, C. 136 Solanki, K. 105, 106 Shipilov, S. 44, 55 Sims, C. 136 Solanki, K. 105, 106 Shirlaw, T. 67 Sinagra, B. 35 Solomon, C. 74, 77, 78, 119 Shir, X. 101 Singh, A. 60, 99 Soma, P. 126 Shishin, D. 51 Singh, B. 133 Singh, C. 33, 91 Sonawandaram, A. 119 Shi, X. 101 Singh, G. 43, 62, 82, 105, 131 Song, B. 19 Shi, X. 101 Singh, G. 43, 62, 82, 105, 131 Song, B. 19 Shi, X. 101 Singh, G. 43, 62, 82, 105, 131 Song, B. 19 Shi, X. 101 Singh, M. 15, 35, 56, 74, 119, 133 Song, J. 23, 44, 63, 73, 97, 106, 117, 138, 136, 144 Shopl, T. 130 Singh, N. 46, 114, 139 Song, F. 144 Shopl, T. 130 Singh, N. 46, 114, 139 Song, J. 23, 44, 63, 73, 97, 106, 117, 138, 136, 144, 145 Singh, V. 79, 90, R. 40 Shoulders, W. 53 Singh, R. 19, 25 Singh, R. 19, 25 Song, R. 40 Shoulders, W. 53 Singh, V. 79, 90, R. 40 Shoulders, W. 53 Singh, V. 79, 90, R. 40 Shoulders, W. 53 Singh, V. 19, 22, 81, 90, R. 40 Shoulders, W. 53 Singh, R. 15, 17, 35, 56, 74, 61, 61 Sisson, R. 15, 17, 35, 56, 74, 61, 61 Sisson, R. 15, 17, 35, 56, 74, 61, 61 Sisson, R. 15, 17, 35, 56, 74, 61, 61 Sisson, R. 15, 17, 35, 56, 74, 61, 61 Sisson, R. 15, 17, 35, 56, 74, 61, 61 Sisson, R. 15, 17, 35, 56, 74, 61, 61 Sisson, R. 15, 17, 35, 56, 74, 61, 61 Sisson, R. 15, 17, 35, 56, 74, 61, | | | | | Shi, K 120 Sikora, E 82 Smith, L 59 Shik Pyoun, Y 27 Sikorski, E 89 Smith, D 2,32,85,67,679,90,138 Shilo, V 127 Sikorsky, M 107 Smith, P 121 Shin, C 141 Sillaen, A 60 Smith, P 121 Shin, D 67,71,115 Silligardi, C 123,131 Snow, Z 17 Shin, B 60 Silvestri, A 101 Sobolev, K 87 Shin, H 60 Silmet, G 5,74 Sobolev, K 87 Shin, J 96 Simate, G 5,74 Sobolev, K 87 Shin, S 86,117 Simpson, T 17 Soderlind, J 140 Shin, S 86,117 Simpson, T 15 Sohn, Y 16,38,39,51,58,94,118 Shi, P 68 Sims, C 136 Soliak, K 10 Shi, R 22,24,3,81 Sims, D 50 Soliak, K 10 Shiraw, T 67 | | | | | Shik Pyoun, Y 27 Sikorski, E. 89 mith, N. 23, 28, 50, 67, 69, 90, 138 Shilo, V 127 Sikorsky, M. 107 Smith, P. 121 Shin, D. 67, 71, 115 Siligardi, C. 123, 131 Smit, M. 76 Shin, D. 67, 71, 115 Siliya Santisteban, T. 28 Snyder, S. 38, 55, 74, 79, 100 Shin, H. 60 Silvestri, A. 101 Soboley, K. 87 Shin, J. 96 Simate, G. 55, 74 Soboley, K. 87 Shin, Y. 65 Simoni, F. 17 Soboley, K. 87 Shin, Y. 37, 87 Simpson, M. 27, 107 Sohmshetty, R. 41 Shi, Y. 37, 87 Simpson, T. 15 Sohn, Y. 16, 38, 39, 51, 58, 94, 118 Shi, P. 68 Sims, C. 136 Sohnki, K. 10, 106 Shirawa, T. 68 Sims, C. 136 Solarki, K. 10 Shirawa, T. 67 Singh, B. 33 Soliemani- | | | | | Shilo, V 127 Sikorsky, M 107 smith, P 121 Shin, C 141 Silaen, A 60 Smit, M 76 Shin, D 67,71,115 Siligardi, C 123,131 Smow, Z 17 Shin, H 60 Silvestri, A 101 Soboley, K 87 Shin, J 96 Simate, G 55,74 Soboeyjo, W 93 Shinomiya, Y 65 Simoni, F 17 Soderlind, J 140 Shin, S 86, 117 Simpson, M 27,107 Sohn, Y 16, 38, 39, 51, 58, 94, 118 Shi, P 68 Sims, C 136 Solanki, K 105, 106 Shipilov, S 44, 55 Sims, Z 70 Soleimani-Dorcheh, A 127 Shiraiwa, T 67 Singara, B 35 Solomon, C 74, 77, 78, 119 Shiraiwa, T 67 Singh, A 60, 99 Soman, P 126 Shishin, D 51 Sigh, B 133 Somaratna, S 37 Shi, | | | | | Shin, C 141 Silaen, Å 60 Smit, M 76 Shin, D 67,71, 115 Siligard, C 123, 131 Snow, Z 17 Shingledecker, J 7,1, 111 Silva Santisteban, T 28 Snow, Z 38, 55, 74, 79, 100 Shin, H 60 Silvestri, A 101 Sobolev, K 87 Shin, J 96 Simate, G 55, 74 Sobolyejo, W 93 Shinomiya, Y 65 Simoni, F 17 Sobolev, K 87 Shin, S 86, 117 Simpson, M 27, 107 Sobmshetty, R 41 Shin, Y 37, 87 Simpson, M 27, 107 Sohnshetty, R 41 Shi, P 68 Sims, C 136 Solanki, K 105, 106 Shipilow, S 444, 55 Sims, J 76 Solis-Barvo, G 16, 19 Shirawa, T 67 Singh, A 60, 99 Soloman, P 126 Shirawa, T 167 Singh, B 133 Somaratna, S 37 | • | | | | Shin, D 67, 71, 115 Siligardi, C 123, 131 Snow, Z 17 Shingledecker, J 71, 111 Silva Santisteban, T 2.8 Snyder, S 38, 55, 74, 79, 100 Shin, J .96 Silwate, G .57, 74 Sobolev, K .87 Shin, J .96 Simate, G .57, 74 Soboyejo, W .93 Shinomiya, Y .65 Simoni, F .17 Soderlind, J .140 Shin, S .86, 117 Simpson, M .27, 107 Soderlind, J .140 Shin, S .86, 117 Simpson, M .27, 107 Soderlind, J .140 Shin, S .86, 117 Simpson, M .27, 107 Soderlind, J .140 Shin, S .86, 187 Simpson, T .15 Sohn, Y .16, 38, 39, 51, 58, 94, 118 Shi, P .68 Sims, C .136 Solanki, K .105, 106 Shiploy, S .44, 55 Sims, J .76 Solis-Bravo, G .16, 19 Shiploy, S .44, 55 Sims, L .60, 99 | | | | | Shingledecker, J 71, 111 Silva Santisteban, T 28 Snyder, S 38, 55, 74, 79, 100 Shin, H 60 Silvestri, A 101 Soboleve, K 87 Shin, J 96 Simate, G 55, 74 Soboyejo, W 93 Shinnomiya, Y 65 Simpson, M 27, 107 Soderlind, J 140 Shin, S 86, 117 Simpson, M 27, 107 Sohmshetty, R 41 Shin, Y 37, 87 Simpson, T 15 Sohn, Y 16, 38, 39, 51, 58, 94, 118 Shi, P 68 Sims, C 136 Solanki, K 105, 106 Shiplov, S 44, 55 Sims, J 76 Soleimani-Dorcheh, A 127 Shiraiwa, T 67 Sinagra, B 35 Solomon, C 74, 77, 81119 Shirley, K 65 Singh, A 60, 99 Somar, P 126 Shishin, D 51 Singh, B 133 Somg, B 19 Shi, X 101 Singh, G 43, 62, 82, 105, 131 Song, B | | | | | Shin, H 60 Silvestri, A 101 Soboley, K 87 Shin, J 96 Simate, G 55, 74 Soboyejo, W 93 Shinomiya, Y 65 Simoni, F 17 Soderlind, J 110 Shin, S 86, 117 Simpson, M 27, 107 Sohmshetty, R 41 Shin, Y 37, 87 Simpson, T 15 Sohn, Y 16, 38, 39, 51, 58, 94, 118 Shi, P 68 Sims, C 136 Solanki, K 105, 106 Shipilov, S 44, 55 Sims, Z 70 Soliemani-Dorcheh, A 127 Shirley, K 67 Sinagra, B 35 Solomon, C 74, 77, 78, 119 Shirley, K 65 Singh, A 609, 99 Somar, P 126 Shishin, D 51 Singh, B 133 Solomon, C 74, 77, 78, 119 Shi, X 101 Singh, G 43, 62, 82, 105, 131 Soma, P 126 Shi, X 101 Singh, G 43, 62, 82, 105, 131 Song, B 19 | | | | | Shin, J. 96 Simate, G 55, 74 Soboyejo, W 93 Shinomiya, Y 65 Simoni, F 17 Soderlind, J 140 Shin, S 86,117 Simpson, M 27, 107 Sohmshetty, R 41 Shin, Y 37, 87 Simpson, T 15 Sohn, Y 16, 38, 39, 51, 58, 94, 118 Shi, P 68 Sims, C 136 Solanki, K 105, 106 Shipilov, S 44, 55 Sims, C 136 Solanki, K 105, 106 Shiraiwa, T 67 Sinagra, B 35 Solomon, C 74, 77, 78, 119 Shirshin, D 51 Singh, B 33 Somaratna, S 37 Shi, X 101 Singh, G 33, 91 Somaratna, S 37 Shi, Y 45, 54 Singh, G 34, 62, 82, 105, 131 Song, B 19 Shi, Y 45, 54 Singh, M 15, 35, 56, 74, 119, 133 Song, B 19 Shobu, T 100 Singh, M 15, 35, 56, 74, 119, 133 Song, G < | | | | | Shinomiya, Y 65 Simoni, F 17 Soderlind, J 140 Shin, S 86, 117 Simpson, M 27, 107 Sohmshetty, R 41 Shin, Y 37, 87 Simpson, T 15 Sohn, Y 16, 38, 39, 51, 58, 94, 118 Shi, P 68 Sims, C 136 Solanki, K 105, 106 Shipilov, S 44, 55 Sims, J 76 Soleimani-Dorcheh, A 127 Shi, R 22, 43, 81 Sims, Z 70 Solis-Bravo, G 16, 19 Shiraiwa, T 67 Sinagra, B 35 Solomon, C 74, 77, 78, 119 Shiraiwa, T 67 Singh, A 60, 99 Soman, P 126 Shishin, D 51 Singh, B 133 Somaratna, S 37 Shi, X 123 Singh, C 33, 91 Somasundaram, A 119 Shi, Y 45, 54 Singh, G 43, 62, 82, 105, 131 Song, E 44 Shi, Y 45 Singh, S 46, 414, 131 Song, G 32, 52, 53, | | | | | Shin, S. 86, 117 Simpson, M 27, 107 Sohmshetty, R 41 Shin, Y 37, 87 Simpson, T 15 Sohn, Y 16, 38, 39, 51, 58, 94, 118 Shi, P 68 Sims, C 136 Solanki, K 105, 106 Shipilov, S 44, 55 Sims, J 76 Soleimani-Dorcheh, A 127 Shi, R 22, 43, 81 Sims, Z 70 Solis-Bravo, G 16, 19 Shiralwa, T 67 Sinagra, B 35 Solomon, C 74, 77, 78, 119 Shirley, K 65 Singh, A 60, 99 Soman, P 126 Shishin, D 51 Singh, B 133 Somaratna, S 37 shi, X 101 Singh, G 43, 62, 82, 105, 131 Song, B 19 Shi, X 45, 54 Singh, B 43, 62, 82, 105, 131 Song, B 19 Shi, Y 45, 54 Singh, B 43, 62, 82, 105, 131 Song, B 19 Shi, Y 45, 54 Singh, B 14, 13, 132 Song, B | | | • • | | Shin, Y 37, 87 Simpson, T 15 Sohn, Y 16, 38, 39, 51, 58, 94, 118 Ship, P 68 Sims, C 136 Solanki, K 105, 106 Shipilov, S 44, 55 Sims, J 76 Soleimani-Dorcheh, A 127 Shi, R 22, 43, 81 Sims, Z 70 Solis-Bravo, G 16, 19 Shiraiwa, T 67 Sinagra, B 35 Solomon, C 74, 77, 78, 119 Shiraiwa, T 65 Singh, A 60, 99 Soman, P 126 Shishin, D 51 Singh, B 133 Somaratna, S 37 Shi, X 101 Singh, G 43, 62, 82, 105, 131 Somasundaram, A 1119 Shi, X 101 Singh, G 43,
62, 82, 105, 131 Song, B 19 Shi, Y 45, 54 Singh, J 24, 25, 46, 47, 64, 131, 132 Song, B 19 Sho, Y 45, 54 Singh, M 15, 35, 56, 74, 119, 133 Song, B 19 Shoesmith, D 38, 71 Singh, N 46, 114, 139 | | | | | Shi, P. 68 Sims, C. 136 Solanki, K. 105, 106 Shipilov, S. 44, 55 Sims, J. 76 Soleimani-Dorcheh, A. 127 Shi, R. 22, 43, 81 Sims, Z. 70 Solis-Bravo, G. 16, 19 Shiraiwa, T. 67 Sinagra, B. 35 Solomon, C. 74, 77, 78, 119 Shiraiwa, T. 65 Singh, B. 35 Solomon, C. 74, 77, 78, 119 Shiraiwa, T. 65 Singh, B. 33 Soloman, P. 126 Shishin, D. 51 Singh, B. 133 Somaratna, S. 37 shi, X. 101 Singh, G. 43, 62, 82, 105, 131 Song, B. 19 Shi, Y. 45, 54 Singh, G. 43, 62, 82, 105, 131 Song, B. 19 Shi, Y. 455, 44 Singh, G. 43, 62, 82, 105, 131 Song, B. 19 Shi, Y. 455, 45 Singh, J. 24, 25, 46, 47, 64, 131, 132 Song, G. 32, 52, 53, 71, 132 Shobu, T. 100 Singh, M. < | | | | | Shipilov, S. 44, 55 Sims, J. 76 Soleimani-Dorcheh, A. 127 Shi, R. 22, 43, 81 Sims, Z. 70 Solis-Bravo, G. 16, 19 Shiraiwa, T. 67 Sinagra, B. 35 Solomon, C. 74, 77, 78, 119 Shirley, K. 65 Singh, A. 60, 99 Soman, P. 126 Shishin, D. 51 Singh, B. 133 Somaratna, S. 37 shi, x. 123 Singh, C. 33, 91 Somasundaram, A. 119 Shi, X. 101 Singh, G. 43, 62, 82, 105, 131 Song, B. 19 Shi, Y. 45, 54 Singh, J. 24, 25, 46, 47, 64, 131, 132 Song, G. 32, 52, 53, 71, 132 Shobu, T. 100 Singh, M. 15, 35, 56, 74, 119, 133 Song, G. 32, 52, 53, 71, 132 Shoesmith, D. 38, 71 Singh, N. 46, 114, 139 Song, J. 23, 44, 63, 73, 97, 106, 117, 138, Shoji, H. 48 Singh, R. 19, 25 Song, M. 82, 137 Shope, C. 139 Singh, S. 114 Song, N. 88 Sho | | | | | Shi, R. 22, 43, 81 Sims, Z 70 Solis-Bravo, G 16, 19 Shiraiwa, T 67 Sinagra, B 35 Solomon, C 74, 77, 78, 119 Shirley, K 65 Singh, A 60, 99 Soman, P 126 Shishin, D 51 Singh, B 133 Somaratna, S 37 shi, X 123 Singh, C 33, 91 Somasundaram, A 1119 Shi, X 101 Singh, G 43, 62, 82, 105, 131 Song, B 19 Shi, Y 45, 54 Singh, G 43, 62, 82, 105, 131 Song, B 19 Sho, Y 45, 54 Singh, G 43, 62, 82, 105, 131 Song, B 19 Sho, Y 45, 54 Singh, G 43, 62, 82, 105, 131 Song, B 19 Sho, Y 45, 54 Singh, G 43, 62, 82, 105, 131 Song, B 19 Shobu, T 100 Singh, M 15, 35, 56, 74, 119, 133 Song, B 19 Shobu, T 100 Singh, M 15, 35, 56, 74, 119, 133 Song, | | | | | Shiraiwa, T 67 Sinagra, B 35 Solomon, C 74, 77, 78, 119 Shirley, K 65 Singh, A 60, 99 Soman, P 126 Shishin, D 51 Singh, B 133 Somaratna, S 37 shi, x 123 Singh, C 33, 91 Somasundaram, A 119 Shi, X 101 Singh, G 43, 62, 82, 105, 131 Song, B 19 Shi, Y 45, 54 Singh, J 24, 25, 46, 47, 64, 131, 132 Song, B 19 Shi, Z 112 Singh, J 24, 25, 46, 47, 64, 131, 132 Song, G 32, 52, 53, 71, 132 Shobu, T 100 Singh, M 15, 35, 56, 74, 119, 133 Song, H 75, 135, 137 Shoesmith, D 38, 71 Singh, N 46, 114, 139 Song, J 23, 44, 63, 73, 97, 106, 117, 138, 137 Shoi, H 48 Singh, P 138 141 Shokuhfar, T 30 Singh, R 19, 25 Song, M 82, 137 Shope, C 139 Singh, S 114 Song, N 88 Shortland, A 80 Singh, Y 7 | | | | | Shirley, K 65 Singh, A 60, 99 Soman, P 126 Shishin, D 51 Singh, B 133 Somaratna, S 37 shi, x 123 Singh, C 33, 91 Somasundaram, A 119 Shi, X 101 Singh, G 43, 62, 82, 105, 131 Song, B 19 Shi, Y 45, 54 Singh, J 24, 25, 46, 47, 64, 131, 132 Song, E 44 Shi, Z 112 Singh, K 46 Song, G 32, 52, 53, 71, 132 Shobu, T 100 Singh, M 15, 35, 56, 74, 119, 133 Song, H 75, 135, 137 Shoesmith, D 38, 71 Singh, N 46, 114, 139 Song, J 23, 44, 63, 73, 97, 106, 117, 138, 137 Shoye, C 139 Singh, R 19, 25 Song, M 82, 137 Shortland, A 80 Singh, V 79 Song, R 40 Shoulders, T 42 Singh, Y 47 Song, W 64 Shoulder, W 53 Sinnott, S 130, 140 Song, Y <td></td> <td></td> <td></td> | | | | | Shishin, D. 51 Singh, B 133 Somaratna, S 37 shi, x 123 Singh, C 33,91 Somasundaram, A 119 Shi, X 101 Singh, G 43,62,82,105,131 Song, B 19 Shi, Y 45,54 Singh, J 24,25,46,47,64,131,132 Song, E 44 Shi, Z 112 Singh, M 15,35,56,74,119,133 Song, G 32,52,53,71,132 Shobu, T 100 Singh, M 15,35,56,74,119,133 Song, H 75,135,137 Shoesmith, D 38,71 Singh, N 46,114,139 Song, J 23,44,63,73,97,106,117,138, Shoji, H 48 Singh, P 138 Song, M 82,137 Showlaffar, T 30 Singh, R 19,25 Song, M 82,137 Shope, C 139 Singh, S 114 Song, N 88 Shortland, A 80 Singh, Y 79 Song, R 40 Shoulders, T 42 Singh, Y 47 Song, W 64 Shoulder, W 53 Sinnott, S 130,140 Song, Y | | • | | | shi, x 123 Singh, C 33, 91 Somasundaram, A 119 Shi, X 101 Singh, G 43, 62, 82, 105, 131 Song, B 19 Shi, Y 45, 54 Singh, J 24, 25, 46, 47, 64, 131, 132 Song, E 44 Shi, Z 112 Singh, K 46 Song, G 32, 52, 53, 71, 132 Shobu, T 100 Singh, M 15, 35, 56, 74, 119, 133 Song, H 75, 135, 137 Shoesmith, D 38, 71 Singh, N 46, 114, 139 Song, J. 23, 44, 63, 73, 97, 106, 117, 138, Shoji, H 48 Singh, P 138 141 Shokuhfar, T 30 Singh, R 19, 25 Song, M 82, 137 Shope, C 139 Singh, S 114 Song, N 88 Shortland, A 80 Singh, V 79 Song, R 40 Shoulders, T 42 Singh, Y 47 Song, W 64 Shoulder, W 43 Sinha, V 19, 22, 81, 99 Song, X 15, 78, 79 Shoulder, W 53 Sinnott, S 130, 140 Song, Y 12 | | | | | Shi, X 101 Singh, G 43, 62, 82, 105, 131 Song, B 19 Shi, Y 45, 54 Singh, J 24, 25, 46, 47, 64, 131, 132 Song, E 44 Shi, Z 112 Singh, K 46 Song, G 32, 52, 53, 71, 132 Shobu, T 100 Singh, M 15, 35, 56, 74, 119, 133 Song, H 75, 135, 137 Shoesmith, D 38, 71 Singh, N 46, 114, 139 Song, J .23, 44, 63, 73, 97, 106, 117, 138, 137 Shoji, H 48 Singh, P 138 141 Shokuhfar, T 30 Singh, R 19, 25 Song, M 82, 137 Shope, C 139 Singh, S 114 Song, N 88 Shortland, A 80 Singh, V 79 Song, R 40 Shoulders, T 42 Singh, Y 47 Song, W 64 Shoulders, W 42 Sinha, V 19, 22, 81, 99 Song, X 15, 78, 79 Shoulder, W 53 Sinnott, S 130, 140 Song, Y 121 Shower, P 115 Sisken, L 21 Son, H | | | | | Shi, Y. 45, 54 Singh, J. 24, 25, 46, 47, 64, 131, 132 Song, E. 44 Shi, Z. 112 Singh, K. 46 Song, G. 32, 52, 53, 71, 132 Shobu, T. 100 Singh, M. 15, 35, 56, 74, 119, 133 Song, H. 75, 135, 137 Shoesmith, D. 38, 71 Singh, N. 46, 114, 139 Song, J. 23, 44, 63, 73, 97, 106, 117, 138, Shoji, H. 48 Singh, P. 138 141 Shokuhfar, T. 30 Singh, R. 19, 25 Song, M. 82, 137 Shope, C. 139 Singh, S. 114 Song, N. 88 Shortland, A. 80 Singh, V. 79 Song, R. 40 Shoulders, T. 42 Singh, Y. 47 Song, W. 64 Shoulders, W. 42 Sinha, V. 19, 22, 81, 99 Song, X. 15, 78, 79 Shoulder, W. 53 Sinnott, S. 130, 140 Song, Y. 121 Shower, P. 115 Sisken, L. 21 Son, H. 129, 130 Shrestha, S. 57, 81 Siskey, R. 35< | | | | | Shi, Z. 112 Singh, K 46 Song, G 32, 52, 53, 71, 132 Shobu, T. 100 Singh, M 15, 35, 56, 74, 119, 133 Song, H 75, 135, 137 Shoesmith, D 38, 71 Singh, N 46, 114, 139 Song, J. 23, 44, 63, 73, 97, 106, 117, 138, Shoji, H 48 Singh, P 138 141 Shokuhfar, T 30 Singh, R 19, 25 Song, M 82, 137 Shope, C 139 Singh, S 114 Song, N 88 Shortland, A 80 Singh, Y 79 Song, R 40 Shoulders, T 42 Singh, Y 47 Song, W 64 Shoulders, W 42 Sinha, V 19, 22, 81, 99 Song, X 15, 78, 79 Shoulder, W 53 Sinnott, S 130, 140 Song, Y 121 Shower, P 115 Sisken, L 21 Son, H 129, 130 Shrestha, S 57, 81 Siskey, R 35 Sorescu, D 67, 86 Shugart Cissel, K 61 Sisson, R 15, 17, 35, 56, 74, 96, 133 Sorour, A | Shi, X | Singh, G 43, 62, 82, 105, 131 | Song, B | | Shobu, T. 100 Singh, M. 15, 35, 56, 74, 119, 133 Song, H. 75, 135, 137 Shoesmith, D. 38, 71 Singh, N. 46, 114, 139 Song, J23, 44, 63, 73, 97, 106, 117, 138, Shoji, H. 48 Singh, P. 138 141 Shokuhfar, T. 30 Singh, R. 19, 25 Song, M. 82, 137 Shope, C. 139 Singh, S. 114 Song, N. 88 Shortland, A. 80 Singh, V. 79 Song, R. 40 Shoulders, T. 42 Singh, V. 47 Song, W. 64 Shoulders, W. 42 Sinha, V. 19, 22, 81, 99 Song, X. 15, 78, 79 Shoulder, W. 53 Sinnott, S. 130, 140 Song, Y. 121 Shower, P. 115 Sisken, L. 21 Son, H. 129, 130 Shrestha, S. 57, 81 Siskey, R. 35 Sorescu, D. 67, 86 Shugart Cissel, K. 61 Sisson, R. 15, 17, 35, 56, 74, 96, 133 Sorour, A. 95 Shulman, H. 68 Sitko, M. 139 | Shi, Y | Singh, J 24, 25, 46, 47, 64, 131, 132 | | | Shobu, T. 100 Singh, M. 15, 35, 56, 74, 119, 133 Song, H. 75, 135, 137 Shoesmith, D. 38, 71 Singh, N. 46, 114, 139 Song, J23, 44, 63, 73, 97, 106, 117, 138, Shoji, H. 48 Singh, P. 138 141 Shokuhfar, T. 30 Singh, R. 19, 25 Song, M. 82, 137 Shope, C. 139 Singh, S. 114 Song, N. 88 Shortland, A. 80 Singh, V. 79 Song, R. 40 Shoulders, T. 42 Singh, V. 47 Song, W. 64 Shoulders, W. 42 Sinha, V. 19, 22, 81, 99 Song, X. 15, 78, 79 Shoulder, W. 53 Sinnott, S. 130, 140 Song, Y. 121 Shower, P. 115 Sisken, L. 21 Son, H. 129, 130 Shrestha, S. 57, 81 Siskey, R. 35 Sorescu, D. 67, 86 Shugart Cissel, K. 61 Sisson, R. 15, 17, 35, 56, 74, 96, 133 Sorour, A. 95 Shulman, H. 68 Sitko, M. 139 | Shi, Z112 | Singh, K | Song, G 32, 52, 53, 71, 132 | | Shoji, H. 48 Singh, P. 138 141 Shokuhfar, T. 30 Singh, R. 19, 25 Song, M. 82, 137 Shope, C. 139 Singh, S. 114 Song, N. 88 Shortland, A. 80 Singh, V. 79 Song, R. 40 Shoulders, T. 42 Singh, Y. 47 Song, W. 64 Shoulders, W. 42 Sinha, V. 19, 22, 81, 99 Song, X. 15, 78, 79 Shoulder, W. 53 Sinnott, S. 130, 140 Song, Y. 121 Shower, P. 115 Sisken, L. 21 Son, H. 129, 130 Shrestha, S. 57, 81 Siskey, R. 35 Sorescu, D. 67, 86 Shugart Cissel, K. 61 Sisson, R. 15, 17, 35, 56, 74, 96, 133 Sorour, A. 95 Shulman, H. 68 Sitko, M. 139 Sorte, E. 28 Shumeyko, C. 46, 83 Sitthichan, P. 138 Sothornvit, R. 137 Shu, S. 49 Sivak, M. 137 Soulami, A. 138 | | Singh, M 15, 35, 56, 74, 119, 133 | Song, H | | Shoji, H. 48 Singh, P. 138 141 Shokuhfar, T. 30 Singh, R. 19, 25 Song, M. 82, 137 Shope, C. 139 Singh, S. 114 Song, N. 88 Shortland, A. 80 Singh, V. 79 Song, R. 40 Shoulders, T. 42 Singh, Y. 47 Song, W. 64 Shoulders, W. 42 Sinha, V. 19, 22, 81, 99 Song, X. 15, 78, 79 Shoulder, W. 53 Sinnott, S. 130, 140 Song, Y. 121 Shower, P. 115 Sisken, L. 21 Son, H. 129, 130 Shrestha, S. 57, 81 Siskey, R. 35 Sorescu, D. 67, 86 Shugart Cissel, K. 61 Sisson, R. 15, 17, 35, 56, 74, 96, 133 Sorour, A. 95 Shulman, H. 68 Sitko, M. 139 Sorte, E. 28 Shumeyko, C. 46, 83 Sitthichan, P. 138 Sothornvit, R. 137 Shu, S. 49 Sivak, M. 137 Soulami, A. 138 | Shoesmith, D | Singh, N 46, 114, 139 | Song, J23, 44, 63, 73, 97, 106, 117, 138, | | Shokuhfar, T. 30 Singh, R 19, 25 Song, M 82, 137 Shope, C. 139 Singh, S. 114 Song, N. 88 Shortland, A. 80 Singh, V. 79 Song, R. 40 Shoulders, T. 42 Singh, Y. 47 Song,
W. 64 Shoulders, W. 42 Sinha, V. 19, 22, 81, 99 Song, X. 15, 78, 79 Shoulder, W. 53 Sinnott, S. 130, 140 Song, Y. 121 Shower, P. 115 Sisken, L. 21 Son, H. 129, 130 Shrestha, S. 57, 81 Siskey, R. 35 Sorescu, D. 67, 86 Shugart Cissel, K. 61 Sisson, R. 15, 17, 35, 56, 74, 96, 133 Sorour, A. 95 Shulman, H. 68 Sitko, M. 139 Sorte, E. 28 Shumeyko, C. 46, 83 Sitthichan, P. 138 Sothornvit, R. 137 Shu, S. 49 Sivak, M. 137 Soulami, A. 138 | Shoji, H | • | | | Shope, C. 139 Singh, S. 114 Song, N. 88 Shortland, A. 80 Singh, V. 79 Song, R. 40 Shoulders, T. 42 Singh, Y. 47 Song, W. 64 Shoulders, W. 42 Sinha, V. 19, 22, 81, 99 Song, X. 15, 78, 79 Shoulder, W. 53 Sinnott, S. 130, 140 Song, Y. 121 Shower, P. 115 Sisken, L. 21 Son, H. 129, 130 Shrestha, S. 57, 81 Siskey, R. 35 Sorescu, D. 67, 86 Shugart Cissel, K. 61 Sisson, R. 15, 17, 35, 56, 74, 96, 133 Sorour, A. 95 Shulman, H. 68 Sitko, M. 139 Sorte, E. 28 Shumeyko, C. 46, 83 Sitthichan, P. 138 Sothornvit, R. 137 Shu, S. 49 Sivak, M. 137 Soulami, A. 138 | | | Song, M | | Shortland, A. 80 Singh, V. 79 Song, R. 40 Shoulders, T. 42 Singh, Y. 47 Song, W. 64 Shoulders, W. 42 Sinha, V. 19, 22, 81, 99 Song, X. 15, 78, 79 Shoulder, W. 53 Sinnott, S. 130, 140 Song, Y. 121 Shower, P. 115 Sisken, L. 21 Son, H. 129, 130 Shrestha, S. 57, 81 Siskey, R. 35 Sorescu, D. 67, 86 Shugart Cissel, K. 61 Sisson, R. 15, 17, 35, 56, 74, 96, 133 Sorour, A. 95 Shulman, H. 68 Sitko, M. 139 Sorte, E. 28 Shumeyko, C. 46, 83 Sitthichan, P. 138 Sothornvit, R. 137 Shu, S. 49 Sivak, M. 137 Soulami, A. 138 | | • | • | | Shoulders, T. 42 Singh, Y 47 Song, W 64 Shoulders, W 42 Sinha, V 19, 22, 81, 99 Song, X 15, 78, 79 Shoulder, W 53 Sinnott, S 130, 140 Song, Y 121 Shower, P 115 Sisken, L 21 Son, H 129, 130 Shrestha, S 57, 81 Siskey, R 35 Sorescu, D 67, 86 Shugart Cissel, K 61 Sisson, R 15, 17, 35, 56, 74, 96, 133 Sorour, A 95 Shulman, H 68 Sitko, M 139 Sorte, E 28 Shumeyko, C 46, 83 Sitthichan, P 138 Sothornvit, R 137 Shu, S 49 Sivak, M 137 Soulami, A 138 | | = | • | | Shoulders, W 42 Sinha, V 19, 22, 81, 99 Song, X 15, 78, 79 Shoulder, W 53 Sinnott, S 130, 140 Song, Y 121 Shower, P 115 Sisken, L 21 Son, H 129, 130 Shrestha, S 57, 81 Siskey, R 35 Sorescu, D 67, 86 Shugart Cissel, K 61 Sisson, R 15, 17, 35, 56, 74, 96, 133 Sorour, A 95 Shulman, H 68 Sitko, M 139 Sorte, E 28 Shumeyko, C 46, 83 Sitthichan, P 138 Sothornvit, R 137 Shu, S 49 Sivak, M 137 Soulami, A 138 | | = | = | | Shoulder, W 53 Sinnott, S 130, 140 Song, Y 121 Shower, P 115 Sisken, L 21 Son, H 129, 130 Shrestha, S 57, 81 Siskey, R 35 Sorescu, D 67, 86 Shugart Cissel, K 61 Sisson, R 15, 17, 35, 56, 74, 96, 133 Sorour, A 95 Shulman, H 68 Sitko, M 139 Sorte, E 28 Shumeyko, C 46, 83 Sitthichan, P 138 Sothornvit, R 137 Shu, S 49 Sivak, M 137 Soulami, A 138 | | | = | | Shower, P 115 Sisken, L 21 Son, H 129, 130 Shrestha, S 57, 81 Siskey, R 35 Sorescu, D 67, 86 Shugart Cissel, K 61 Sisson, R 15, 17, 35, 56, 74, 96, 133 Sorour, A 95 Shulman, H 68 Sitko, M 139 Sorte, E 28 Shumeyko, C 46, 83 Sitthichan, P 138 Sothornvit, R 137 Shu, S 49 Sivak, M 137 Soulami, A 138 | | | | | Shrestha, S 57, 81 Siskey, R 35 Sorescu, D 67, 86 Shugart Cissel, K 61 Sisson, R 15, 17, 35, 56, 74, 96, 133 Sorour, A 95 Shulman, H 68 Sitko, M 139 Sorte, E 28 Shumeyko, C 46, 83 Sitthichan, P 138 Sothornvit, R 137 Shu, S 49 Sivak, M 137 Soulami, A 138 | | | • | | Shugart Cissel, K 61 Sisson, R 15, 17, 35, 56, 74, 96, 133 Sorour, A 95 Shulman, H 68 Sitko, M 139 Sorte, E 28 Shumeyko, C 46, 83 Sitthichan, P 138 Sothornvit, R 137 Shu, S 49 Sivak, M 137 Soulami, A 138 | | | | | Shulman, H 68 Sitko, M 139 Sorte, E 28 Shumeyko, C 46, 83 Sitthichan, P 138 Sothornvit, R 137 Shu, S 49 Sivak, M 137 Soulami, A 138 | | The state of s | | | Shumeyko, C 46, 83 Sitthichan, P 138 Sothornvit, R 137 Shu, S 49 Sivak, M 137 Soulami, A 138 | _ | | | | Shu, S | | | | | | · | _ | | | onyani, A | | | | | | onyam, A | 51vanen, K | Sousa, D | | C D | C4-1 M | C C | |--|-------------------------------------|-------------------------------------| | Spang, D | Stolpe, M | Sun, S | | Spanos, G | Stone, D | Sun, T | | Spearot, D 63, 83, 105, 122 | Stone, H 29, 137 | Sun, W 82, 94, 122 | | Speer, J | Stone, T | Sun, X | | Spencer, E | Stone-Weiss, N 69 | Sun, Y | | Spencer, M | Stopka, K | Suryanarayana, C 90, 111, 139 | | Spierings, A | Storey, A | Susan, D | | Spowart, J 15, 36, 56, 75, 99, 129 | Stoudt, M | Susner, M | | Spree, C | Stoyanov, P | Sussman, J | | Spreitzer, M | Strachan, A | Suter, R | | | | | | Springer, H | Strangwood, M | Sutton, B | | Squillante, M 21, 42, 61, 130 | Strantza, M | Suvorov, D 19, 41, 60, 133 | | S, R 68, 132 | Stratulat, A | Suwas, S | | Sridharan, N | Streletskii, A | Suzuki, D | | Sridhar, N | Stroh, J | Suzuki, K 47 | | Sriharsha, M | Strother, J | Suzuki, T | | Srinivasan, G | Stubblefield, G141 | Swartzentruber, P 122 | | Srinivasan, R 91 | Stucker, B | Swartz, S 60, 61, 78, 102, 121, 134 | | Srinivasan, S 91 | Stuecker, J | Swiler, L | | Sriparagash, L | Stull, J | Synowczynski-Dunn, J 42 | | Srirangam, P | Stutzman, P 87 | Sypek, J | | | | | | Srivastava, A 23, 44, 63, 106 | Suárez, O | Syu, J | | Srivatsan, T | Subbarayan, G | Syvertsen-Wiig, G121 | | Srivatsa, S | Subramani, V | Szczotok, A | | Sruthi V, S | Su, C 43, 46, 114 | Szeliga, D 91, 112, 139 | | Stach, E | Suchicital, C | Szost, B | | Stadleman, B | Sudre, O | Szpunar, J 45, 89, 106, 111 | | Stanislowski, J 89 | Suematsu, H 15, 35, 38, 56, 74, 133 | Szymanowski, J | | Star, K | Suganuma, K 48 | Szymanski, N | | Starr, T | Sugimoto, M | | | Stasiuk, O | Su, H | T | | Stauffer, D | | | | | Suh, I | Tadeo, I | | Stebner, A | Suh, J | Taggart-Scarff, J | | Steck, J | Su, J | Taheri, M | | Stein, A | Sukatta, U | Taheri Mousavi, S 63, 85, 122 | | Steiner, E | Sukhomlin, G | Taira, H | | Steiner, M | Sukyai, P | Taira, T | | Stem, M | Su, L | Takacs, L | | Stephansen, R | Sullivan, M | Takada, A 48 | | Stephenson, K | Sullivan, N | | | Sternlicht, H | Sumption, M | Takagaki, S | | Stevens, E | Sunada, E | Takahashi, K 60 | | Stevens, J | Sundararaghavan, V | Takahashi, Y | | Stevenson, A 61 | • | Takai, C | | | Sundararajan, G | Takamura, H | | Stevenson, J 60, 78, 79, 102, 121, 134 | Sundararajan, M | Takeda, M | | Stevenson, M | Sun, F | Takeya, K 48 | | Stevens, T | Sung, S | Takuma, C 49 | | Stewart, J | Sun, H | Takuma, M 53, 104 | | Stiles, B | Sun, J | Tamerler, C 50 | | StJohn, D | Sun, K | Tanabe, S | | Stockman, T | Sun, 1 | Tanaka, M | | Stokes, A | Sun, L | | | | | Tanaka, Y | # MS&T18 | Tandon, G | Thomas, T | Trápaga, G | |--|----------------------------------|---| | Tang, F 18, 38, 101, 130 | Thombansen, U | Traubert, T | | Tang, L | Thompson, S | Travis, D | | Tang, M 24, 46, 64, 85, 108, 124, 135 | Thong, C | Trelewicz, J | | Tang, W | Thornton, K | Trenkle, J | | Tang, X 20, 29, 41 | Thorp, K | Tretiak, V | | Tan, S | Thorsson, L 80 | Trice, R 73, 97, 117, 141 | | Tanzer, A | Thouless, M 47 | Tripathi, A | | Tari, V | Tiamiyu, A | Trivedi, Y | | Tartarini, P | Tian, Y | Trivelpiece, C 27, 49, 67, 89, 111, 138 | | Tasan, C 43, 53, 63, 81, 99, 120, 122, 123 | Tidrow, S 41, 60, 133 | Trivett, S | | Tashkandi, M 96 | Tierney, K | Tröster, T | | Tatami, J | Tietje, S 67 | Trujillo, C | | Tatman, E | Tiferet, E | Trump, A 57, 112 | | Tatman, J | Tiley, J | Trybus, C | | Taub, A | Till, S | Tsai, H | | Tautschnig, M 85 | Tirumalai, S | Tsaknopoulos, D 126, 141 | | Tavangarian, F 46, 135, 139 | Tischler, J | Tschentscher, T 107 | | Taveri, G | Tiwari, P | Tschopp, M | | Taylor, C | Todd, I 75, 76, 100, 118, 129 | Tseng, K | | Taylor, E 18, 21, 38, 55, 74, 79, 100 | Todo, M | Tseng, T | | Taylor, J | Toeppel, T | Tsuji, J | | Taylor, K | Tokash, J | Tsuji, N | | Taylor, P | Toker, G | Tsurkan, V | | Taylor, S | Tolentino, B | Tsyganov, V | | Teague, M | Tolnai, D | Tu, B | | Teeter, L | Toman, J | Tuck, C | | Telesman, J | Tome, C | Tucker, G 72, 85 | | Telmer, M 69 | Tomozawa, M | Tucker, J 87, 89, 111 | | Tempke, R | Tomsic, M | Tufail, A | | Temple, A | Tong, J | Tukpah, M 82 | | Teng, C | Tong, W | Tumkor, S 58 | | Tennant, K | Tong, Y | Tuncer, N | | Terrani, K | Tonks, M 27, 67, 89 | Tunes, M | | Terziyska, V | Toparli, C | Tung, D 59, 109 | | Tesfaye, F | Topbasi, C | Tunick, S | | Tew, D 60 | Topcu, S | Tun, K | | Teysseyre, S 27, 111 | Topping, T 74, 98, 117, 127, 142 | Turcer, L | | Thacker, K | Toppler, I | Turgut, Z | | Thakare, S | Toptan, F | Turner, A | | Thapa, R | Torky, M | Turner, M | | Thekdi, A | Torresani, E | Tüzemen, C | | Thiel, G 26, 110 | Torres, E | Twum Donkor, B | | Thielsch, J | To, T | Tylczak, J | | Thirumaran, K | Tóthová, E | Tyler, D | | Thodla, R 82, 106 | Tourret, D | Tzelepis, D 40, 136 | | Thole, V | Tou, T | ĪĪ | | Thoma, D 80, 118 | Townsend, S | U | | Thomas, H | Tradowsky, U | Ubic, R 19, 41, 60, 133 | | Thomas, J | Trakooljae, C | Uchida, N | | Thomas, M | Tramel, T | Ueda, J | | Thomas, S | Tran, R | | | | | | | Ueda, M | Vargas-Gonzalez, L 24, 53 | Von Spakovsky, M 115 | |----------------------------|-----------------------------------|--| | Ulann, E | Vargas Martinez, J | Vo, P | | Ulassin, S | Varma, A | Vora, S | | Ulfig, R | Vassen, R | Vosika, Z | | | | | | Ulicny, J | Vasudevan, V 27, 58, 66, 118, 119 | Vozniuk, O90 | | Ulrich, A | Vazdirvanidis, A | Vrankovic, D | | Ulrich, G | Vazquez-Gomez, O 90 | Vuksanovich, B 110, 129 | | Ulvan, E | Vega-Cartagena, M 21 | WAT | | Ulven, C | Vekris, V | W | | Umarji, A | Velez, E | Wachtel, E | | Umberger, P | Veljkovic, S | | | Umeki, S | Vempati, V 91 | Wadley, H 57, 129 | | Underwood, O | Vengust, D | Wagner, F 61 | | Unocic, K | Venkataramani, N 41 | Wagner, J | | Unosson, M 80 | Venna, S | Wagoner Johnson, A | | Upadhyay, P 65 | Ventrapragada, L | Wagoner, R | | Uranga, P | Venugopalan, D | Wahl, K | | · · | | Wahsh, L 118 | | Ursic, H |
Vergara-Hernandez, H 90 | Wakai, F | | Usama, H | Vermaut, P | Wa Kalenga, M 68, 90, 138 | | Usher-Ditzian, T | Vervlied, J | Wakita, T | | Utsumi, T | Veselý, J 62 | Walck, S | | Uttayarat, P | Veysset, D | Walde, C | | Uzonwanne, V 93 | Vezzali, V | Walker, J 15, 16, 17, 26, 32, 110, 129, 137 | | *7 | Viehland, D 20, 31, 41, 69, 133 | Walker, M | | V | Vieira, M | Walters, L | | Vadlakonda, R 59 | Vijapur, S 18, 21, 38, 121, 130 | Walton, M | | Vagovic, P | Vilekar, S | Walzer, S | | | Villalobos, G | Wan, D | | Vairagade, A | Villalobos Vera, D 109 | | | Vaithanomsat, P | Villamagua, L | Wang, B | | Vakil-azghandi, M | Villanueva-Perez, P 107 | Wang, C 59, 73, 117, 138 | | Valdez, S | Villechaise, P 83 | Wang, D 21, 22, 55, 62, 82, 96, 106 | | Valenty, S | Villegas, M | Wangenheim, C | | Valleti, K | • | Wang, F 19, 24, 89 | | Van Benthem, K | Villicana, E | Wang, G 54, 66, 76, 80, 93, 103 | | Vandegrift, J | Villmer, F | Wang, H42, 46, 56, 73, 97, 115, 116, 117, | | Van der Laan, A | Vinci, R | 122 | | Van Der Schijff, O 104 | Vishnubhotla, S 53 | Wang, J43, 54, 55, 73, 86, 93, 103, 105, | | Vandersluis, E | Viswanathan, G | 117, 122, 123, 132 | | Van der Ven, A 81 | Vitry, V | Wang, K | | Van Der Ven, A | Vivek, A 65, 66, 109 | Wang, L | | | Vlahovic, B | | | Vander Voort, G | Vleugels, J | Wang, M | | Van de Walle, A | Vogel, S | Wang, Q | | Van Ende, M | Vogli, E | Wang, R 20, 21, 52, 99, 112, 125 | | Van Ginhoven, R | Vo, H | Wang, S | | Van Iderstine, E | Voigt, R 50 | Wang, T 130, 132 | | Vannutelli, R 74, 119 | Voisin, L | Wang, W 21, 42, 56, 60, 66, 113, 114, 137 | | Van Rooyen, I | | Wang, X23, 26, 28, 36, 48, 66, 88, 91, | | Van Swol, M | Voisin, T | 110, 135, 137, 138, 139 | | Varadharajan Idhaiam, K 79 | Volkov, A | Wang, Y22, 30, 32, 36, 40, 51, 52, 58, | | Varadharajan, K | Volkova, O | 62, 63, 70, 72, 79, 80, 91, 92, 94, 97, 100, | | Varanasi, V | Vo, N 49, 70, 74, 118 | 102, 103, 108, 112, 120, 121, 126, 137 | | Vargas, D | von Hehl, A | • | | | | | | Wang, Z | Wenjin, Y | Wintjes, E | |---|---|---| | Wanjara, P 84 Ward, R 16, 76 Ware, L 25 | Werner, M 120 Wernicki, E 86 West, H 38 | Withrow, T. 108 Witkin, D. 76 Witman, J. 18 | | Ware, R | West, M | Witte, R | | Warfel, W | Westrich, T | Wittkamper, J | | Waryoba, D 30, 51, 140 | Weyland, F 60 | Wojcieszynski, A 16, 17, 36, 37, 38, | | Washburn, A 117 Wasmer, K 37 | Wheaton, B | 57, 58, 59, 75, 76, 99, 100, 101, 118, 119,
129 | | Wasnik, M | Wheeler, R | Wolfe, T | | Wason, S | Whetten, J | Wollmershauser, J | | Waters, C | Whitaker, P | Wong, B | | Watkins, E | White, C | Wong-Ng, W 34, 55, 73, 141 | | Watkins, J | White, E | Wong, T | | Watkins, T | White, J | Woods, K | | Watson, M | Whiting, J | Woodson, T | | Watts, A 67 | Whitt, H 50 | Woo, W | | Watts, J | Whittingham, S | Workman, D | | Waugh, M | Whittington, W | Wren, A | | Weaver, J | Whittle, K | Wright, E | | Weber, W | Widom, M | Wright, J | | Webler, B | Wiedmann, M | Wright, W | | Wegener, K | Wieler, M | Wu, A | | Weibel, A | Wiemhöfer, H | Wu, D | | Wei, G | Wiesner, V | Wu, H | | Weihs, T | Wiezorek, J | Wu, J 45, 75, 135, 137 | | Wei, L | Wiik, K | Wu, L | | Weiland, H | Wildhaim M 59 | Wu, M | | Weiler, P | Wildheim, M 58 Wildofsky, J 48 | Wu, S | | Weimer, A | Wilkinson, A | Wu, T | | Weimin, W | Wilkinson, D | Wuttig, M | | Weinberger, C 46, 96, 108 | Willard, M 37, 74, 81, 117 | Wu, W 32, 52, 70, 92, 125, 135, 137 | | Wei, Q | Willhard, T | Wu, X | | Weirich, T | Williams, B | Wu, Y15, 21, 35, 42, 54, 56, 61, 74, 84, | | Wei, S | Williams, D | 102, 130, 132, 133, 139 | | Weishaupt, E | Williams, J | Wu, Z | | Weiss, A | Williams, K | Wyckoff, C | | Weiss, D | Williams, M | X | | Welch, T | Williams, W 112 Wilms, M 16 | | | Welk, B | Wilson-Heid, A | Xia, J | | Weller, J | Wilthan, B | Xia, M | | Wells, M 27, 84, 108 | Wilt, J | Xiao, B | | Wells, P | Windham, R 67 | Xiaobing, R | | Wenbing, L 141 | Windl, W 32, 70, 80, 94, 108, 140 | Xiao, J | | Wendler, M | Winkler, S | Xiaoming, W | | Wen, J | Winseck, M | Xiao, X | | | | | | Xiao, Y 33 Xiaoyang, L 35 Xie, K 42 Xie, W 25 Xie, X 54 Xie, Y 122 Xing, J 24 Xin, R 130 Xiong, H 73 Xiong, L 107 Xiong, W 31, 51, 70, 94, 96, 115 Xue, H 131 Xue, J 120 Xue, S 46, 71, 115, 116, 117, 122, 139 Xue, Y 23 Xu, H 116 Xu, J .18, 21, 38, 69, 87, 102, 130, 131, | Yang, K 114 Yang, L 17, 112, 118 Yang, P 93 Yangping, S 79 Yang, Q 65 Yang, S 25, 63, 108, 130 Yang, W 37, 60 Yang, X 99, 112, 138 Yang, Y 109 Yan, H 120 Yan, J 86 Yan, K 138 Yan, L 52 Yanmaz, L 95 Yan, W 101 Yanwen, Y 60 Yan, Z 24, 26, 89 Yan, Z 49 | Yoshino, M 136 Yoshio, M 136 Yoshitake, M 34 Yoshitomi, J 92 Yost, A 39 You, B 88 You, J 53 Young, B 20 Youngman, R 23, 45, 69 Young, W 38 Yousefi, A 126 Yousefiani, A 22, 74, 98, 117, 127, 142 Y.S., W 49 Yuan, M 108 Yuan, Q 66 Yu, B 78 Yucel O 33, 53, 95 | |--|--|--| | Xu, L | Yan, Z 49 Yao, T 89 Yarasi, S 17 Yarberry, W 74 Yasaputera, R 137 Yashiro, K 25, 65 Yavas, B 33, 95 Yavo, N 53 Ye, G 137 Yeh, B 71 Yeheskel, O 53 Ye, J 36 Yeom, S 116 Ye, P 52 Yeratapally, S 77 Yeung, D 93 Ye, Z 68 Yi, I 19 Yildirim, Y 78 | Yucel, O 33, 53, 95 Yue, S 23, 44, 63, 73, 97, 106, 117, 141 Yue, Z 48 Yugami, H 65 Yu, H 36, 72, 126 Yuhas, D 48 Yu, J 132 Yukumoto, M 31 Yu, L 28 Yumak, T 39, 73 Yurci, M 43, 134 Yurkow, E 93 Yuryev, D 80 Yu, X 17, 37, 52, 58, 70, 77, 117, 130, 133, 134 Yu, Y 79, 86 Yu, Z 29, 56, 65, 82, 109, 122, 124 | | Yakubovsky, O 68 Yakubtsov, I 41 Yalamanchili, B 91 Yamada, R 115 Yamaji, A 136 Yamamoto, T 27, 49 Yamamoto, Y 52 Yamanaka, K 100, 140 Yamasaki, H 53 Yamashita, S 66 Yamazaki, Y 47 Yanagimoto, J 78 Yan, D 122 Yang, C 112, 115, 120, 126, 136 Yang, F 54 Yang, G 28, 116 Yang, J 74 | Yilmazer, H 72, 114 Yin, D 126 Yin, S. 112 Yoder, S. 58 Yokota, Y 136 Yong, S 130 Yoo, G 103 Yoo, H 129, 130 Yoo, M 138 Yoon, J 41, 133, 138 Yoon, S 93, 136 Yoo, P 111 Yoshida, K 49, 140 Yoshida, R 48 Yoshimura, M 51, 69, 74 | Zakir, I 29 Zamponi, F 104 Zang, M 112 Zanotto, E 63 Zarkadoula, E 49, 122 Zavalij, P 83 Zawada, L 47 Zbib, H 108 Zega, T 28 Zeleznik, N 76, 77 Zeng, C 57 Zeng, Y 111 Zeng, Z 67, 119 Zepeda-Alarcon, E 57 Zepon, G 40 Zhabrev, L 135 | ### MS&T18 | Zhang, B | Zheng, Y 22, 43, 62, 64, 81, 134 | |--|---| | Zhang, C 24, 31, 51, 83, 113, 135, 139, | Zhengyi, F | | 141 | Zheng, Z | | Zhang, D 57, 71, 126 | Zhi, Y | | Zhang, F | Zhong, W | | Zhang, G | Zhong, X | | Zhang, H 43, 48, 62, 82, 92, 105, 131 | Zhong, Y 70, 93, 111, 115, 126, 132 | | Zhang, J 17, 32, 37, 38, 52, 56, 58, 59, 71, | Zhou, C | | 77, 99, 130, 132, 138 | Zhou, G | | Zhang, K | Zhou, H | | Zhang, L 60, 62, 67, 73, 97, 118 | Zhou, K | | Zhang, M | Zhou, L 16, 38, 39, 51, 52, 58, 118 | | Zhang, N 68, 103 | Zhou, N 20, 26, 46, 65 | | Zhang, P | Zhou, P | | Zhang, Q | Zhou, Q 47, 59, 87, 89, 121 | | Zhang, R | Zhou, R | | Zhang, S 17, 83, 86, 102, 118, 124, 138 | Zhou, T | | Zhang, T | Zhou, W | | Zhang, W 50, 58, 65, 70, 87, 109 | Zhou, X | | Zhang, X32, 46, 49, 60, 71, 103, 115, | Zhou, Y | | 116, 117, 122, 132, 133 | Zhou, Z | | Zhang, Y18, 32, 37, 49, 54, 58, 67, 103, | Zhuang, X | | 116, 122, 124, 132 | Zhu, D 73, 97, 117, 141 | | Zhang, Z | Zhu, J32, 42, 45, 52, 62, 70, 71, 79, 90, | | Zhao, C | 134 | | Zhao, G | Zhu, M 28, 60, 97, 120 | | Zhao, J | Zhu, Q 62 | | Zhao, K | Zhu, W | | Zhao, L 74, 75, 98, 117, 127, 142 | Zhu, X | | Zhao, M 67 | Zhu, Z | | Zhao, P | Zinkle, S 54 | | Zhao, Q | Zitello, K | | Zhao, W | Zok, F | | Zhao, X | Zolfaghari, A | | Zhao, Z | Zolko, C | | Zhemanyuk, P 127, 129 | Zondlo, J 61, 69, 73, 134 | | Zheng, B | Zou, G | | Zheng, C | Zou, J 58 | | Zheng, D | Zou, L | | Zheng, H | Zou, M 96 | | Zheng, J 32, 136, 137 | Zou, Y | | Zheng, L | Zuber, C | | Zheng, Q 61 | Zurob, H | | Zheng, X | | # MATSCITECH.ORG NATERIALS SCIENCE & TECHNOLOGY