Introduction to Refractories: Course Outline

Learn the fundamentals of all classes of refractories and their applications

This course addresses most of the significant topics in the field of refractories, both theoretically and experimentally. The lectures follow the natural evolution of refractories from their mineral and synthetic origins, to their chemical, mineralogical, and microstructural constitution, and their application, installation, and degradation in service. The sessions are also designed to give the participants knowledge of common refractory testing techniques. The individual sessions are titled in the accompanying outline of the daily topics.

Class Dates	Topics / Activities During Class
	Introduction to Refractories
Lecture 1	Thermal Properties
	 Volume Stability
	 Reversible Changes
	 Irreversible or Permanent Changes
	 Heat Capacity
	 Thermal Conductivity
Lecture 2	Mechanical Properties
	 Elasticity
	 Brittle Fracture
	o Creep
	Thermomechanical Properties
	 Thermal Stresses
	 Thermoelastic Theory
	 Thermal Shock Damage Resistance Theory
Lecture 3	Corrosion Properties
	 Fundamental Principles of Liquid-Solid Corrosion
	 Liquid Phase Formation
	Wetting
	 Phase Equilibrium Diagrams
	Silica Refractories
	 Raw Materials – Silica
	 Phase Relationships
	 Processing
Lecture 4	 Microstructure/Properties
Lecture 4	Alumino-Silicate Refractories
	 Raw Materials – Alumina-Silica
	 Phase Relationships
	 Processing
	 Microstructure/Properties
Lecture 5	Basic Refractories
	 Raw Materials – Magnesite, Dolomite, Chrome-
	Magnesite, Forsterite, Spinel
	 Phase Relationships
	 Processing
	 Microstructure/Properties
	Insulating Refractories

Orton ACerS Learning Center

	o Insulating Firebrick
	 Processing
	Microstructure/Properties
	 Insulating Fibers
	 Processing
	Microstructure/Properties
Lecture 6	Monolithic Refractories
	 Raw Materials – Hydraulic Cement, No Cement,
	Chemical Binders
	 Phase Relationships
	 Processing
	 Microstructure/Properties
	Non-Oxide Refractories
	 Raw Materials – Carbon, Silicon Carbide, Silicon
	Nitride
	 Phase Relationships
	 Processing
	 Microstructure/Properties
	Composite Refractories
	o Raw Materials – Magnesia-Carbon, Alumina-Silicon
	Carbide-Carbon, AluminaCarbon
	 Processing
	 Microstructure/Properties
Lecture 7	Special Refractories
Lecture 7	o Raw Materials – Zirconia, Zircon, Fusion Cast –
	Alumina-Zirconia-Silica, Alumina, Alumina-Chrome,
	Magnesia-Chrome
	 Phase Relationships
	o Processing
	 Microstructure/Properties
Lecture 8	Design of and with Refractories
	Microstructural Design
	Process Vessel Design
	Applications of Refractories
	○ Iron and Steel
	Non-Ferrous Metals
	Ceramics
	o Glass
	Minerals Processing
	o Chemicals
	Onomicals