Welcome, please login:
[Login]   |  [Join]  |  [Renew]   |   [Contact Us]

OMS header

Published on September 23rd, 2015 | By: April Gocha, PhD


Other materials stories that may be of interest

Published on September 23rd, 2015 | By: April Gocha, PhD

[Image above] Credit: NIST


Half diamond, half cubic boron, all cutting business

Diamonds are forever, except when they oxidize while cutting through iron, cobalt, nickel, chromium, or vanadium at high temperatures. Conversely, cubic boron nitride possesses superior chemical inertness but only about half of the hardness of diamonds. In an attempt to create a superhard material on an industrial scale, researchers at Sichuan University in Chengdu, China, have created an alloy composed of diamonds and cubic boron nitride that boasts the benefits of both.


Hybrid solar cell converts both light and heat from sun’s rays into electricity (video)

Scientists have developed a new hybrid, solar-energy system that harnesses the full spectrum of the sun’s radiation by pairing a photovoltaic cell with polymer films. The films convert the light that goes unused by the solar cell into heat and then converts the heat into electricity. The device produces a voltage more than five times higher than other hybrid systems.


Silicon photonics meets the foundry

Advances in microprocessors have transferred the computation bottleneck away from CPUs to better communications between components. That trend is driving the advance into optical interconnection of components, now moving from systems to boards to chip packages to chips themselves. A related issue with input-output (I/O)-intensive applications such as server farms is the energy consumption required to transport bits of data around. Using photonics technology for I/O components can both improve performance and reduce energy consumption.


New findings move flexible lighting technology toward commercial feasibility

A team of researchers at Pohang (Republic of Korea) University of Science and Technology reports on advances in three key areas—flexible electrodes, flexible encapsulation methods, and flexible substrates—that make commercial use of such technology more feasible and closer to implementation. The researchers tested a variety of transparent electrodes as flexible alternatives to currently available devices based on indium tin oxide, which is brittle and increasingly expensive, and identified next steps toward making flexible solid-state lighting commercially feasible.


The green (and blue, red, and white) lights of the future

A revolution in energy-efficient, environmentally-sound, and powerfully-flexible lighting is coming to businesses and homes, according to a paper in latest special energy issue of Optics Express, the Optical Society’s open-access journal. The paper envisions the future of lighting—a future with widespread use of LEDs, which offer a number of obvious and subtle advantages over traditional light bulbs.


Technique characterizes nanoscale spaces in porous materials

Rice University scientists led a project to “see” and measure the space in porous materials, even if that space is too small or fragile for traditional microscopes. The Rice lab invented a technique to characterize such nanoscale spaces, an important advance that should benefit the analysis of porous materials of all kinds, like liquid crystals, hydrogels, polymers, and even biological substances like cytosol.


Back to Previous Page
« « Previous Post     |    Next Post » »

, , , , , , , , , , , , , , , , , , , , , ,

Leave a Reply

Back to Top ↑