OMS header

[Image above] Credit: NIST

Enter for a chance to win $2,000 Women in Research travel grant

When research is inclusive, everyone has the opportunity to succeed. Wiley is proud to announce this year’s inaugural Women in Research Travel Grant Competition. The competition will award $2,000 to the winning researcher to attend a conference of their choice.


Polymer-coated silicon nanosheets: An alternative to graphene

Silicon nanosheets are thin, 2-D layers with exceptional optoelectronic properties very similar to those of graphene. Now researchers have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process.

Water-repellent nanotextures found to have excellent anti-fogging abilities

Brookhaven National Lab scientists have shown that nanotextures inspired by the cone-shaped structures found on the surface of cicada wings could inform new designs for materials prone to fogging, such as car and aircraft windshields.

The secrets of vibration-enhanced conductivity in graphene

Materials like graphene can exhibit a particular type of large-amplitude, stable vibrational modes that are localized, referred to as discrete breathers. Researchers used a systematic approach to identify the initial conditions that lend themselves to exciting discrete breathers in graphene, ultimately opening the door to understanding the keys to greater conductivity.

Sandia creates 3-D metasurfaces with optical possibilities

Sandia National Laboratories researchers are helping lead the way to the use of III-V semiconductors as the building blocks of metamaterials. Sandia researchers have published technical papers on work featuring materials like gallium-arsenide and aluminum-arsenide, which are more efficient than metals for optical metamaterial applications.

Scientists use graphene to reinvent abandoned heat energy converter technology

Satellite-powering technology that was abandoned decades ago has been reinvented to potentially work with traditional power stations to help them convert heat to electricity more efficiently. The prototype energy converter uses graphene instead of metal, making it almost seven times more efficient.


Bladeless turbines: The future of wind energy harvesting?

As we deepen our understanding of alternative renewable energy sources, researchers and engineers are finding more innovative ways to improve current models and methods. Recently coming onto the scene is a new kind of bladeless wind turbine that harnesses wind energy through a process called vorticity—a spinning motion of air or fluids.

Ferroelectric nanoparticles improve performance of lithium-sulfur batteries

Researchers from University of Delaware and beyond have demonstrated a new polysulfide entrapping strategy that greatly improves the cycle stability of lithium-sulfur batteries. The addition of ferroelectric nanoparticles into the battery cathode anchors the polysulfides, preventing them from dissolving and causing the loss of active materials at the cathode.

New approach for matching production and consumption of renewable electricity

The most significant obstacle for further integration of renewable electricity is the imbalance between their weather-dependent production and general power consumption. VTT Technical Research Centre of Finland is coordinating the BALANCE project to develop an electrochemical conversion technology called reversible solid oxide cell.

Compounds could be basis for devices that turn waste heat into electricity

Cage-like compounds called clathrates could be used for harvesting waste heat and turning it into electricity. UC Davis chemists just discovered a whole new class of clathrates, potentially opening new ways to make and apply these materials.

Imaging the inner workings of a sodium-metal sulfide battery for first time

Scientists at Brookhaven National Lab discovered that an iron sulfide battery material undergoes significant changes in its microstructure and chemical composition as sodium ions enter and leave the material during the first discharge/charge cycle, leading to an initial loss in battery capacity.


Reusable sponge coated with metal oxide soaks up oil

Scientists have invented a new foam, called Oleo Sponge, that not only easily adsorbs spilled oil from water, but is also reusable and can pull dispersed oil from the entire water column—not just the surface. The scientists started out with common polyurethane foam and coated it with an extremely thin layer of metal oxide “primer” near the foam’s interior surfaces.

New use for paper industry’s sludge and fly ash in plastics

VTT Technical Research Centre of Finland examined whether new industrial applications could be developed for various types of sludge and fly ash generated by the paper and board industry. Laboratory tests showed that these side streams can replace up to 50% of oil-based polypropylene.


New process for manufacturing photovoltaic cells means cheaper solar power

An innovative dry etching method could reduce the cost of manufacturing solar cells by up to 25%. At the core of the project’s success was the development of a dry etching process that uses etching chemistries that do not generate greenhouse gases.

Lab researchers are first to 3-D print with high-performance carbon fiber

Lawrence Livermore National Lab researchers have become the first to 3-D print aerospace-grade carbon fiber composites, opening the door to greater control and optimization of the lightweight, yet stronger than steel material.

Dramatic improvement in surface finishing of 3-D printing

Researchers have developed a process to dramatically improve the quality of 3-D printed resin products. The process combines greatly improved surface texture and higher structural rigidity with lower cost, less complexity, safer use of solvent chemicals and elimination of troublesome waste dust.


Supercomputer helps design jets from composite materials that will burn less fuel

Researchers are using the Stampede supercomputer to design novel, fuel-efficient, wing designs for jets, and to develop tools that can help the industry build more efficient aircraft. The researchers are exploring wings with longer spans, made of complex composites and that morph during flight.

Going glassy: Revealing structure and dynamics of glassy polymers during transition

An international collaboration has conducted a simulation of the glass transition in a polymer film to offer fundamental insights about the influence of molecular structure on transition temperature. The work sheds new light on how the polymer structure bears on the glass-transition temperature in the forming of glass in atactic polystyrene.

NRL develops lighter, field repairable transparent armor from polymers

Research chemists at U.S. Naval Research Laboratory have developed and patented a transparent thermoplastic elastomer armor to reduce weight, inherent in most bullet-resistant glass, while maintaining superior ballistic properties.

Coffee-ring effect leads to crystallization control

A team at KAUST has made significant advances in controlling crystallization. A chance observation of crystals forming a mark that resembled the stain of a coffee cup left on a table led to the growth of customized polycrystals with implications for faster and more versatile semiconductors.

Tunable porous MOF materials interface with electrodes to sniff out toxic gases

A thin-film chemical sensor coated onto an electrode offers a simple, practical way to detect minute traces of toxic gas. KAUST researchers developed a metal-organic framework-based sensor that can selectively sense hydrogen sulfide at concentrations of just a few parts per billion.

Understanding the motion of vortex domain walls in ferromagnetic nanowires

Researchers are studying the motion of vortex domain walls—local regions of charge that collectively store information via their configuration—driven by magnetic fields in ferromagnetic nanowires, which are configured in a straight line with an asymmetric Y-like branch.

Study examines tungsten in extreme environments to improve fusion materials

Researchers are studying the interaction of plasma and machine components to make materials that are more than a match for such harsh operating conditions. The team bombarded tungsten with helium plasma at low energy, mimicking a fusion reactor under normal conditions, and assaulted tungsten with high-energy helium ions to emulate rare conditions.