OMS header

[Images above] Credit: NIST

NANOMATERIALS

A designer’s toolkit for constructing complex nanoparticles

A team of chemists at Penn State has developed a designer’s toolkit that lets them build various levels of complexity into nanoparticles using a simple, mix-and-match process. The researchers begin with what they call first-generation particles, with nanometer-scale dimensions.

Researcher develops a new generation of graphene

Graphene has many incredible properties, but to date it has been difficult to use on a large scale in industry, because it loses its unique properties and goes back to its origin graphite. Now, a researcher has developed a new form of graphene that can solve the problem.

Nanodiamonds are forever

Researchers at Argonne National Laboratory are combining nanodiamonds with 2-D molybdenum disulfide layers and breaking them to create a self-generating, very-low-friction dry lubricant that lasts so long it could almost be confused with forever.

Punching holes in graphene to boost hydrogen production

Researchers may have brought the renewable energy future one step closer. A new electrode can accomplish the hydrogen evolution reaction in acidic conditions, making the technology both cheaper and more effective. The process is helped by a smart form of graphene.

ENERGY

Wrap an electrode material for Li-ion battery into the inner spacing of carbon nanotube

Researchers have designed a unique lithium-ion battery electrode, where red phosphorus is stuffed into carbon nanotubes. The charge-discharge capacities are twice or even higher than that of graphite in commercial lithium-ion batteries.

3-D batteries pack power into tiny footprints

Researchers have fashioned a powerful 3-D lithium ion battery with a footprint on the order of one hundred grains of salt. The setup has an array of anode posts covered uniformly by a thin layer of a photo-patternable polymer electrolyte and cathode materials between the posts.

X-ray study yields new insights on lithium-sulfur batteries

Brookhaven National Laboratory researchers conducted a multi-technique X-ray study to learn more about the structural and chemical evolution of a metal sulfide additive—copper sulfide, in this case—as the lithium ions moved between the battery’s electrodes.

Microwaved plastic increases lithium-sulfur battery life span

Purdue engineers have figured out a way to tackle plastic landfills while also improving batteries—by putting ink-free plastic soaked in sulfur-containing solvent into a microwave, and then into batteries as a carbon scaffold.

OTHER STORIES

New ceramic material could cut down cost of piezoelectric devices

For the first time, researchers at the Indian institute of Science (IISc) have designed a ceramic material capable of achieving an electrostrain value of 1.3 percent—the highest for a ceramic to date and the closest to the record set by single crystals.

Novel simulation technique models material aging process

Researchers have developed a numerical method to simulate the molecular aging process in amorphous materials, such as concrete and glass. This technique could better understand how materials weaken with age and also develop materials that maintain their strength indefinitely.

Atomically thin magnetic device could lead to new memory technologies

A University of Washington-led team has encoded information using magnets just a few layers of atoms in thickness. This breakthrough may revolutionize computing and electronics technologies by enabling data storage at a greater density and improved energy efficiency.

Polarized light: A simple route to highly chiral materials

Researchers in Japan have successfully created chiral nanostructures from particles of gold. The trick was to use circularly polarized light to generate electric fields. They first deposited Au nanocuboids—essentially miniature rectangular gold bars—on a TiO2substrate.

New polymer manufacturing process saves 10 orders of magnitude of energy

Researchers at the University of Illinois have developed a new polymer-curing process that could reduce the cost, time and energy needed to manufacture anything that needs strong, lightweight and heat resistant parts, compared with the current manufacturing process.

Share/Print