When properly combined with other materials, ceramic and glass materials can exhibit ballistic penetration resistances significantly higher than monolithic metallic materials. Not surprisingly therefore, lightweight armor technologies based on ceramic and glass materials have been developed providing levels of protection against a wide array of ballistic threats. Despite this reality, current knowledge and understanding are limited with respect to the importance of a ceramic body’s physical, chemical, structural, and mechanical characteristics on its local and global response to dynamic contact loading conditions that are characterized by locally large transient stresses, deformations, and temperatures. The deficiency in our understanding of processing-structure-properties-performance relationships has been a hindrance to the development of new materials through conventional and advanced processes, as well as materials-by-design strategies.

This symposium is an opportunity for attendees from industry, academia, and government organizations to meet and participate in open discussions on relevant fundamental and applied research that supports the advancement of our knowledge and understanding of the processing-structure-properties-performance relationships for ceramic and glass materials.

Contributed papers addressing the following general symposium topics are welcomed:

  • Terminal ballistic behavior: depth-of-penetration, dwell and penetration, in-situ/real-time and post-test characterization, mechanisms, size-scale effects, modeling, new techniques
  • Synthesis and processing: ceramics, glasses, glass-ceramics, new materials, thermodynamics and kinetics, new methods including field-effects and additive manufacturing, monolithic and composites including CMCs and laminates, functionally-graded, toughened, damage-tolerant, multi-scale structures, materials-by-design, conventional and novel, powder synthesis and processing, green body forming, densification, surface modification, planar and curved shapes with/without topological features, scale-up
  • Materials characterization: chemistry, phases, structure, defects, flaws and flaw statistics, bulk, surface, microscopy, spectroscopy, combined methods, non-destructive, residual stress, reactivity, wear and erosion, new techniques
  • Quasi-static and dynamic behavior: mechanical properties, low and high-rate, high-pressure, large deformation, shear, multi-stress state, shock, fracture, fragmentation, damage, inelastic deformation mechanisms, phase transformations and transitions, in-situ probing, small-scale, size-scale effects, reactivity, macro, new techniques
  • Materials and process modeling: material, system, analytical, computational, continuum, atomistic, multi-scale, thermodynamics, mechanics, phenomenological, physically-based, microstructural, damage, inelastic deformation mechanisms, phase transformations and transitions, fracture, fragmentation, impact, penetration, residual stress, homogeneous and heterogeneous deformation, failure, size-scale effects, novel numerical techniques, new materials
  • Bonding of materials: surface chemistry and structure, surface treatments, bond material characteristics and properties, bond theory, bonded interface processing, interface characteristics and properties, bond durability, residual stress, modeling

In addition, part of this symposium is devoted to special focus topics with invited speakers. These topics will be (1) fundamental terminal ballistic behavior, (2) processing science which support the development of hierarchically structured ceramic bodies, and (3) development of processing-structure-properties-performance relationships for both opaque and transparent materials. Presentations on theoretical and/or experimental aspects of these topics are welcomed.

For those interested in participating, but uncertain whether their work fits within the theme of this symposium, please contact the symposium organizers listed below.

Symposium Organizers
  • Jerry LaSalvia, CCDC ARL, USA
  • Jeffrey Swab, CCDC ARL, USA
  • Brady Aydelotte, CCDC ARL, USA
  • Michael Bakas, ARO, USA
  • Kristopher Behler, CCDC ARL, USA
  • Victoria Blair, CCDC ARL, USA
  • Peter Brown, DSTL, UK
  • Richard Haber, Rutgers University, USA
  • Christopher Marvel, Lehigh University, USA
  • Patrik Lundberg, FOI, SE
  • Ghatu Subhash, University of Florida, USA
  • Andrew Wereszczak, ORNL, USA
Points of Contact

Share/Print