Welcome, please login:
[Login]   |  [Join]  |  [Renew]   |   [Contact Us]

ICACC 2019 Award and Plenary Speakers


The award and plenary speakers session kicks off ICACC19 on Monday, January 28th from 8:30 a.m. to 12:00 p.m. Make your plans to participate and hear these esteemed speakers.



James I. Mueller Award



Dileep Singh, Senior Materials Scientist, Argonne National Laboratory, USA 


Title: TBA



Bridge Building Award



Jerzy Lis, Vice Rector of Cooperation and President of the Board of INNO AGH, AGH University of Science and Technology, Poland 

Read full bio here.


Title: Processing of complex ceramic materials by rapid high-energy techniques


Abstract:  The presentation is prepared based on author experience and the results obtained by AGH University of Science and Technology research group working in the field of ceramic materials synthesis using selected rapid high-energy techniques (RHET). Two RHET methods are described in details namely: Combustion Synthesis is also called Self-Propagating High-Temperature Synthesis (SHS) and Laser Rapid Manufacturing (LRM). Those approaches lead to technology enable to use strong high-energy sources for synthesis of different compounds associated with local consolidation of materials. These techniques should be considered as harvesting energy methods because reaction is initiated locally, then process goes in self-sustaining regime and chemical energy is generated from ambient surrounding powdery bed to provide an uninterrupted synthesis.  


Considering materials science point of view, physicochemical processes occurring in the micro-regions undergoing rapid temperature rise with of next flash cooling resulted in very effective and untypical in nature phenomena compare to more conventional heating. Such combination effects lead to preparation new materials having interesting properties. Examples of such phenomena occurring in conditions of strong sources of chemical energy (SHS) or laser energy (LRM) used to prepare ceramic materials are analysed. It can be demonstrated in different engineering ceramics systems e.g. Si-C-N, Ti-Si-C-N and Ti-Al-C-N  as well as  Al-O-N. It has been concluded, that such RHET techniques brought significant contribution to the ceramic processing and may be considered as perspective approach to materials engineering.



Plenary Speakers



Shunpei Yamazaki, President, Semiconductor Energy Laboratory Co., Ltd., Japan. 

Read full bio here.


Title: Crystalline Oxide Semiconductor (IGZO Ceramics)- Based Devices for Artificial Intelligence (AI) and Internet of Things (IoTs)


Abstract:  Technologies driving artificial intelligence (AI) and Internet of things (IoT) are advancing day by day, and the activities surrounding this field do not show signs of slowing down. It is expected that in near future, networked AI and IoT will pervade the entire human society, and the amount of data transmission through our networks will expand to the limit. The society fears that this will require enormous amounts of power and a power reduction of AI by 1000 times is demanded.


In 2009, we discovered c-axis aligned crystalline indium-gallium-zinc-oxide (CAAC-IGZO), which is a crystalline oxide semiconductor material. CAAC-IGZO is layered, and has a novel crystal structure. It is highly aligned in the c-axis direction and is not aligned in the a-b plane direction, but has no clear crystal grain boundaries. CAAC-IGZO is a ceramic material that can be applied to active devices, which can be applied to hardware such as a graphics processing unit (GPU), a central processing unit (CPU), a dynamic random access memory (DRAM), a 3D-NAND flash, and a field-programmable gate array (FPGA). AI chips are fabricated using the hardware listed above, and they are fabricated using Si semiconductor material. More DRAM chips are on an AI chip more than any other chip, and they consume power more than any other chip. This technology enables extreme reduction of AI chip’s power consumption.


Ceramics play key role in various critical developments in AI technology. In future crystalline oxide semiconductor will be the key technology to make AI prevalent throughout the world. This presentation will go across boundaries and introduce the applications of IGZO ceramics in an active device for AI technology. 




Michael J. Cima, David H. Koch professor of engineering, Faculty director of the Lemelson-MIT Program, Associate Dean for Innovation, Massachusetts Institute of Technology, USA

Read full bio here.


Title: Drug, Device, or Diagnostic?  Engineering in a new world of medicine


Abstract:   Medical technologies are evolving at a very rapid pace.  Portable communications devices and other handheld electronics are influencing our expectations of future medical tools.  The advanced medical technologies of our future will not necessarily be large expensive systems.  They are just as likely to be small and disposable.  In addition, the lines between drugs, devices, diagnostics, and procedures are being blurred.  This talk will review how microsystems and microdevices are already impacting health care as commercial products or in clinical development.  Example systems include point of care diagnostics (POCT), patient monitoring tools, systemic drug delivery, local drug delivery, and imaging tools are described.  These technologies are moving care from hospitals to outpatient settings, the physician’s office, community health centers, nursing homes, and the patient’s home.




Global Young Investigator Award



Wei Ji, Assistant professor, Wuhan University of Technology, China. Read full bio here.


TitleSintering of Advanced Ceramics by Plastic Deformation as Dominant Mechanism


Abstract: Dense and fine grain structure is the goal of ceramic sintering. However, common sintering processes with high sintering temperature and long soaking time lead to inevitable grain growth. A new ceramic sintering approach employing plastic deformation as the dominant mechanism is proposed, at low temperature close to the onset point of grain growth and under high pressure. High performance Boron Cabide ceramics with full density without grain growth were fabricated based on the technology. This idea and method provide both time and energy efficient ways for B4C, and also facilitate preparation of other advanced ceramics such as nano-ceramics for practical applications.



NEW!  Engineering Ceramics Division (ECD) Jubilee Global Diversity Award


Every year, three early/mid-career women and minority professionals are selected for the Engineering Ceramics Division’s Jubilee Global Diversity Award and are invited to present at the International Conference and Exposition on Advanced Ceramics and Composites (ICACC) in Daytona Beach, FL (annual meeting of the Division). The awardees are encouraged to mentor students and promote society related activities at their institutions.


This award is intended to recognize exceptional early- to mid-career professionals who are women and/or underrepresented minorities (i.e. based on race, ethnicity, nationality and/or geographic location) in the area of ceramic science and engineering.


2019 Winners:



Katalin Balázsi, Hungarian Academy of Sciences, Hungary

Read full bio here.


Title: Effect of deposition parameters on cubic TiC and hexagonal Ti phase formation of thin films deposited by magnetron sputtering


Abstract:  Modern methods of vacuum deposition provide great flexibility for manipulating material chemistry and structure, leading to films and coatings with special properties. These new special properties of nanocomposites are often unachievable in bulk materials.


A combination of pure carbon-based thin films with metallic nanoparticles can enhance certain physical properties in a nanocomposite. In this presentation, the effect of deposition temperature on the formation of TiC / Ti phases and mechanical properties of magnetron sputtered TiC based coatings will be showed. The thin films were deposited by DC magnetron sputtering at various temperatures from 25°C to 800°C in ultrahigh vacuum from two targets (Ti and C). The deposition parameters were chosen in order to synthetize amorphous, nanocrystalline and columnar TiC as well. The hardness of films with various nanostructures was found between 7 and 26 GPa, modulus of elasticity between 135 and 219 GPa. The films with pure cubic TiC phase exhibited two times higher hardness than films with the softer hexagonal Ti phase. 




Lisa M. Rueschhoff, Air Force Research Lab, USA

Read full bio here.


Title: Nano to bulk scale ceramic processing and structure control for enhanced properties


Abstract:  Historically, both inherent processing difficulties and catastrophic brittle failure in ceramics have limited their use in high stress, critical applications. In this talk, I will give an overview of my research with an insight to ceramic structure-properties-processing relationships on all length scales. Traditional powder processing limitations can be overcome through the use of both preceramic polymers and ceramic powder aqueous suspensions. Both can be rheological designed and modified to be tailored for a variety of advanced processing techniques, with a special focus given to direct ink writing additive manufacturing. In recent years, manipulation of ceramic structure on the nanoscale has led to the discovery of new properties and behaviors that are distinct from the bulk scale. For example, ceramic mechanical metamaterials have been designed that exhibit ductile-like deformation and strain recovery due to their tailored nanostructure design. Final remarks of the talk will address the importance of networking and mentoring in personal and project success, along with opportunities available for involvement within ACerS.





Jie Zhang, Institute of Metal Research, China

Read full bio here.


Title: Integrated design of ceramic coatings for accident-tolerant fuel cladding in LWRs


Abstract:  Nuclear energy is regarded as an important resource supplying low-carbon electricity at stable and affordable costs. The reliable and safety operation is essential for the application of nuclear energy. Currently, the worldwide focus in LWRs is the development of accident-tolerant Fuels (ATF) with enhanced behavior under design-basis accident and severe-accident conditions, along with improved performance under normal operating condition. The cladding coating strategy is economically attractive, so-called near-term concept. In our work, PVD technique is employed for ceramic coating synthesis with temperature friendly to Zircaloy cladding. Moreover, the extremely harsh nuclear environments and high reactivity of Zircaloy require integrated design of coating composition and structure. For nano-laminated MAX phases, which display high resistance to oxidation and ion irradiation, multilayered coating structure is optimized and their feasibility for ATF application is evaluated. Besides, gradient ceramic coating system with combined merits of feasible performance and chemical compatibility is designed and characterized. It is expected that the safety margin of the fuel cladding system in LWRs could be enhanced by applying ceramic coating.























Back to Top ↑