Harnessing nature for nano design—glass-coated DNA scaffolds demonstrate potential as lightweight and high-strength materials

By Lisa McDonald / September 29, 2023

In recent decades, researchers have explored using deoxyribonucleic acid (DNA) as a scaffold for programmable nanostructures. Now, researchers at Columbia University, the University of Connecticut, and Brookhaven National Laboratory collaborated to show that glass-coated DNA scaffolds have potential as lightweight and high-strength materials.

Read More

Video: Silica, a common food additive, may be chemically reactive

By Lisa McDonald / September 27, 2023

The increasing use of nanoparticles across all sectors has led to some concerns within the food industry, as nanoparticles do not necessarily behave the same way as their larger counterparts. A new study by Stanford University researchers showed that mesoporous silica, a common food additive, can react with key biomolecules, which could lead to increased oxidative stress in the body.

Read More

Reducing the environmental impacts of MXene synthesis: Life cycle assessment and production guide offer tips

By Lisa McDonald / September 15, 2023

Despite the meteoric rise of MXenes from discovery to commercial products in only a decade, the environmental impacts of MXene synthesis have not been assessed systematically. ACerS member Babak Anasori helped lead two recent studies that provided a life cycle assessment and step-by-step guide for synthesizing Ti3C2Tx MXenes, respectively.

Read More

Compliant combustion: Nanocoating offers new way to control ‘runaway’ thermal reactions

By Lisa McDonald / September 8, 2023

Current methods for controlling “runaway” thermal reactions such as combustion and pyrolysis remain rather rudimentary. Researchers led by North Carolina State University developed a new nanocoating that, when applied to a material before combustion, allows for the reaction rate and direction of ignition propagation to be controlled.

Read More

Foiled no more: A review of advancements in producing carbon nanotubes on flexible metal substrates

By Lisa McDonald / August 8, 2023

Growing carbon nanotubes on metal foils rather than traditional silicon or quartz substrates would allow the process to be easily integrated into large-scale manufacturing processes. But metal foils present other challenges, such as reactivity at high temperatures. Lawrence Livermore National Laboratory researchers published a review paper summarizing efforts to overcome these challenges.

Read More

Discovery of ferroelectricity in elementary substance expands understanding of this property

By Lisa McDonald / April 14, 2023

Ferroelectricity traditionally is believed to only occur in compounds. However, in the past decade, some theoretical works suggested that ferroelectricity is possible in certain elementary substances. Now researchers in China and Singapore experimentally confirmed ferroelectricity in monolayer α-phase bismuth.

Read More

Finding trees within the forest: Deep learning network detects individual carbon nanotubes in SEM images

By Lisa McDonald / March 21, 2023

For researchers to improve the properties of carbon nanotubes grown en masse, they must first be able to measure and characterize how individual nanotubes are assembled within carbon nanotube “forests.” In a recent paper, researchers at the University of Missouri outlined a deep learning technique to segment these forests in scanning electron microscopy images.

Read More

New carbon structures open a realm of possibilities

By Guest Contributor / March 14, 2023

As applications for carbon nanostructures flourish, the exploration for new carbon structures continues. Today’s CTT highlights three discoveries announced during the past few months.

Read More

Model reveals how nanopores form in 2D materials hit by highly charged ions

By Guest Contributor / February 24, 2023

Bombarding materials with highly charged ions is one way researchers can manipulate and modify 2D heterostructures. TU Wien researchers developed a model to simulate this bombardment and reveal why, when hit, some 2D materials form nanopores and others do not.

Read More

Small scale, big discoveries: Reducing thickness of antiferroelectric films turns them ferroelectric

By Lisa McDonald / February 14, 2023

While size effects in ferroelectric materials have been extensively studied, there are far fewer studies on how structure and properties evolve in antiferroelectric materials with reduced dimensions. In a recent open-access paper, researchers report the surprising discovery that below a certain thickness, antiferroelectric films will become completely ferroelectric.

Read More