Surface plasmon polaritons are a type of surface wave that, when harnessed, show potential to improve various processes that take place on the nanoscale, such as molecular imaging. Researchers from two places in Russia propose a new scheme using quantum dots and graphene to more efficiently convert light into surface plasmon polaritons for use in such applications.
Read MoreCarbon nanotubes demonstrate much higher tensile strength than carbon fibers, but growing nanotubes in bulk while retaining this property is an obstacle that limits their commercial applications. Researchers in Japan developed a new fabrication method that could overcome the challenge of growing nanotubes in bulk.
Read MoreTraditional methods of surgery, chemotherapy, and radiotherapy for treating cancer can be extremely taxing on the body. Photothermal therapy is a minimally invasive and locally focused alternative, and a recent paper by researchers in China looks at the potential of a new graphene oxide-templated gold nanosheet for use in this treatment.
Read MoreTransparent ceramics serve as the gain medium in many commercial lasers, yet the push to develop new and improved ceramics for this application continues. In two papers published this year, an international team of researchers investigates the influence of different processing parameters on the properties of nanocomposite yttrium magnesium oxide ceramics.
Read MoreQuality control of graphene is a pressing challenge for suppliers of the 2D material. Yet recent research at Ames Laboratory offers a valuable way to assess the quality by evaluating broad components of the diffraction pattern that scientists overlooked for years.
Read MoreCommon lithographic techniques used to etch patterns onto a surface run into difficulties when cutting 2D materials. Researchers at École Polytechnique Fédérale de Lausanne developed a thermal scanning probe lithography method that can cut the smallest reported feature for a direct cutting method to date.
Read MoreIn 2017, an international team of researchers led by the University of Cambridge found a certain alcohol-based solvent allowed uniform deposition of inks containing 2D materials—a result important to advancing printed electronics. Now, the team has proposed a mechanism to explain their finding.
Read MoreAntibiotic resistant bacteria and antibiotic resistance genes are an increasing concern in water contamination. Rice University researchers are exploring photocatalysis techniques to destroy antibiotic resistance genes, and two papers published this year explore “trap-and-zap” strategies.
Read More