Modeling & Simulation

Unveiling the hidden role of intermediate oxides in glass: Spectroscopic data combined with computational modeling provides new insights

By Lisa McDonald / August 1, 2023

The effect niobium oxide has on the macroscopic properties of glass is reasonably well-known, but its specific structural role in glass remains poorly understood. To address this knowledge gap, researchers from the Center for Research, Technology, and Education in Vitreous Materials in Brazil combined spectroscopic data on niobium-containing silicate glasses with advanced computational modeling.

Read More

A charged finding—effect of threading dislocation lines on conductivity in gallium nitride versus indium nitride

By Lisa McDonald / May 26, 2023

Group-III-nitride semiconductors have considerable potential for electronic and optoelectronic applications, but unintended defects tend to form in their structure during fabrication, which may affect the electrical properties. Two researchers at the University of British Columbia detailed the striking contrast between the effects of threading dislocation lines in gallium nitride versus indium nitride.

Read More

Freely available deep learning method ‘fills in the blank’ of unknown internal material structures

By Lisa McDonald / May 9, 2023

What if you could predict a material’s internal microstructure based solely on its external surface characteristics? A new deep learning method developed at Massachusetts Institute of Technology provides such a capability, and all data and codes used for the study are freely available for anyone to use through GitHub.

Read More

Thermal properties of cemented carbides: Regression model offers predictions using reliable and readily measurable material characteristics

By Lisa McDonald / March 31, 2023

The accuracy of models for predicting thermal properties of cemented carbides has been limited by dependance on unreliable conductivity data or time-consuming grain size measurements. Two researchers at a Sweden-based tooling company formulated a regression model that offers fairly accurate predictions using only reliable and readily measurable material characteristics.

Read More

Ceramics processing—are we using the correct sintering and creep models?

By Lisa McDonald / February 28, 2023

Processing ceramics requires accurate knowledge of their thermal, chemical, and mechanical behaviors. In today’s CTT, ACerS Fellow Shen Dillon shares recent work he and collaborators in China and the United States published on new models for understanding sintering and creep behaviors in ceramics.

Read More

Model reveals how nanopores form in 2D materials hit by highly charged ions

By Lisa McDonald / February 24, 2023

Bombarding materials with highly charged ions is one way researchers can manipulate and modify 2D heterostructures. TU Wien researchers developed a model to simulate this bombardment and reveal why, when hit, some 2D materials form nanopores and others do not.

Read More

Extensive modeling leads to new shape-memory zirconia with properties on par with shape-memory alloys

By Lisa McDonald / December 20, 2022

Even when a shape-memory ceramic’s lattice compatibility is improved, it still often experiences cracking after just a few dozen transformation cycles. Researchers at the Massachusetts Institute of Technology improved the cyclability of shape-memory zirconia ceramics with the help of a multimode modeling approach.

Read More

Introduction to “Molecular dynamics simulations” for Glass: Then and Now

By Jonathon Foreman / September 9, 2022

As part of the IYoG celebrations, ACerS’ “Glass: Then and Now” series is highlighting ACerS journal articles each month that support advancement in glass science and technology. The focus this month is molecular dynamics simulations.

Read More

Model reveals how to attain dynamic control of ferroionic states in ferroelectric nanoparticles

By Lisa McDonald / August 19, 2022

There still is much to learn about how surface-charge dynamics influence the behavior of ferroelectric materials. In a recent open-access paper, researchers from the United States and Ukraine used finite element modeling to map these dynamics for ferroelectric nanoparticle dispersions.

Read More

Illuminating the past through modern techniques: A review of computer-based methods for archaeological pottery analysis

By Lisa McDonald / July 1, 2022

Computer-based methods aid in identification, classification, and reconstruction of ancient artifacts. A recent review paper outlines the strengths and weaknesses of current state-of-the-art computer-based methods for analyzing archaeological pottery.

Read More