The effect niobium oxide has on the macroscopic properties of glass is reasonably well-known, but its specific structural role in glass remains poorly understood. To address this knowledge gap, researchers from the Center for Research, Technology, and Education in Vitreous Materials in Brazil combined spectroscopic data on niobium-containing silicate glasses with advanced computational modeling.
Read MoreGroup-III-nitride semiconductors have considerable potential for electronic and optoelectronic applications, but unintended defects tend to form in their structure during fabrication, which may affect the electrical properties. Two researchers at the University of British Columbia detailed the striking contrast between the effects of threading dislocation lines in gallium nitride versus indium nitride.
Read MoreWhat if you could predict a material’s internal microstructure based solely on its external surface characteristics? A new deep learning method developed at Massachusetts Institute of Technology provides such a capability, and all data and codes used for the study are freely available for anyone to use through GitHub.
Read MoreThe accuracy of models for predicting thermal properties of cemented carbides has been limited by dependance on unreliable conductivity data or time-consuming grain size measurements. Two researchers at a Sweden-based tooling company formulated a regression model that offers fairly accurate predictions using only reliable and readily measurable material characteristics.
Read MoreProcessing ceramics requires accurate knowledge of their thermal, chemical, and mechanical behaviors. In today’s CTT, ACerS Fellow Shen Dillon shares recent work he and collaborators in China and the United States published on new models for understanding sintering and creep behaviors in ceramics.
Read MoreBombarding materials with highly charged ions is one way researchers can manipulate and modify 2D heterostructures. TU Wien researchers developed a model to simulate this bombardment and reveal why, when hit, some 2D materials form nanopores and others do not.
Read MoreEven when a shape-memory ceramic’s lattice compatibility is improved, it still often experiences cracking after just a few dozen transformation cycles. Researchers at the Massachusetts Institute of Technology improved the cyclability of shape-memory zirconia ceramics with the help of a multimode modeling approach.
Read MoreAs part of the IYoG celebrations, ACerS’ “Glass: Then and Now” series is highlighting ACerS journal articles each month that support advancement in glass science and technology. The focus this month is molecular dynamics simulations.
Read MoreThere still is much to learn about how surface-charge dynamics influence the behavior of ferroelectric materials. In a recent open-access paper, researchers from the United States and Ukraine used finite element modeling to map these dynamics for ferroelectric nanoparticle dispersions.
Read MoreComputer-based methods aid in identification, classification, and reconstruction of ancient artifacts. A recent review paper outlines the strengths and weaknesses of current state-of-the-art computer-based methods for analyzing archaeological pottery.
Read More