Basic science

Porous volumetric ceramic burners increase oven energy efficiency

By Lisa McDonald / November 24, 2020

Though gas ovens are considered more energy efficient than electric ovens, they still face challenges with dissipation of heat into the environment. Porous volumetric ceramic burners are a combustion technology that may improve heat transfer in gas ovens, and researchers in Germany investigated the technology’s heat transfer mechanisms to better illuminate its potential.

Read More

A gain in understanding: Researchers investigate the influence of processing parameters on ceramic oxides for laser applications

By Lisa McDonald / November 10, 2020

Transparent ceramics serve as the gain medium in many commercial lasers, yet the push to develop new and improved ceramics for this application continues. In two papers published this year, an international team of researchers investigates the influence of different processing parameters on the properties of nanocomposite yttrium magnesium oxide ceramics.

Read More

Hiding in plain sight: Broad diffraction pattern offers reliable quality control of graphene

By Lisa McDonald / November 3, 2020

Quality control of graphene is a pressing challenge for suppliers of the 2D material. Yet recent research at Ames Laboratory offers a valuable way to assess the quality by evaluating broad components of the diffraction pattern that scientists overlooked for years.

Read More

Designing Li-S battery cathodes: Polarity rather than conductivity leads to long-term cycling stability

By Lisa McDonald / September 29, 2020

Highly conductive carbon materials are frequently investigated as host materials for sulfur in lithium-sulfur batteries, but such cathodes struggle with loss of sulfur due to the carbon surface being nonpolar. An international team of researchers explored if using polar silica instead as the host material may improve cycling stability, even though silica is nonconductive.

Read More

Toward next-gen thermochromic glass: Researchers improve understanding of insulator-metal transition in vanadium dioxide films

By Lisa McDonald / September 18, 2020

Vanadium dioxide is being actively investigated for use in thermochromic glass due to its insulator-metal transition. However, the mechanism behind this transition is still not well understood. Researchers in Russia used the framework of blow-up overheating instability to improve understanding of this transition.

Read More

I th‘ink’ we have a solution: Researchers explain mechanism behind uniform deposition of 2D materials for printed electronics

By Lisa McDonald / August 28, 2020

In 2017, an international team of researchers led by the University of Cambridge found a certain alcohol-based solvent allowed uniform deposition of inks containing 2D materials—a result important to advancing printed electronics. Now, the team has proposed a mechanism to explain their finding.

Read More

Achieve dynamic control of light—liquid crystals offer way to reconfigure optical properties of metalenses

By Lisa McDonald / August 25, 2020

Metalenses are an emerging technology for controlling light that could someday replace traditional lenses. However, they generally lack dynamic control over their optical properties and are limited to passive optical applications. Researchers from the United States and Italy investigated infiltrating metalenses with liquid crystals to allow for dynamic control.

Read More

Will it spall? Phase diagrams, thermal expansion, and barrier coating degradation

By Jonathon Foreman / August 11, 2020

Thermal and environmental barrier coatings are often used to protect turbine blades made from ceramic matrix composites—but these coatings are prone to damage caused by environmental silicate contamination. In three papers published in JACerS, researchers provide extensive insights into the many aspects of damage.

Read More

Storing charge in sodium-ion batteries: Study supports “three-stage” model for hard carbon anodes

By Lisa McDonald / July 28, 2020

In developing sodium-ion batteries, hard carbon is the material most often used for the anode, but unknowns concerning the charge storage mechanism in this material hinder further development. Researchers have proposed several models to explain the charge storage mechanism, and a recent study lends support for the three-stage “adsorption-intercalation-adsorption” process.

Read More

Faster is not always easier—grain boundary diffusion of cations in fluorite and perovskite oxides

By Lisa McDonald / July 10, 2020

Fast grain boundary diffusion of cations is a well understood phenomenon in metals—but much less is known about this phenomenon in oxygen-ion conducting metal oxides. Researchers at RWTH Aachen University simulated this diffusion and found that although metal ions move faster along the boundaries than in bulk, the process is not necessarily less energy intensive.

Read More